INTENTIONAL RADIATOR TEST REPORT (C2PC)

Report Reference Number:

Total Number of Pages: Date of Issue:

EMC Test Laboratory:

Address: Phone: Fax: E11202-2101_CML_Smart Meter Module_**Rev 3.0** 22 October 22, 2021

QAI Laboratories Ltd. 3980 North Fraser Way, Burnaby, BC, V5J 5K5 Canada (604) 527-8378 (604) 527-8368

Laboratory Accreditations (per ISO/IEC 17025:2017)

This report has been completed in accordance with the requirements of ISO/IEC 17025. Test results contained in this report are within QAI Laboratories ISO/IEC 17025 accreditations. QAI Laboratories authorizes the applicant to reproduce this report, provided it is reproduced in its entirety and for the use by the company's employees only.

Manufacturer:

Address:

Equipment Tested:

Model Number(s):

Tantalus Systems Corp.3555 Gilmore Way #200

Burnaby BC, V5G 0B3 Canada.

TC 1220-RD

0038C50488

REVISION HISTORY

Date	Report Number	Details	Author's Initials		
October 22, 2021	E11202-2101_CML_Smart Meter Module_Rev 3.0	Final	RS		
August 25, 2021	E11202-2101_CML_Smart Meter Module_Rev 0.0	Draft	RS		
All previous versions of this report have been superseded by the latest dated revision as listed in the above table.					
Please dispose of all previous electronic and paper printed revisions accordingly.					

REPORT AUTHORIZATION

The data documented in this report is for the test equipment provided by the manufacturer. The tests were conducted on the sample equipment as requested by the manufacturer for the purpose of demonstrating compliance with the standards outlined in Section I of this report as agreed upon by the Manufacturer under the quote 21SH01041R1.

The Manufacturer is responsible for the tested product configurations, continued product compliance, and for the appropriate auditing of subsequent products as required. This report may comprise a partial list of tests that are required for FCC and ISED Declaration of Conformity can only be produced by the manufacturer. This is to certify that the following report is true and correct to the best of our knowledge.

bly yan

Testing Performed by Alireza Nezam EMC Test Engineer

Jack 7

Report Reviewed by Jack Qin EMC Test Engineer

Report Prepared by Ravi Sharma EMC Technical Writer

QAI

QAI FACILITIES

South Korea

British Columbia	Ontario	Virginia	China	
QAI Laboratories Inc.	QAI Laboratories Inc.	QAI Laboratories Ltd.	QAI Laboratories Ltd	
Main Laboratory/Headquarters	25 Royal Group Crescent #3,	1047 Zachary Taylor Hwy,	Room 408, No. 228, Jiangchang	
3980 North Fraser Way,	Vaughan,	Suite A Huntly,	3 rd Road Jing'An District,	
Burnaby, BC V5J Canada	ON L4H 1X9 Canada VA 22640 USA		Shanghai, China 200436	
California	Oklahoma	Miami	South Korea	
QAI Laboratories Ltd.	QAI Laboratories Ltd.	QAI Laboratories Ltd.	QAI Laboratories Ltd	
8385 White Oak Avenue Rancho	5110 North Mingo Road	8148 NW 74th Ave,	#502, 8, Sanbon-ro 324beon-gil	
Cucamonga, CA 91730 USA	Tulsa, OK 74117, USA	Medley, FL 33166 USA	Gunpo-si, Gyeonggi-do, 15829,	

QAI EMC ACCREDITATION

QAI EMC is your one-stop regulatory compliance partner for electromagnetic compatibility (EMC) and electromagnetic interference (EMI). Products are tested to the latest and applicable EMC/EMI requirements for domestic and international markets. QAI EMC goes above and beyond being a testing facility—we are your regulatory compliance partner. QAI EMC has the capability to perform RF Emissions and Immunity for all types of electronics manufacturing including Industrial, Scientific, Medical, Information Technology, Telecom, Wireless, Automotive, Marine and Avionics.

EMC LaboratoryFCC DesignationLocation(3m SAC)		IC Registration (3m SAC)	A2LA Certificate
Burnaby, BC, Canada	CA9543	9543A	3657.02

EMC Facility Burnaby BC, Canada

TABLE OF CONTENTS

REVISI	ON HISTORY	.2
REPOR	T AUTHORIZATION	.2
QAI FA	CILITIES	.3
QAI EN	IC ACCREDITATION	.3
TABLE	OF CONTENTS	.4
Section	I: GENERAL INFORMATION	.5
1.1	Product Description	.5
1.2	Environmental Conditions	.6
1.3	Measurement Uncertainty	.6
1.4	Worst Test Case	.6
1.5	Sample Calculations of Emissions Data	.7
1.6	Test Equipment List	.8
Section	II: EXECUTIVE SUMMARY OF STANDARDS AND LIMITS	.9
2.1	Purpose	.9
2.2	Scope	.9
2.3	Summary of Results	.9
Section	III: DATA & TEST RESULTS	10
3.1	Antenna Requirements	10
3.2	Intentional Radiator	11
3.3	Max. Peak Conducted and Radiated RF Output Power	16
Append	lix A: TEST SETUP AND PHOTOS	21
Append	lix B: ABBREVIATIONS	22

Section I: GENERAL INFORMATION

1.1 Product Description

The information provided in this section is for the Equipment Under Test (EUT) and the corresponding Auxiliary Equipment needed to perform the tests as a complete system.

Equipment enact 1000 (201)	
EUT	TC 1220-RD
FCC ID	OZFACXX20
IC Number	3669A-ACXX20
TC-1220 NID:	0038C50488
Manufacturer	Tantalus Systems Corp.
Model No.	0038C50488
Frequency Range	902 MHz – 928 MHz.
HVIN	TC 1120, TC 1120-RD, TC 1220, TC 1220-RD
FVIN	11.87
Frequency Operating System	Linux 4.19

Equipment Under Test (EUT)

1.2 Environmental Conditions

The equipment under test was operated and tested under the following environmental conditions:

Parameter	Conditions
Location	Indoors
Temperature	24.4°C
Relative Humidity	47.9 %
Atmospheric Pressure	101 kPa

1.3 Measurement Uncertainty

Parameter	Uncertainty
Radiated Emissions, 10kHz-1GHz	± 2.40 dB
Radiated Emissions, 1GHz-40GHz	± 2.48 dB
Conducted Emissions, 10kHz. to 40GHz.	± 2.82 dB
Radio Frequency	±1.5 x 10-5 MHz
Total RF Power Conducted	±1.36 dB
Spurious Emissions, Conducted	±1.36 dB
RF Power Density, Conducted	±1.36 dB
Temperature	±1°C
Humidity	±5 %
DC and low frequency voltages	±3 %

1.4 Worst Test Case

Worst-case orientation was determined during the preliminary testing. The final radiated emissions were performed in the worst-case orientation.

1.5 Sample Calculations of Emissions Data

Radiated and conducted emissions were performed using EMC32 software developed by Rohdes & Schwarz. Transducer factors like Antenna factors, Cable Losses and Amplifier gains were stored in the test templates which are used to perform the emissions measurements. After test is finished, data is generated from the EMC32 consisting of product details, emission plots and final data tables as shown below.

Frequency (MHz)	Q-Peak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Ant. Ht. (cm)	Pol	Turntable Position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
42.663900	33.0	1000.000	120.000	100.0	Η	70.0	13.2	7.5	40.5

Quasi-Peak reading shown in the table above is already corrected by the software using correction factor shown in column "Corr." The correction factor listed under "Corr." table calculated as:

Corr.(dB) = Antenna factor + Cable loss

Or

Corr.(dB) = Antenna factor + Cable Loss - Amp gain (if pre-amplifier was used)

The final Quasi peak reading shown in the data is calculated by the software using following equation:

Corrected Quasi-Peak (dBµV/m) = Raw Quasi-Peak Reading + Antenna factor + Cable loss

To obtain the final Quasi-Peak or Average reading during power line conducted emissions, transducer factors are included in the final measurement as shown below.

Frequency	Q-Peak	Meas. Time	Bandwidth	PE	Corr.	Margin	Limit
(MHz)	(dBµV)	(ms)	(kHz)		(dB)	(dB)	(dBµV)
0.150	44.3	1000.000	9.000	GND	0.6	21.7	66.0

Frequency	Average	Meas. Time	Bandwidth	PE	Corr.	Margin	Limit
(MHz)	(dBµV)	(ms)	(kHz)		(dB)	(dB)	(dBµV)
0.150	27.2	1000.000	9.000	GND	0.6	28.8	56.0

Quasi Peak or Average reading shown in above table is already corrected by the software using the correction factor shown in column "Corr." The correction factor listed under "Corr." table calculated as:

Corr.(dB) = Antenna factor + Cable loss

The final Quasi-peak or Average reading shown in the data is calculated by the software using following equation:

Corr. Quasi-Peak/Average Reading (dBµV) = Raw Quasi-Peak/Average Reading + Antenna factor + Cable loss

The allowable margin from the limits, as per the standards, were calculated for both radiated and conducted emissions:

Margin(dB) = Limit – Quasi-Peak or Average reading

1.6 Test Equipment List

The tables below contain all the equipment used by QAI Laboratories in conducting all tests on the Equipment Under Test (EUT) as per Section 1.

Emissions Test Equipment

Sl. NO.	Manufacturer	Model	Description	Serial No.	S/W Version	Calibration Due Date
1	AH Systems	PAM118	Amplifier (10KHz-18GHz)	189	N/A	Conditional Use
2	TTi	HA1600A	Power Analyzer; Harm/Flicker	318801	N/A	2021-Oct-01
3	TTi	AC1000A	Power Supply, Low Distortion	317113	N/A	2021-Oct-01
4	EMCO	3825/2	LISN (150kHz-30MHz)	9002-1601	N/A	2023-Oct-01
5	Sunol Sciences	DRH-118	Horn Antenna, 1.0-18 GHz	A050905	N/A	2023-07-28
6	ETS Lindgren	2165	Turntable	00043677	N/A	N/A
7	ETS Lindgren	2125	Mast	00077487	N/A	N/A
8	ETS Lindgren	S201	5-meter Semi-Anechoic Chamber	1030	N/A	N/A
9	Hewlett Packard	8449B	Preamplifier (1-26 GHz)	2933A00198	N/A	2022-Jan-22
10	Rohde & Schwarz	ESU40	EMI Receiver	100011	EMC32 v10.35.10/ FV 4.73 SP4	2023-Jul-05
11	Rohde & Schwarz	ESCI	EMI Receiver	100123	EMC32 v10.01.00/ FV 4.42 SP3	2022-Mar-26
12	Sunol Sciences	SM46C	Turntable	051204-2	N/A	N/A
13	Sunol Sciences	TWR95	Mast	TREML0001	N/A	N/A
14	Sunol Sciences	JB3	Biconilog Antenna 30MHz – 3GHz	A120106	N/A	2022-May-10
15	Sunol Sciences	JB3	Biconilog Antenna 30MHz – 3GHz	A042004	N/A	2023-Jul-30

Note: Equipment listed above have 3 years calibration interval.

Section II: EXECUTIVE SUMMARY OF STANDARDS AND LIMITS

2.1 Purpose

The purpose of this report is to demonstrate C2PC.

2.2 Scope

The information documented in this report is based on the test methods and levels as per Quote 21SH01041R1.

FCC Title 47 Part 15	– Radio Frequency Devices, Subpart C – Intentional Radiators.
	- 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850
	MHz.
CFR Title 47 FCC Part 15	– Radio Frequency Devices, Subpart B – Unintentional Radiators.
RSS-247 Issue 2	- Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence
	Exempt Local Area Network (LE-LAN) Devices
RSS-Gen Issue 5	- General Requirements and Information for the Certification of Radio Apparatus
ICES-003 Issue 6	- Information Technology Equipment (Including Digital Apparatus).
	- Limits and Methods of Measurement.

2.3 Summary of Results

The following tests demonstrate the testimony to "FCC and ISED" Mark Electromagnetic compatibility testing for "Smart Meter Module" manufactured by Tantalus Systems Corp.

Test or Measurement	Applicable FCC and IC Standard	Performance Criteria
Antanna Paguiramant	FCC CFR 47 Part 15.203	Complies
Antenna Requirement	RSS-Gen Issue 5	Complies
	FCC CFR 47 Part 15.249	
	FCC CFR 47 Part 15.209	
Intentional Radiated Emissions	FCC CFR 47 Part 15.205	Complies
	RSS-210 Issue 10	
	RSS-Gen Issue 5	
May Deals Conducted and Dedicted DE Output Down	FCC 47 CFR §1.1310:	Complias
Max. Peak Conducted and Kadiated KF Output Power	RSS-102 Section 2.5.2:	Complies

Note: The gain of the antenna is provided by the client to measure or calculate test results and is not measured by QAI.

Section III: DATA & TEST RESULTS

3.1 Antenna Requirements

Date Performed: July 25, 2021

Test Standard: FCC CFR 47 Part 15.203 RSS-Gen Issue 5

Applicable Regulations:

The purpose of this requirement is to make certain that no other antenna, except for that provided by the responsible party, shall be used with the Equipment-Under-Test (EUT) as defined in <u>Section 1.1</u>.

"An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. "The installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded."

Note: The gain of the antenna is provided by the client to measure or calculate test results and is not measured by QAI.

Modifications:	No modification	was required to	comply for this test
----------------	-----------------	-----------------	----------------------

Final Result: This radio meets the requirements of FCC CFR 47 Part 15.203 & RSS-Gen Issue 5 as a professionally installed device.

3.2 Intentional Radiator

Date Performed: August 5,6, 2021

Fest Standard:	FCC CFR 47 Part 15.249
	FCC CFR 47 Part 15.209
	FCC CFR 47 Part 15.205
	RSS-210 Issue 9
	RSS-Gen Issue 5

Test Method: ANSI C63.10:2013

Test Requirement:

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Frequency	Field Streng	th of Fundamental	Field Strength of Harmonics		
(MHz)	mV/m dBµV/m		μV/m	dBµV/m	
902-928	50	94	500	54	
2400-2483.5	50	94	500	54	
5725-5875	50	94	500	54	
24.0-24.25	250	108	2500	68	

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general field strength limits listed in Rss-Gen Issue 4, whichever is less stringent.

In measuring unwanted emissions, the spectrum shall be investigated from 30 MHz or the lowest radio frequency signal generated in the equipment, whichever is lower, without going below 9 kHz, up to at least the frequency if the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Engguonau	Field Strength				
(MHz)	"V/m @ 3 m	Calculated			
	u v/m @ 3-m	dBµV/m at 3m			
30 - 88	100	40.0			
88 - 216	150	43.5			
216 - 960	200	46.0			
Above 960	500	54.0			

Unwanted emissions falling into restricted bands of shall comply with the limits specified below

FCC PART 15.205-RESTRICTED BANDS OF OPERATION

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

(b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35 apply to these measurements.

RESTRICTED FREQUENCY BANDS (RSS-GEN ISSUE 4)

MHz	MHz	GHz
0.090 - 0.110	240 - 285	9.0 - 9.2
2.1735 - 2.1905	322 - 335.4	9.3 - 9.5
3.020 - 3.026	399.9 - 410	10.6 - 12.7
4.125 - 4.128	608 - 614	13.25 - 13.4
4.17725 - 4.17775	960 - 1427	14.47 - 14.5
4.20725 - 4.20775	1435 - 1626.5	15.35 - 16.2
5.677 - 5.683	1645.5 - 1646.5	17.7 - 21.4
6.215 - 6.218	1660 - 1710	22.01 - 23.12
6.26775 - 6.26825	1718.8 - 1722.2	23.6 - 24.0
6.31175 - 6.31225	2200 - 2300	31.2 - 31.8
8.291 - 8.294	2310 - 2390	36.43 - 36.5
8.362 - 8.366	2655 - 2900	Above 38.6
8.37625 - 8.38675	3260 - 3267	Certain frequency bands listed in
8.41425 - 8.41475	3332 - 3339	this table and in bands above 38.6
12.29 - 12.293	3345.8 - 3358	GHz are designated for licence-
12.51975 - 12.52025	3500 - 4400	exempt applications. These
12.57675 - 12.57725	4500 - 5150	frequency bands and the
13.36 - 13.41	5350 - 5460	requirements that apply to related
16.42 - 16.423	7250 - 7750	devices are set out in the 200 and
16.69475 - 16.69525	8025 - 8500	300 series of RSSs.
16.80425 - 16.80475		
25.5 - 25.67		
37.5 - 38.25		
73 - 74.6		
74.8 - 75.2		
108 - 138		
156.52475 - 156.52525		
156.7 - 156.9		

Test Setup:

The EUT was tested in our 3 m SAC and was positioned on the center of the turntable. The transmitter was set for continuous transmission. The RF radiated emissions were measured in the frequency range of 150kHz to 18 GHz. The EUT was pre-scanned in 3 different orthogonal orientations and was found to radiate highest when placed flat on the tabletop as indicated in the test photos.

Measurement Method:

ANSI C63.10:2013 radiated emissions procedure was followed to demonstrate the compliance of Bluetooth low energy.

Modifications: No modification was required to comply for this test.

Final Result: The EUT complies with the applicable standard.

Measurement Data and Plot:

The limit lines shown in the plot and table are for emissions that fall into the restricted bands.

All other emissions have a limit of -20Bc with respect to the fundamental.

In accordance with DA 00-705 a duty cycle correction factor has been applied to the average measurements. The dwell time for this product is less than 5mS for this product and therefore the measured average emissions can be further reduced by 20dB from the values shown in the plots and the table.

Plot 1: Radiated Emissions: 1GHz-6GHz - for reference only

Frequency (MHz)	Peak (dBµV/m)	Average (dBµV/m)	Corrected Average (dBµV/m)	Peak Limit (dBµV/m)	Average Limit (dBµV/m)	Margin (dB)	Duty Cycle (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
1016.0		68.10	40.10		54.0	13.90	28	250	Н	169	-8.5
1018.5		57.90	29.90		54.0	24.10	28	250	V	212	-8.4
1804.5		63.96	35.96		83.3	47.34	28	250	Н	136	-2.9
1830.0		60.54	32.54		83.3	50.76	28	200	Н	350	-2.5
1855.5		66.45	38.45		83.3	44.85	28	200	Н	4	-2
1982.5		51.45	23.45		83.3	59.85	28	200	Н	350	0.1
2745.0		56.28	28.28		54.0	25.72	28	100	Н	297	-0.2
3211.0		44.23	16.23		83.3	67.07	28	300	Н	69	0.2
4762.0		41.87	13.87		54.0	40.13	28	100	V	295	4.1
5185.5		52.19	24.19		83.3	59.11	28	100	Н	331	4.5
6314.4	57.26			103.3		46.04	28	250	Н	329	-8.3
6405.6	58.50			103.3		44.80	28	250	Н	329	-8.3
6493.6	70.49			103.3		32.81	28	250	Н	264	-8.2
7216.6	59.40			103.3		43.90	28	250	Н	215	-6.2
7320.4	62.92			74.0		11.08	28	200	Н	248	-6.2
7422.4	58.13			74.0		15.87	28	200	V	233	-6.1
8120.2	54.76			74.0		19.24	28	150	V	154	-4.2
8349.1	54.04			74.0		19.96	28	150	V	2	-4.3
9924.8	52.14			103.3		51.16	28	100	Н	38	0.8

Table 1: Radiated Spurious Emissions, 1GHz-10 GHz

3.3 Max. Peak Conducted and Radiated RF Output Power

Date Performed:	Aug 05, 2021
Test Requirement:	The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 902-928 MHz band: 1watt (30 dBm) for systems employing at least 50 hopping channels.
Test Set-up:	Conducted measurement at antenna port using spectrum analyzer. Span = 1 MHz RBW = 100 kHz VBW = 300 kHz Trace stabilization time: 3.5 minutes.
Result:	Max. peak conducted output power is < 30 dBm. EUT complies.

Measurement Data and Plot:

Plot 3: Max. Peak Radiated RF Power Output at Low Channel

Plot 4: Max. Peak Radiated RF Power Output at Mid Channel

Plot 5: Max. Peak Radiated RF Power Output at High Channel

Carrier Frequency (MHz)	Raw Peak (dBuV/m)	Correction Factor (dB)	EIRP (dBuV/m)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Results
902.2	64.87	52.5	117.37	22.14	36	13.86	Comply
914.9	67.73	52.5	121.00	25.77	36	10.23	Comply
927.7	68.44	52.5	120.94	25.71	36	10.29	Comply

Table 2: Data of RF Peak EIRP Output

Plot 6: Max. Peak Conducted RF Power Output at Low Channel

Plot 7: Max. Peak Conducted RF Power Output at Mid Channel

Plot 8: Max. Peak Conducted RF Power Output at High Channel

1	l'able 3: Data	a of RF	Peak	Conduct	ed P	ower (Out	put	
- 6									-

Carrier Frequency (MHz)	RF Conducted Peak Power (dBm)	Limit (dBm)	Margin (dB)	Results	
902.2	29.07	30	0.93	Comply	
914.9	28.99	30	1.01	Comply	
927.7	28.63	30	1.37	Comply	

Appendix A: TEST SETUP AND PHOTOS

Figure 1: RF Radiated Emissions Fundamental measurements

Figure 2: Radiated Emissions above 1GHz

Appendix B: ABBREVIATIONS

Abbreviation	Definition
AC	Alternating Current
AM	Amplitude Modulation
CE	European Conformity
CISPR	Comité International Spécial des Perturbations Radioélectriques (International Special Committee on Radio Interference)
DC	Direct Current
EFT	Electrical Fast Transient
EMC	Electro Magnetic Compatibility
EMI	Electro Magnetic Interference
ESD	Electrostatic Discharge
EUT	Equipment Under Test
FCC	Federal Communications Commission
FVIN	Firmware Version Identification Number FVIN
IC	Industry Canada
ICES	Interference Causing Equipment Standard
IEC	International Electrotechnical Commission
LISN	Line Impedance Stabilizing Network
OATS	Open Area Test Site
RF	Radio Frequency
RMS	Root-Mean-Square
SAC	Semi-Anechoic Chamber

END OF REPORT