

FCC EVALUATION REPORT FOR CERTIFICATION

Manufacturer: OHSUNG ELECTRONICS CO., LTD Date of

#181 Gongdan-Dong, Gumi, GyeongBuk

Republic of Korea

Attn: Mr. Kwang-Jae Ok / Team Leader of Q.C

Date of Issue: January 29, 2008

Test Report S/N: GETEC-E3-08-006

Test Site: Gumi College EMC Center

FCC ID

APPLICANT

OZ5URCMX950N

OHSUNG ELECTRONICS CO., LTD

Rule Part(s)

: FCC Part 15 Subpart B-Unintentional Radiator § 15.107, § 15.109

FCC Part 15 Subpart C-Intentional Radiator § 15.231

Equipment Class

: Remote Control Transmitter (DSC)

EUT Type

: RF Remote Controller

Trade Name

: UNIVERSAL remote control

Model No.

: MX-950

This equipment has been shown to be in compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-2003

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the vest of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested by,

Reviewed by,

Jae-Hoon Jeong, Senior Engineer GUMI College EMC center

Tae-Sig Park, Technical Manger GUMI College EMC center

CONTENTS

1. GENERAL INFORMATION	4
2. INTRODUCTION	5
3. PRODUCT INFORMATION	6
3.1 DESCRIPTION OF EUT	6
3.2 SUPPORT EQUIPMENT / CABLES USED	7
3.3 MODIFICATION ITEM(S)	7
4. DESCRIPTION OF TESTS	8
4.1 TEST CONDITION	8
5. ANTENNA REQUIREMENT - §15.203	8
5.1 DESCRIPTION OF ANTENNA	8
5.2 CONDUCTED EMISSION	9
5.3 RADIATED EMISSION	10
5.4 DUTY CYCLE CORRECTION	11
5.5 OCCUPIED BANDWIDTH	11
6. CONDUCTED EMISSION	12
6.1 OPERATING ENVIRONMENT	12
6.2 TEST SET-UP	12
6.3 MEASUREMENT UNCERTAINTY	12
6.4 LIMIT	13
6.5 TEST EQUIPMENT USED	13
6.6 TEST DATA FOR POWER LINE CONDUCTED EMISSION	14
7. DUTY CYCLE CORRECTION	17
7.1 OPERATING ENVIRONMENT	17
7.2 TEST SET-UP	17
7.3 TEST EQUIPMENT USED	17
7.4 TEST RESULT OF DUTY CYCLE	17
8. RADIATED EMISSION	18
8.1 OPERATING ENVIRONMENT	18
8.2 Test set-up	18
8.3 MEASUREMENT UNCERTAINTY	18
8.4 LIMIT	19
8.5 TEST EQUIPMENT USED	19
8.6 RADIATED EMISSION TEST DATA	20
9. OCCUPIED BANDWIDTH MEASUREMENT	24
9.1 OPERATING ENVIRONMENT	24
9.2 TEST SET-UP	24
9.3 LIMIT	24
9.4 TEST EQUIPMENT USED	24

FCC Part 15 Subpart B,C

9.5 TEST RESULT OF OCCUPIED BANDWIDTH	24
10. SAMPLE CALCULATIONS	25
10.1 Example 1:	25
10.2 EXAMPLE 2:	25
11. RECOMMENDATION & CONCLUSION	26
APPENDIX A – ATTESTATION STATEMENT	
APPENDIX B – TEST PLOTS	
APPENDIX C – FCC ID LABEL & LOCATION	
APPENDIX D – BLOCK DIAGRAM(S)	
APPENDIX E – SCHEMATIC DIAGRAM(S)	
APPENDIX F – TEST SET UP PHOTOS	
APPENDIX G – EXTERNAL PHOTOGRAPHS	
APPENDIX H – INTERNAL PHOTOGRAPHS	
APPENDIX I – USER'S MANUAL	
APPENDIX J - OPERATIONAL DESCRIPTION	

Scope: Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and / or unintentional radiators for compliance with technical rules and regulations of the Federal Communications Commission.

1. General Information

Applicant: OHSUNG ELECTRONICS CO., LTD.

Applicant Address: #181 Gongdan-Dong, Gumi-Si, Gyeongsangbuk-do, Korea

Manufacturer: OHSUNG ELECTRONICS CO., LTD

Manufacturer Address: #181 Gongdan-Dong, Gumi-Si, Gyeongsangbuk-do, Korea

Contact Person: Mr. Kwang-Jae Ok / Team Leader Q.C

Tel. & Fax No.: Tel No.: +82-54-468- 0831 Fax No.: +82-54- 461- 8368

• FCC ID. OZ5URCMX950N

• Equipment Class Remote Control Transmitter (DSC)

• EUT Type RF Remote Controller

• **Power Source** DC 3.7V supplied from Li-ion rechargeable battery

• Model No. MX-950

Rule Part(s)
 FCC Part 15, Subpart B-Unintentional Radiator §15.107, §15.109

FCC Part 15, Subpart C-Intentional Radiator § 15.231

• Type of Authority Certification

• Test Procedure(s) ANSI C63.4 (2003)

• Dates of Test January 28, 2008

• Place of Test Gumi College EMC Center (FCC Registration No.: 100749)

407, Bugok-Dong, Gumi-si, Gyeongsangbuk-Do, Korea

• Test Report No. GETEC-E3-08-006

• **Dates of Issue** January 29, 2008

2. Introduction

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Nose Emissions From Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz (ASNI C63.4-2003) was used in determining radiated and conducted emissions emanating from OHSUNG ELECTRONICS CO., LTD. RF Remote Controller (Model No.: MX-950)

These measurement tests were conducted at Gumi College EMC Center.

The site address is 407, Bugok-Dong, Gumi-si, Gyeongsangbuk-Do, Korea

This test site is one of the highest point of Gumi 1 college at about 200 kilometers away from Seoul city and 40 kilometers away from Daege city. It is located in the valley surrounded by mountains in all directions where ambient radio signal conditions are quiet and a favorable area to measure the radio frequency interference on open field test site for the computing and ISM devices manufactures. The detailed description of the measurement facility was found to be in compliance with the requirements of \$2.948 according to ANSI C63.4 on October 19, 1992

407, Bugok-Dong, Gumi-si, Gyeongsangbuk-Do 730-711, Korea Tel: +82-54-440-1195~8

GUMI COLLEGE EMC CENTER

Fax: +82-54-440-1199

Fig 1. The map above shows the Gumi College in vicinity area.

FCC Part 15 Subpart B,C

3. Product Information

3.1 Description of EUT

The Equipment Under Test (EUT) is the OHSUNG ELECTRONICS CO., LTD. RF Remote Controller (Model No.: MX-950) FCC ID.:OZ5URCMX950N

Rate of Power supply : DC 3.7V supplied from Li-ion rechargeable battery

AC/DC Adapter : HK-F105-A05 (UNIVERTIAL Remote control)

Input: AC 100-240V, 50/60Hz 0.15A

Output: DC 5V, 1.0A

RF Frequency : 418 MHz

External Connector : DC In, Charger Signal, USB

Crystal & Clock Frequency : 32.768kHz, 8MHz, 12MHz on Main B'D

13.0625MHz on RF MODULE B'D

Number of Layer : Main B'D 6 Layer

Module B'D 2 Layer

3.2 Support Equipment / Cables used

3.2.1 Used Support Equipment

Description	Manufacturer	Model No.	S/N & FCC ID
Serial mouse	LOGITECH	M-S69	S/N: 334684-108 FCC ID: JNZ211443
Notebook PC	COMPAQ	ARMADA E500	S/N: PP2060 FCC ID: DoC
Printer	Hewlett Packard	970CXI	S/N: MY9B01F1FG FCC ID: DoC

See "Appendix E - Test Setup Photographs" for actual system test set-up

3.2.2 Used Cable(s)

Cable No.	Condition	Description
Adapter cable	Connected to the EUT	1.8m Unshielded
USB cable	Connected to the EUT and Notebook PC	1.8m Shielded with two ferrite cores

3.3 Modification Item(s)

-. None

FCC Part 15 Subpart B,C

4. Description of tests

4.1 Test Condition

The EUT was installed, arranged and operated in a manner that is most representative of equipment as typically used.

The measurements were carried out while varying operating modes and cable positions within typically arrangement to determine maximum emission level.

The representative and worst test mode(s) were noted in the test report.

Test Voltage / Frequency: DC 3.7V supplied from Li-ion rechargeable battery

Test Mode(s)

-. RF mode: RF transmitting mode-. IR mode: IR transmitting mode

-. Download mode: Continuous downloading mode via USB with a software.

5. Antenna Requirement - §15.203

An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the applicant can be used with the device. The use of permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with this requirement.

5.1 Description of Antenna

The **OHSUNG ELECTRONICS CO., LTD RF Transmitter Universal Remote Control** comply with the requirement of §15.203 with a built-in looped antenna permanently attached to the transmitter.

5.2 Conducted Emission

The Line conducted emission test facility is inside a 4×8×2.5 meter shielded enclosure.

The EUT was placed on a non-conducting 1.0 by 1.5 meter table, which is 0.8 meters in height and 0.4 meters away from the vertical wall of the shielded enclosure.

The EUT is powered from the Rohde & Schwarz LISN (ESH2-Z5) and the support equipment is powered from the Rohde & Schwarz LISN (ESH3-Z5). Powers to the LISN are filtered by high-current high insertion loss power line filter

Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition.

The RF output of the LISN was connected to the EMI test receiver (Rohde & Schwarz, ESCS30).

The EMI test receiver was scanned from 150kHz to 30MHz with 20msec sweep time to determine the frequency producing the maximum EME from the EUT. The frequency producing the maximum level was re-examined using Quasi-Peak mode of the EMI test receiver.

The bandwidth of Quasi-peak mode was set to 9kHz. Each emission was maximized consistent with typical applications by varying the configuration of the test sample. Interface cables were connected to the available interface ports of the test unit. The effect of varying the position of cables was investigated to find the configuration that produces maximum diagram emission. Excess cable lengths were bundled at center with 30-40 centi-meters.

Each EME reported was calibrated using the R/S signal generator

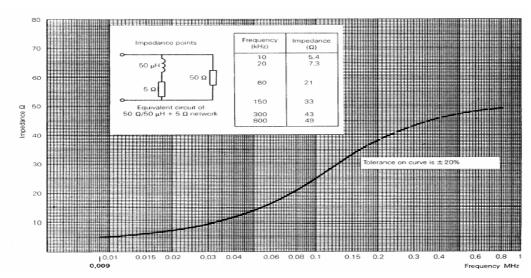


Fig 2. Impedance of LISN

5.3 Radiated Emission

Preliminary measurements were conducted 3m semi anechoic chamber using broadband antennas to determine the frequency producing the maximum EME. Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The technology configuration, mode of operation and turntable azimuth with respect to antenna was note for each frequency found.

The spectrum was scanned from 30 to 1000MHz using bicornical log antenna (Schwarzbeck, VULB9160). Above 1GHz, horn antenna (Schwarzbeck, BBHA9120D) was used.

Final measurements were made outdoors at 3m/10m-test range.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition.

Each frequency found during pre-scan measurements was re-examined and investigated using EMI test receiver. The detector function was set to CISPR quasi-peak mode average mode and the bandwidth of the receiver was set to 120kHz or 1MHz depending on the frequency or type of signal.

The EUT, support equipment and interconnecting cables were reconfigured to the setup producing the maximum emission for the frequency and were placed on top of a 0.8m high non-metallic 1.0×1.5 meter table.

The turntable containing the test sample was rotated; the antenna height was varied 1 to 4 meter and stopped at the azimuth or height producing the maximum emission.

Each EME reported was calibrated using the R/S signal generator

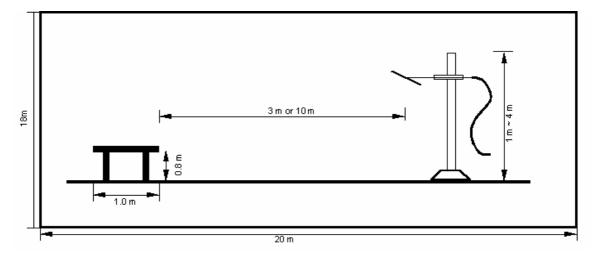


Fig 3. Dimensions of Open Site Test Area

FCC Part 15 Subpart B,C

5.4 Duty Cycle Correction

Measurements may be adjusted where pulsed RF is utilized to find the average level associated with a quantity.

This calculation is applied to limits for pulsed licensed and unlicensed devices.

For unlicensed intentional radiator under 47CFR Part 15 §15.35, all duty cycle measurements are compared to a 100 millisecond period.

On time = N1L1+N2L2+...+NnLn, where N1 is number of type 1 pulses, L1 is length of type 1 pulses, etc. **Duty Cycle = On time/100 millisecond**.

5.5 Occupied Bandwidth

Occupied bandwidth was performed by coupling the output of the EUT to the input of a spectrum analyzer. The bandwidth of the emission shall be no wider than 0.25% of the center frequency for device operating above 70MHz and below 900MHz. For device operating above 900MHz, the emission shall be no wider than 0.5% of the center frequency. The bandwidth is determined at the points 20dB down from the modulated carrier.

6. Conducted Emission

6.1 Operating environment

Temperature : 24° C Relative humidity : 41° %

6.2 Test set-up

The conducted emission measurements were performed in the shielded room.

The EUT was placed on wooden table, 0.8m heights above the floor, 0.4m from the reference ground plane (GRP) wall and 0.8m from AMN.

AMN is bonded on horizontal reference ground plane.

The ground plane, which was electrically bonded to the shield room, ground system and all power lines entering the shield room, were filtered.

6.3 Measurement uncertainty

The measurement uncertainty was calculated in accordance with ISO "Guide to the expression of uncertainty in measurement".

The measurement uncertainty was given with a confidence of 95%.

Contribution	Probability	Uncer	tainty (±dB)
Contribution	Distribution	Power Port	Communication port
Receiver specification	Rectangular	0.50	0.50
LISN coupling specification	Rectangular	1.50	
ISN coupling specification	Rectangular		1.50
Mismatch			
LISN VRC : Γ 1= 0.20	U-shaped	0.05	0.05
ISN VRC : Γ 1= 0.20		-0.05	-0.05
ATT VRC(IN) : Γ g= 0.03			
Uncertainty limits 20log(1± □1 □g)			
Mismatch			
Receiver VRC : Γ l= 0.09	U-shaped	0.09	0.09
ATT VRC : Γ g= 0.11		-0.09	-0.09
Uncertainty limits 20log(1± □1 □g)			
System repeatability	Std Deviation	0.55	0.55
Cable and input attenuator calibration	Normal (k=2)	0.08	0.08
Repeatability of EUT			
Combined standard uncertainty Uc(y)	Normal	1.07	1.07
		-1.07	-1.07
Extended uncertainty U	Normal (k=2)	2.15	2.15
		-2.15	-2.15

FCC Part 15 Subpart B,C

6.4 Limit

RFI Conducted	FCC Limit(dB) Class B					
Freq. Range	Quasi-Peak	Average				
150kHz – 0.5MHz	66 – 56*	56 – 46*				
0.5MHz – 5MHz	56	46				
5MHz – 30MHz	60	50				

^{*}Limits decreases linearly with the logarithm of frequency.

6.5 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Due to calibration
-	ESCS30	Rohde & Schwarz	EMI test receiver	839809/003	12. 14. 2008
■ -	ESH3-Z5	Rohde & Schwarz	Artificial mains network	838979/020	12. 13. 2008
_	ESH2-Z5	Rohde & Schwarz	Artificial mains network	829991/009	12. 13. 2008

FCC Part 15 Subpart B,C

6.6 Test data for power line conducted emission

-. Test Date : January 28, 2008

-. Resolution bandwidth : 9 kHz

-. Frequency range : 0.15MHz ~ 30MHz

(Download mode)

Frequency	Insertion	Cable	Pol.	Qua	si-Peak[dB	uV]	Av	verage[dBu	uV]	Margin	ı[dBuV]
(MHz)	Loss	Loss	roi.	Limit	Reading	Result	Limit	Reading	Result	Quasi	Average
0.206	0.12	-0.23	Ll	63.37	33.8	33.69	53.37	23.4	23.29	29.67	30.07
0.270	0.12	-0.19	Ll	61.12	36.8	36.71	51.12	26.9	26.83	24.40	24.28
0.402	0.13	-0.12	Ll	57.81	38.6	38.61	47.81	25.5	25.51	19.20	22.30
0.622	0.14	-0.23	Ll	56.00	38.9	38.81	46.00	26.4	26.31	17.19	19.69
1.250	0.14	-0.25	Ll	56.00	40.2	40.09	46.00	26.3	26.19	15.91	19.81
2.060	0.15	-0.31	Ll	56.00	43.9	43.74	46.00	28.8	28.64	12.26	17.36
2.122	0.15	-0.30	Ll	56.00	36.4	36.25	46.00	23.9	23.75	19.75	22.25
3.078	0.16	-0.14	Ll	56.00	38.8	38.82	46.00	24.6	24.62	17.18	21.38
5.650	0.20	-0.17	Ll	60.00	33.6	33.63	50.00	19.3	19.33	26.37	30.67
7.290	0.22	-0.06	Ll	60.00	31.0	31.16	50.00	19.2	19.36	28.84	30.64

*Comment: Pol: H (Live), N(Neut)

Insertion Loss: Insertion Loss of LISN

Cable Loss : Cable Loss + Pulse Limiter Insertion loss value

(RF mode)

Frequency	Insertion	Cable	Pol.	Qua	si-Peak[dB	uV]	A	verage[dB	uV]	Margir	ı[dBuV]
(MHz)	Loss	Loss	Pol.	Limit	Reading	Result	Limit	Reading	Result	Quasi	Average
0.218	0.12	-0.22	Ll	62.89	34.1	34.00	52.89	22.1	22.00	28.89	30.89
0.282	0.13	-0.18	Ll	60.76	33.9	33.84	50.76	23.6	23.54	26.92	27.22
0.386	0.12	-0.13	N	58.15	33.4	33.39	48.15	25.0	24.99	24.76	23.16
0.550	0.14	-0.20	Ll	56.00	31.4	31.34	46.00	17.3	17.24	24.66	28.76
0.650	0.14	-0.23	Ll	56.00	35.2	35.11	46.00	20.0	19.91	20.89	26.09
1.274	0.14	-0.25	Ll	56.00	36.6	36.49	46.00	23.5	23.39	19.51	22.61
1.734	0.15	-0.30	Ll	56.00	38.6	38.45	46.00	24.5	24.35	17.55	21.65
2.122	0.15	-0.30	Ll	56.00	37.8	37.65	46.00	22.9	22.75	18.35	23.25
2.958	0.16	-0.15	Ll	56.00	35.3	35.32	46.00	21.0	21.02	20.68	24.98
3.086	0.16	-0.14	Ll	56.00	36.4	36.42	46.00	21.4	21.42	19.58	24.58
13.062	0.09	0.06	N	60.00	27.5	27.65	50.00	24.1	24.25	32.35	25.75
26.126	0.95	0.11	Ll	60.00	27.2	28.26	50.00	22.7	23.76	31.74	26.24

*Comment: Pol: H (Live), N(Neut)

Insertion Loss: Insertion Loss of LISN

Cable Loss : Cable Loss + Pulse Limiter Insertion loss value

(IR mode)

Frequency	Insertion	Cable	Pol.	Qua	si-Peak[dB	uV]	A	verage[dBi	uV]	Margin	n[dBuV]
(MHz)	Loss	Loss	roi.	Limit	Reading	Result	Limit	Reading	Result	Quasi	Average
0.150	0.11	-0.14	Ll	66.00	43.3	43.27	56.00	38.3	38.27	22.73	17.73
0.210	0.12	-0.22	Ll	63.21	40.2	40.10	53.21	29.8	29.70	23.11	23.51
0.574	0.12	-0.22	N	56.00	34.5	34.41	46.00	16.3	16.21	21.59	29.79
0.686	0.13	-0.23	N	56.00	37.1	37.00	46.00	21.5	21.35	19.00	24.65
1.386	0.11	-0.26	N	56.00	34.5	34.35	46.00	10.8	10.65	21.65	35.35
1.726	0.10	-0.30	N	56.00	38.6	38.41	46.00	31.2	31.01	17.59	14.99
1.958	0.09	-0.32	N	56.00	36.0	35.78	46.00	22.5	22.28	20.22	23.72
2.122	0.09	-0.30	N	56.00	32.5	32.29	46.00	18.0	17.79	23.71	28.21
5.660	0.20	-0.17	Ll	60.00	28.8	28.83	50.00	166.0	166.03	31.17	-116.03
13.062	0.35	0.06	Ll	60.00	25.8	26.22	50.00	22.9	23.32	33.78	26.68
26.126	0.09	0.11	N	60.00	35.5	35.70	50.00	30.2	30.40	24.30	19.60

 $^{\star}Comment:$ Pol: H (Live), N(Neut)

Insertion Loss : Insertion Loss of LISN
Cable Loss : Cable Loss + Pulse Limiter Insertion loss value

7. Duty Cycle Correction

7.1 Operating environment

Temperature : $3^{\circ}\mathbb{C}$ Relative humidity : 42°

7.2 Test set-up

The spectrum analyzer was set to Zero span and the video triggered to collect the pulse train of the modulation. Calculations of the duty cycle correction factor were obtained from time data provided by the plots.

7.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Due to Calibration
■ -	ESI	Rohde & Schwarz	EMI test receiver	830482/010	12. 14. 2008
■ -	HL223	Rohde & Schwarz	Log-periodic antenna	829228/011	12. 11. 2009

7.4 Test result of Duty Cycle

-. Test Date : January 28, 2008

-. Reference standard : Part 15 Subpart C, Sec. 15.35

-. Operating condition : RF transmitting mode

-. Spectrum resolution bandwidth(6dB) : 100 kHz -. Power Source : AC 120V, 60Hz

Define of duty cycle

- -. Number of Code groups per 100 ms = 1
- -. Number of Wide Pulse = 335
- -. Width of Pulses = 0.006ms
- -. Number of Narrow Pulse = 693
- -. Width of Pulses = $0.006\mu s$

Calculation of duty cycle

- -. Total width of pulse train : $335x\ 0.006ms + 693\ x\ 0.006\mu s = 6.17ms$
- -. Duty Cycle (%): 6.17 ms / 100 ms = 6.17%
- -. Duty Cycle (dB): -24.20dB

Fundamental Frequency	Total width of ON-Time	Duty Cycle (%)	Duty Cycle (dB)
418 MHz	6.17 ms	6.17%	-24.20dB

Refer to APPENDIX B: Test Plots of complete Pulse Train

8. Radiated Emission

8.1 Operating environment

Temperature : $3^{\circ}\mathbb{C}$ Relative humidity : 42°

8.2 Test set-up

A preliminary scan with peak mode was performed in the semi anechoic chamber using the procedure in ANSI C63.4/2003 13.1.4.1 and found frequency for open area test site.

The formal radiated emission was measured at 3m-distance open area test site.

The EUT was placed on a non-conductive turntable approximately 0.8 meters above the ground plane.

The turntable with EUT was rotated 360°, and the antenna was varied in height between 1.0 and 4.0 meters in order to determine the maximum emission levels.

This procedure was performed for both horizontal and vertical polarization of the receiving antenna.

8.3 Measurement uncertainty

The measurement uncertainty was calculated in accordance with ISO "Guide to the expression of uncertainty in measurement".

The measurement uncertainty was given with a confidence of 95%.

	Probability		Uncertainty (dB)				
Contribution	Distribution	Biconic	al Ant.	Log-peri	odic Ant.		
		3m	10m	3m	10m		
Ambient signal							
Antenna factor calibration	Normal (k=2)	0.50	0.50	0.50	0.50		
Receiver specification	Rectangular	0.50	0.50	0.50	0.50		
Antenna directivity	Rectangular	0.25	0.00	1.50	0.25		
Antenna phase center variation	Rectangular	0.00	0.00	1.00	0.20		
Antenna factor frequency interpolation	Rectangular	0.25	0.25	0.25	0.25		
Measure distance variation	Rectangular	0.60	0.40	0.60	0.40		
Site imperfections	Rectangular	-2.00	-2.40	2.50	2.40		
Mismatch							
Receiver VRC : Γl= 0.09	U-shaped	0.33	0.33	0.18	0.18		
Antenna VRC : $\Gamma g = 0.43 \text{ (Bi) } 0.23 \text{ (Lp)}$		-0.35	-0.35	-0.18	-0.18		
Uncertainty limits 20log(1± Γl Γg)							
System repeatability	Std Deviation	0.82	0.82	0.79	0.79		
Cable loss calibration	Normal (k=2)	0.09	0.09	0.09	0.09		
Combined standard uncertainty Uc(y)	Normal	1.54	1.70	2.03	1.68		
		-1.54	-1.70	-2.03	-1.68		
Extended uncertainty U	Normal (k=2)	3.09	3.39	4.05	3.36		
		-3.09	-3.40	-4.05	-3.36		

8.4 Limit

Fundamental	F	ield strength of F	undamental	Field strength of Spurious Emission		
Frequency (MHZ)	uV/m	dBuV/m	uV/m	uV/m	dBuV/m	
40.66~40.7	2250	67.04		225	47.04	
70~130	1250	61.94		125	41.94	
130~174	1250 to 3750	61.94 to 71.48	56.81818(F)-6136.3636	125 to 375	41.94 to 51.48	
174~260	3750	71.48		375	51.48	
260~470	3750 to 12500	71.48 to 81.94	41.6667(F)-7083.3333	375 to 1250	51.48 to 61.94	
Above 470	12500	81.94		1250	61.94	
Restricted Band		N/A		500	54.0	

8.5 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Due to Calibration
■ -	ESI	Rohde & Schwarz	EMI test receiver	830482/010	12. 14. 2008
■ -	ESCS30	Rohde & Schwarz	EMI test receiver	839809/003	12. 14. 2008
■ -	HK116	Rohde & Schwarz	Biconical ANT	826861/018	12. 11. 2009
■ -	HL223	Rohde & Schwarz	Log-periodic antenna	829228/011	12. 11. 2009
■ -	HD100	HD GmbH	Position Controller	100/692/01	N/A
■ -	DS415S	HD GmbH	Turntable	415/657/01	N/A
■ -	MA240	HD GmbH	Antenna Mast	240/565/01	N/A
■ -	BBHA9120D	Schwarzbeck	Horn ANT	597	04.01.2008
-	AFS44-00101800- 25-10P-44	MITEQ	Preamplifier	1258943	N/A

FCC Part 15 Subpart B,C

8.6 Radiated emission test data

-. Test Date : January 28, 2008

-. Reference standard : Part 15 Subpart C, Sec.15.231

-. Operating condition : RF transmitting mode

-. Measuring Distance : 3m

-. Spectrum resolution bandwidth (6dB): 120kHz / 1MHz

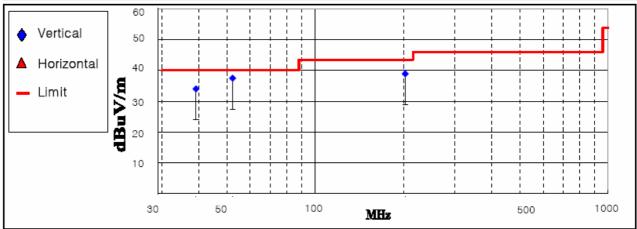
Detector mode
 Peak detector mode / Average detector mode
 Power Source
 DC 3.7V supplied from Li-ion rechargeable battery

-. Note : 1. Through three orthogonal axes were investigated and the worst case is reported.

2. The EUT was tested with new batteries.

Field Strength at the Fundamental frequency

F		Mea	surement Le	vel		Li	mit	Margin		Positioning System		
Frequency (MHz)	Reading	Tranduce	Duty cycle	Peak	Average	Peak	Aveage	Peak	Average	Pol.	Height	Angle
(11222)	(dBuV/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(H/V)	(cm)	(deg)
					Fundaı	nental						
418.00	77.60	22.21	-24.20	99.81	75.61	100.28	80.28	0.47	4.67	H	356	88
	Spurious											
836.00	35.5	30.91	-24.20	66.42	42.22	80.28	60.28	13.86	18.06	V	100	90
1254.00				-						-	-	
1672.00				-						-	-	
2090.00	60.0	-6.88	-24.20	53.12	28.92	80.28	60.28	27.16	31.36	V	185	90
2508.00	59.4	-4.87	-24.20	54.56	30.36	80.28	60.28	25.72	29.92	V	275	88
2926.00	57.9	-3.85	-24.20	54.01	29.81	80.28	60.28	26.27	30.47	V	100	162
3344.00	56.9	-3.02	-24.20	53.90	29.70	80.28	60.28	26.38	30.58	V	123	175
3762.00				-						-	-	-
4180.00				-						-	-	-

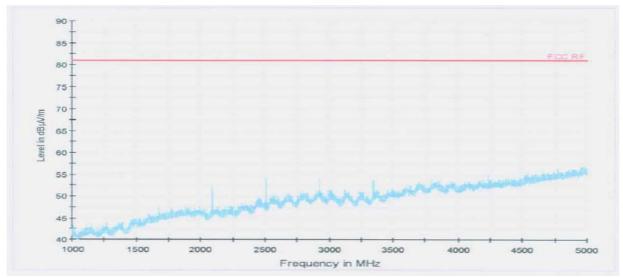

*Commant; below 1GHz: Tranduce = ANT factor + cable loss

above IGHz: Tranduce = ANT factor + cable loss + AMP gain

Note: "H": Horizontal, "V": Vertical

• Field Strength of the spurious emission except the harmonic frequencies (30MHz ~ 1GHz)

-		T !!	Margin	Positioning System					
Frequency (MHz)	' Reading Antenna Cable Test Result	Margin (dBuV/m)	Pol.	Height	Angle				
()	Value(dBuV)	Factor(dB)	Loss(dB)	(dBuV/m)	(ubu v/m)	(uzuv/iii)	(H/V)	(cm)	(deg)
39.19	21.2	11.01	1.80	34.0	40.0	6.0	v	100	90
52.25	26.4	9.06	2.02	37.5	40.0	2.5	v	120	175
202.87	21.1	13.90	3.93	38.9	43.5	4.6	V	156	180



< Fig 4. Radiated emission result (30MHz ~ 1000MHz) >

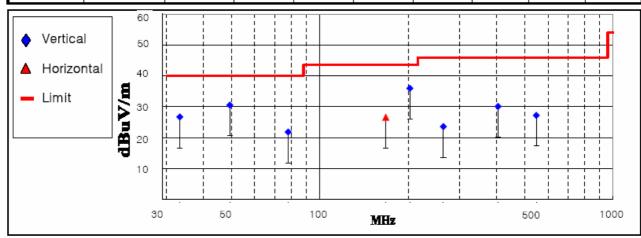
• Field Strength of the spurious emission except the harmonic frequencies (1GHz ~ 5GHz)

E	Measurement Level						AV Limit Margin	Positioning System			
(MHz)	Reading Va	lue(dBuV)	AF	AMP / CL	Test Resul	t (dBuV/m)	(dBuV/m)	Margin (dBuV/m)	Pol.	Height	Angle
()	Peak	Average	(dB)	(dB)	Peak	Average	(4247712)	(uzuviu)	(H/V)	(cm)	(deg)
All frequency	-	-	-	-	-	-	-	<<	-	-	-

[&]quot;<<" The margin is more than 30dB

< Fig 5. Radiated Emission result (1000MHz \sim 5000MHz)>

8.6.2 IR remote control mode


-. Test Date : January 28, 2008 -. Reference standard : Part 15 Subpart B -. Operating condition : IR transmitting mode

-. Measuring Distance : 3m

-. Spectrum resolution bandwidth (6dB): 120kHz-. Detector mode : Quasi-peak detector mode

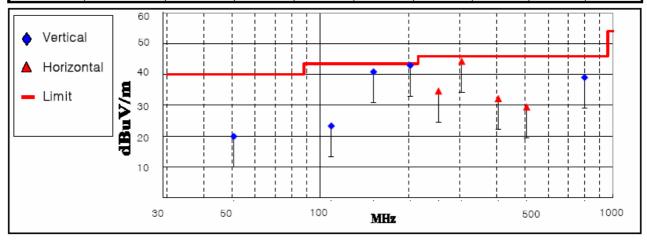
-. Power Source : AC 120V, 60Hz

		Measuremen	t Level		Limit	36 .	Positioning System		
Frequency (MHz)	Reading Value(dBuV)	Antenna Factor(dB)	Cable Loss(dB)	Test Result (dBuV/m)	(dBuV/m)	Margin (dBuV/m)	Pol. (H/V)	Height (cm)	Angle (deg)
33.28	12.3	12.61	1.73	26.6	40.0	13.4	v	120	10
49.32	19.1	9.41	1.99	30.5	40.0	9.5	v	178	275
78.01	11.3	8.13	2.36	21.8	40.0	18.2	v	100	180
167.76	10.2	12.83	3.54	26.6	43.5	16.9	н	350	320
202.81	18.1	13.89	3.93	35.9	43.5	7.6	v	210	185
263.74	2.3	16.56	4.66	23.5	46.0	22.5	v	275	69
405.69	8.2	15.75	6.13	30.1	46.0	15.9	v	135	155
547.46	1.9	18.31	6.98	27.2	46.0	18.8	v	190	39

< Fig 6. Radiated emission result >

8.6.3 Download mode

-. Test Date : January 28, 2008-. Reference standard : Part 15 Subpart B


-. Operating condition : Downloading the file from the PC

-. Measuring Distance : 3m

-. Spectrum resolution bandwidth (6dB): 120kHz-. Detector mode : Quasi-peak detector mode

-. Power Source : AC 120V, 60Hz

-		Measuremen	t Level		Limit	Margin	Positioning System		
Frequency (MHz)	Reading	Antenna	Cable	Test Result	(dBuV/m)	(dBuV/m)	Pol.	Height	Angle
(31112)	Value(dBuV)	Factor(dB)	Loss(dB)	(dBuV/m)	(ubu v/m)	(ubu v/iii)	(H/V)	(cm)	(deg)
50.70	8.6	9.25	2.01	19.9	40.0	20.1	v	185	264
109.14	10.2	10.27	2.79	23.3	43.5	20.2	v	140	157
152.10	25.1	12.36	3.40	40.9	43.5	2.6	v	162	132
202.92	25.1	13.90	3.94	42.9	43.5	0.6	v	111	100
253.57	14.2	15.86	4.54	34.6	46.0	11.4	н	285	5
304.20	26.3	12.82	5.14	44.3	46.0	1.7	н	395	78
405.54	10.3	15.75	6.13	32.2	46.0	13.8	н	300	185
507.12	5.3	17.44	6.66	29.4	46.0	16.6	н	375	160
799.32	9.5	21.05	8.50	39.0	46.0	7.0	v	100	320

< Fig 7. Radiated emission result >

9. Occupied Bandwidth Measurement

9.1 Operating environment

Temperature : $3^{\circ}\mathbb{C}$ Relative humidity : 42°

9.2 Test set-up

This measurement is performed with the antenna located close enough to give a full-scale deflection of the modulated carrier on the spectrum analyzer. The plot is taken at 200kHz/division frequency span, 100kHz 3dB resolution bandwidth and 5dB/division logarithmic display from an ESI spectrum analyzer.

The measuring bandwidth shall be set to a value greater than 5% of the allowed bandwidth (ANSI C63.4-1992 I6)

9.3 Limit

Frequency Range(MHz)	Occupied Bandwidth Limit		
70 ~ 900 MHz	0.25%		
>900 MHz	0.5%		

9.4 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Due to Calibration
-	ESI	Rohde & Schwarz	EMI test receiver	830482/010	12. 14. 2008
■ -	HL223	Rohde & Schwarz	Log-periodic antenna	829228/011	12. 11. 2009

9.5 Test result of occupied bandwidth

-. Test Date : January 28, 2008

-. Reference standard : Part 15 Subpart C, Sec. 15.231

-. Operating condition : RF transmitting mode

-. Spectrum resolution bandwidth(3dB) : 100 kHz

-. Power Source : DC 3.7V supplied from Li-ion rechargeable battery

Allowed Bandwidth: $418 \times 0.0025 = 1045 \text{ kHz}$

Fundamental Frequency	Bandwidth	Allowed Bandwidth	Result
418 MHz	777.55 kHz	1045 kHz	PASS

Refer to APPENDIX B: Test Plots of occupied bandwidth

10. Sample Calculations

$$\begin{split} dB\mu V &= 20~Log_{~10}(\mu V/m) \\ dB\mu V &= dBm + 107 \\ \mu V &= 10^{~(dB\mu V/20)} \end{split} \label{eq:dbm}$$

10.1 Example 1:

■ 20.3 MHz

Class B Limit = $250 \mu V$ = $48 dB\mu V$

Reading = - 67.8 dBm(Calibrated level)

Convert to $dB\mu V = -67.8 dBm + 107 = 39.2 dB\mu V$

 $10^{~(39.2dB\mu V/20)}~=~91.2~\mu V$

Margin = 39.2 - 48 = -8.8

= 8.8 dB below Limit

10.2 Example 2:

■ 66.7 MHz

Class B Limit = $100 \mu V/m$ = $40.0 dB\mu V/m$

Reading = - 76.0 dBm(Calibrated level)

Convert to $dB\mu V/m = -67.8 dBm + 107 = 31.0 dB\mu V/m$

Antenna Factor + Cable Loss = 5.8 dB

Total = $36.8 dB\mu V/m$

Margin = 36.8 - 40.0 = -3.2

= 3.2 dB below Limit

FCC Part 15 Subpart B,C

11. Recommendation & conclusion

The data collected shows that the Gumi College EMC Center.

OH SUNG ELECTRONICS CO., LTD. RF Remote Controller (Model No.: MX-950) was complies with §15.107, §15.109 and §15.231 of the FCC Rules.