FCC EVALUATION REPORT FOR CERTIFICATION

FCC Class B (Class II Permissive Change)

Manufacturer : OHSUNG ELECTRONICS CO., LTD #181 Gongdan-Dong, Gumi-City Gyeongsangbuk-Do, Korea Attn : Mr. Kwang-jae Ok / Team Leader Q.C Date of Issue : August 6, 2007 Test Report No. : GETEC-E3-07-064 Test Site : Gumi College EMC Center

FCC ID

APPLICANT

OZ5URCMX-3000-N

OHSUNG ELECTRONICS CO., LTD

Rule Part(s)	: FCC Part 15 Subpart C
Equipment Class	: Remote Control Transmitter (DSC)
EUT Type	: RF Transmitter Universal Remote
Type of Authority	: Certification
Model No.	: MX-3000-N4
Trade name	: UNIVERSAL remote control
Class II Change(s)	: Changed the component values inside of RF module(OTMF-A302TYPE) With alternate AC/DC Adapter (UNIVERSAL remote control, Model No: HK-C110-A05)

This equipment has been shown to be in compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-2003.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the vest of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested by,

- 47.>

Jae-Hoon Jeong, Senior Engineer GUMI College EMC center

Reviewed by,

Tae-Sig Park, Technical Manger GUMI College EMC center

EUT Type : RF Transmitter Universal Remote FCC ID: OZ5URCMX-3000-N

FCC Class B Class II Permissive Change

CONTENTS

1. GENERAL INFORMATION	4
2. INTRODUCTION	5
3. TEST CONDITIONS & EUT INFORMATION	6
3.1 DESCRIPTION OF EUT	6
3.2 SUPPORT EQUIPMENT / CABLES USED	7
3.3 MODIFICATION ITEM(S)	7
4. DESCRIPTION OF TESTS	8
4.1 TEST CONDITION	
5. ANTENNA REQUIREMENT - §15.203	8
5.1 DESCRIPTION OF ANTENNA	
5.2 CONDUCTED EMISSION	9
5.3 RADIATED EMISSION	
5.4 DUTY CYCLE CORRECTION	
5.5 OCCUPIED BANDWIDTH	
6. CONDUCTED EMISSION	
6.1 OPERATING ENVIRONMENT	
6.2 TEST SET-UP	
6.3 MEASUREMENT UNCERTAINTY	
6.4 LIMIT	
6.5 TEST EQUIPMENT USED	
6.6 TEST DATA FOR POWER LINE CONDUCTED EMISSION	14
7. DUTY CYCLE CORRECTION	15
7.1 OPERATING ENVIRONMENT	15
7.2 TEST SET-UP	
7.3 TEST EQUIPMENT USED	
7.4 TEST RESULT OF DUTY CYCLE	
8. RADIATED EMISSION TEST	16
8.1 OPERATING ENVIRONMENT	16
8.2 TEST SET-UP	16
8.3 MEASUREMENT UNCERTAINTY	16
8.4 LIMIT	
8.5 TEST EQUIPMENT USED	
8.6 RADIATED EMISSION TEST DATA	
9. OCCUPIED BANDWIDTH MEASUREMENT	20
9.1 Operating environment	
9.2 TEST SET-UP	
9.3 LIMIT	
9.4 TEST EQUIPMENT USED	

FCC Class B Class II Permissive Change

9.5 TEST RESULT OF OCCUPIED BANDWIDTH	20
10. SAMPLE CALCULATIONS	21
10.1 Example 1 :	21
10.2 EXAMPLE 2 :	21
10. RECOMMENDATION & CONCLUSION	22

APPENDIX A – ATTESTATION STATEMENT
APPENDIX B – TEST PLOTS
APPENDIX C – FCC ID LABEL & LOCATION
APPENDIX D – BLOCK DIAGRAM(S)
APPENDIX E – SCHEMATIC DIAGRAM(S)
APPENDIX F – TEST SET UP PHOTOS
APPENDIX G – EXTERNAL PHOTOGRAPHS
APPENDIX H – INTERNAL PHOTOGRAPHS
APPENDIX I – USER'S MANUAL
APPENDIX J – OPERATIONAL DESCRIPTION
APPENDIX K – INFORMATION

Scope: Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and / or unintentional radiators for compliance with technical rules and regulations of the Federal Communications Commission.

1. General Information

Applicant: OHSUNG ELECTRONICS CO., LTD.

Applicant Address: #181 Gongdan-Dong, Gumi-Si, Gyeongsangbuk-do, Korea

Manufacturer: OHSUNG ELECTRONICS CO., LTD

Manufacturer Address: #181 Gongdan-Dong, Gumi-Si, Gyeongsangbuk-do, Korea

Contact Person: Mr. Kwang-Jae Ok / Team Leader Q.C

Tel. & Fax No.: Tel No.: +82-54-468- 0831 Fax No.: +82-54- 461- 8368

- FCC ID. OZ5URCMX-3000-N
- Equipment Class Remote Control Transmitter (DSC)
- EUT Type RF Transmitter Universal Remote
- Model No. MX-3000-N4
- Rule Part(s) FCC Part 15 Subpart C
- Test Procedure(s) ANSI C63.4 (2003)
- FCC Procedure Certification
- Dates of Test July 24, 2007
- Place of Test
 Gumi College EMC Center (FCC Registration No.: 100749) 407, Bugok-Dong, Gumi-si, Gyeongsangbuk-Do, Korea
 Test Report No.
 GETEC-E3-07-064
- Dates of Issue August 6, 2007
- Class II Change(s)
 Changed the component values inside of RF module(OTMF-A302TYPE)
 With alternate AC/DC Adapter
 (UNIVERSAL remote control, Model No: HK-C110-A05)

2. Introduction

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Nose Emissions From Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz (ASNI C63.4-2003) was used in determining radiated and conducted emissions emanating from **OHSUNG ELECTRONICS CO.**, LTD. RF Transmitter Universal Remote (Model No.: MX-3000-N4)

These measurement tests were conducted at Gumi College EMC Center.

The site address is 407, Bugok-Dong, Gumi-City, Gyeongsangbuk-Do, Korea

This test site is one of the highest point of Gumi 1 college at about 200 kilometers away from Seoul city and 40 kilometers away from Daege city. It is located in the valley surrounded by mountains in all directions where ambient radio signal conditions are quiet and a favorable area to measure the radio frequency interference on open field test site for the computing and ISM devices manufactures. The detailed description of the measurement facility was found to be in compliance with the requirements of \$2.948 according to ANSI C63.4 on October 19, 1992

GUMI COLLEGE EMC CENTER 407,Bugok-Dong, Gumi-City, Gyeongsangbuk-Do 730-711, Korea Tel: +82-54-440-1195~8 Fax: +82-54-440-1199

Fig 1. The map above shows the Gumi College in vicinity area.

3. Test Conditions & EUT Information

3.1 Description of EUT

The Equipment Under Test (EUT) is the **OHSUNG ELECTRONICS CO., LTD. RF Transmitter Universal Remote (Model No.: MX-3000-N4)**

Frequency Range	417.5~418.5MHz
Oscillator(s)	418MHz
Antenna	Built-in internal looped antenna on-board
AC/DC Adapter	HK-C110-A05(UNIVERSAL remote control) Input: 100-240V 50/60Hz 0.35A Output: DC5V 2.5A

3.2 Support Equipment / Cables used

3.2.1 Used Support Equipment

Description	Manufacturer	Model No.	S/N & FCC ID
None	-	-	-

See "Appendix E – Test Setup Photographs" for actual system test set-up

3.2.2 Used Cable(s)

Cable No.	Condition	Description
Adapter cable	Connected to the Cradle	1.8m Unshielded

3.3 Modification Item(s)

-. None.

4. Description of tests

4.1 Test Condition

The EUT was installed, arranged and operated in a manner that is most representative of equipment as typically used. The measurements were carried out while varying operating modes and cable positions within typically arrangement to determine maximum emission level.

The representative and worst test mode(s) were noted in the test report.

- Test Voltage / Frequency : AC 120V/ 60Hz
- Test Mode(s)
 - -. RF mode: Continuous transmit.

5. Antenna Requirement - §15.203

An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the applicant can be used with the device. The use of permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with this requirement.

5.1 Description of Antenna

The **OHSUNG ELECTRONICS CO., LTD RF Transmitter Universal Remote Control** comply with the requirement of \$15.203 with a built-in looped antenna permanently attached to the transmitter.

5.2 Conducted Emission

The Line conducted emission test facility is inside a $4 \times 8 \times 2.5$ meter shielded enclosure.

The EUT was placed on a non-conducting 1.0 by 1.5 meter table, which is 0.8 meters in height and 0.4 meters away from the vertical wall of the shielded enclosure.

The EUT was powered from the Rohde & Schwarz LISN (ESH2-Z5) and the support equipment is powered from the Rohde & Schwarz LISN (ESH3-Z5). Powers to the LISN are filtered by high-current high insertion loss power line filter.

Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition.

The RF output of the LISN was connected to the EMI test receiver (Rohde & Schwarz, ESCS30).

The EMI test receiver was scanned from 150kHz to 30MHz with 20msec sweep time to determine the frequency producing the maximum EME from the EUT. The frequency producing the maximum level was re-examined using Quasi-Peak mode of the EMI test receiver.

The bandwidth of Quasi-peak mode was set to 9KHz. Each emission was maximized consistent with typical applications by varying the configuration of the test sample. Interface cables were connected to the available interface ports of the test unit. The effect of varying the position of cables was investigated to find the configuration that produces maximum diagram emission. Excess cable lengths were bundled at center with 30 - 40 centi-meters.

Each EME reported was calibrated using the R/S signal generator

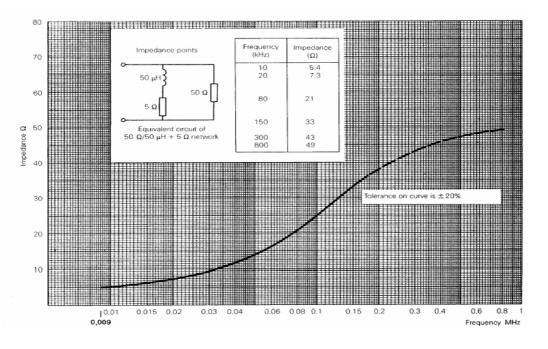


Fig 2. Impedance of LISN

5.3 Radiated Emission

Preliminary measurements were conducted 3m semi anechoic chamber using broadband antennas to determine the frequency producing the maximum EME. Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The technology configuration, mode of operation and turntable azimuth with respect to antenna was note for each frequency found.

The spectrum was scanned from 30 to 1000MHz using biconical antenna (R&S, HK116) and log-periodic antenna (R&S, HL223).

Above 1GHz, calibrated double ridged horn antennas(Schwarzbeck, BBHA 9120D) were used.

Final measurements were made outdoors at 3 m-test range using biconical antenna (R&S, HK116) , log-periodic antenna (R&S, HL223) and calibrated double ridged horn antennas (Schwarzbeck, BBHA 9120D).

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition.

Each frequency found during pre-scan measurements was re-examined and investigated using EMI test receiver. (ESI)

The detector function was set to peak mode, the bandwidth of the receiver was set to 120kHz and 1MHz.

The EUT, support equipment and interconnecting cables were reconfigured to the setup producing the maximum emission for the frequency and were placed on top of a 0.8m high non-metallic 1.0×1.5 meter table.

The turntable containing the test sample was rotated; the antenna height was varied 1 to 4 meter and stopped at the azimuth or height producing the maximum emission. Each EME reported was calibrated using the R/S signal generator

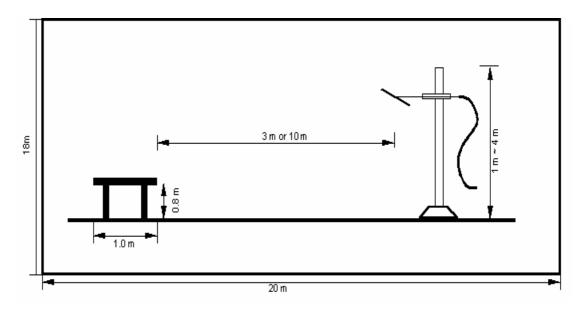


Fig 2. Dimensions of Open Site Test Area

5.4 Duty Cycle Correction

Measurements may be adjusted where pulsed RF is utilized to find the average level associated with a quantity. This calculation is applied to limits for pulsed licensed and unlicensed devices.

For unlicensed intentional radiator under 47CFR Part 15 §15.35, all duty cycle measurements are compared to a 100 millisecond period.

On time = N1L1+N2L2+...+NnLn, where N1 is number of type 1 pulses, L1 is length of type 1 pulses, etc. **Duty Cycle = On time/100 millisecond**.

5.5 Occupied Bandwidth

Occupied bandwidth was performed by coupling the output of the EUT to the input of a spectrum analyzer. The bandwidth of the emission shall be no wider than 0.25% of the center frequency for device operating above 70MHz and below 900MHz.For device operating above 900MHz, the emission shall be no wider than 0.5% of the center frequency. The bandwidth is determined at the points 20dB down from the modulated carrier.

6. Conducted emission

6.1 Operating environment

Temperature	:	24 °C
Relative humidity	:	43 %

6.2 Test set-up

The conducted emission measurements were performed in the shielded room.

The EUT was placed on wooden table, 0.8m heights above the floor, 0.4m from the reference ground plane (GRP) wall and 0.8m from AMN.

AMN is bonded on horizontal reference ground plane.

The ground plane, which was electrically bonded to the shield room, ground system and all power lines entering the shield room, was filtered.

6.3 Measurement uncertainty

The measurement uncertainty was calculated in accordance with ISO "Guide to the expression of uncertainty in measurement".

The measurement uncertainty was given with a confidence of 95%.

Contribution	Probability	Uncer	tainty (±dB)
Contribution	Distribution	Power Port	Communication port
Receiver specification	Rectangular	0.50	0.50
LISN coupling specification	Rectangular	1.50	
ISN coupling specification	Rectangular		1.50
Mismatch			
LISN VRC : Γ l= 0.20	U-shaped	0.05	0.05
ISN VRC : $\[Gamma]$ 1= 0.20		-0.05	-0.05
ATT VRC(IN) : Γ g= 0.03			
Uncertainty limits $20\log(1 \pm \lceil 1 \rceil g)$			
Mismatch			
Receiver VRC : $\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	U-shaped	0.09	0.09
ATT VRC : $\[Gamma]g=$ 0.11		-0.09	-0.09
Uncertainty limits $20\log(1 \pm \lceil 1 \rceil g)$			
System repeatability	Std Deviation	0.55	0.55
Cable and input attenuator calibration	Normal (k=2)	0.08	0.08
Repeatability of EUT			
Combined standard uncertainty Uc(y)	Normal	1.07	1.07
		-1.07	-1.07
Extended uncertainty U	Normal (k=2)	2.15	2.15
		-2.15	-2.15

6.4 Limit

RFI Conducted	FCC Limit(dB) Class B		
Freq. Range	Quasi-Peak	Average	
150kHz – 0.5MHz	66 – 56*	56 - 46*	
0.5MHz – 5MHz	56	46	
5MHz – 30MHz 60		50	
*Limits decreases linearly with the logarithm of frequency.			

6.5 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Due to Calibration
- 1	ESCS30	Rohde & Schwarz	EMI test receiver	839809/003	11.27.2007
- 🔳	ESH3-Z5	Rohde & Schwarz	Artificial mains network	838979/020	12.09.2007
- 1	ESH2-Z5	Rohde & Schwarz	Artificial mains network	829991/009	12.09.2007

6.6 Test data for power line conducted emission

6.6.1 RF transmitting mode

-. Resolution bandwidth : 9 kHz

-. Frequency range : 0.15MHz ~ 30MHz

Frequency	Insertion	Cable	Pol.	Quasi-Peak[dBuV]			Average[dBuV]			Margin[dBuV]	
(MHz)	Loss	Loss	Fol.	Limit	Reading	Result	Limit	Reading	Result	Quasi	Average
0.194	0.12	-0.22	Ll	63.86	51.8	51.70	53.86	42.3	42.20	12.16	11.66
0.386	0.13	-0.13	Ll	58.15	41.8	41.80	48.15	40.0	40.00	16.34	8.14
0.514	0.14	-0.18	Ll	56.00	41.7	41.66	46.00	40.2	40.16	14.34	5.84
0.710	0.14	-0.23	Ll	56.00	30.6	30.51	46.00	29.6	29.51	25.49	16.49
0.774	0.14	-0.23	Ll	56.00	32.1	32.01	46.00	29.8	29.71	23.99	16.29
1.030	0.14	-0.23	Ll	56.00	31.3	31.21	46.00	27.8	27.71	24.79	18.29
1.290	0.14	-0.26	Ll	56.00	16.2	16.09	46.00	9.3	9.19	39.91	36.81
1.546	0.15	-0.28	Ll	56.00	15.2	15.07	46.00	6.6	6.47	40.93	39.53
2.038	0.09	-0.31	Ν	56.00	43.0	42.78	46.00	40.9	40.68	13.22	5.32
2.998	0.09	-0.14	Ν	56.00	36.0	35.95	46.00	29.6	29.55	20.05	16.45
3.314	0.09	-0.14	Ν	56.00	42.0	41.95	46.00	36.7	36.65	14.05	9.35
5.286	0.19	-0.17	Ll	60.00	23.3	23.33	50.00	7.9	7.93	36.67	42.07

*Comment : Pol : L1 (Live), N(Neut)

Insertion Loss : Insertion Loss of LISN

Cable Loss : Cable Loss + Pulse Limiter Insertion loss value

7. Duty Cycle Correction

7.1 Operating environment

Temperature	:	25 ℃
Relative humidity	:	46 %

7.2 Test set-up

The spectrum analyzer was set to zero span and the video triggered to collect the pulse train of the modulation. Calculations of the duty cycle correction factor were obtained from time data provided by the plots.

7.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Due to Calibration
■ -	ESI	Rohde & Schwarz	EMI test receiver	830482/010	12. 14. 2007
■ -	HL223	Rohde & Schwarz	Log-periodic antenna	829228/011	11. 27. 2007

7.4 Test result of Duty Cycle

Test Date	: July 24, 2007
Reference standard	: Part 15 Subpart C, Sec. 15.35
Operating condition	: Continuous transmit (Maximum pulse train)
Spectrum resolution bandwidth(6dB)	: 10 kHz
Power Source	: AC120V / 60Hz, DC 5V(Lithium ion battery pack included)

Define of duty cycle

- -. Number of Code groups per 100ms = 1
- -. Number of Wide Pulse = 335
- -. Width of Pulses = 0.006ms
- -. Number of Narrow Pulse = 693
- -. Width of Pulses =0.006ms
- Calculation of duty cycle
- -. Total width of pulse train : $335x \ 0.006ms + 693 \ x \ 0.006ms = 6.17ms$
- -. Duty Cycle (%) : 6.17ms / 100ms = 6.17%
- -. Duty Cycle (dB) : -24.20dB

Fundamental Frequency	Total width of ON-Time	Duty Cycle (%)	Duty Cycle (dB)
418.00 MHz	6.17 ms	6.17%	-24.20dB

Refer to APPENDIX B: Test Plots of occupied bandwidth

8. Radiated emission test

8.1 Operating environment

Temperature	:	25 °C
Relative humidity	:	46 %

8.2 Test set-up

A preliminary scan with peak mode was performed in the semi anechoic chamber using the procedure in ANSI C63.4/2003 13.1.4.1 and found frequency for open area test site.

The formal radiated emission was measured at 3m-distance open area test site.

The EUT was placed on a non-conductive turntable approximately 0.8 meters above the ground plane.

The turntable with EUT was rotated 360°, and the antenna was varied in height between 1.0 and 4.0 meters in order to determine the maximum emission levels.

This procedure was performed for both horizontal and vertical polarization of the receiving antenna.

8.3 Measurement uncertainty

The measurement uncertainty was calculated in accordance with ISO "Guide to the expression of uncertainty in measurement".

The measurement uncertainty was given with a confidence of 95%.

	Probability		Uncerta	unty (dB)		
Contribution	Distribution	Biconic	al Ant.	Log-periodic Ant.		
		3m	10m	3m	10m	
Ambient signal						
Antenna factor calibration	Normal (k=2)	0.50	0.50	0.50	0.50	
Receiver specification	Rectangular	0.50	0.50	0.50	0.50	
Antenna directivity	Rectangular	0.25	0.00	1.50	0.25	
Antenna phase center variation	Rectangular	0.00	0.00	1.00	0.20	
Antenna factor frequency interpolation	Rectangular	0.25	0.25	0.25	0.25	
Measure distance variation	Rectangular	0.60	0.40	0.60	0.40	
Site imperfections	Rectangular	-2.00	-2.40	2.50	2.40	
Mismatch						
Receiver VRC : $\Gamma l = 0.09$	U-shaped	0.33	0.33	0.18	0.18	
Antenna VRC : $\Gamma g = 0.43$ (Bi) 0.23 (Lp)		-0.35	-0.35	-0.18	-0.18	
Uncertainty limits $20\log(1 \pm \Gamma \Gamma \Gamma g)$						
System repeatability	Std Deviation	0.82	0.82	0.79	0.79	
Cable loss calibration	Normal (k=2)	0.09	0.09	0.09	0.09	
Combined standard uncertainty Uc(y)	Normal	1.54	1.70	2.03	1.68	
		-1.54	-1.70	-2.03	-1.68	
Extended uncertainty U	Normal (k=2)	3.09	3.39	4.05	3.36	
		-3.09	-3.40	-4.05	-3.36	

Fundamental	F	ield strength of F	undamental	Field strength of Spurious Emission			
Frequency (MHZ)	uV/m dBuV/m		uV/m	uV/m	dBuV/m		
40.66~40.7	2250	67.04		225	47.04		
70~130	1250	61.94		125	41.94		
130~174	1250 to 3750	61.94 to 71.48	56.81818(F)-6136.3636	125 to 375	41.94 to 51.48		
174~260	3750	71.48		375	51.48		
260~470	3750 to 12500	71.48 to 81.94	41.6667(F)-7083.3333	375 to 1250	51.48 to 61.94		
Above 470	12500	81.94		1250	61.94		
Restricted Band		N/A		500	54.0		

8.4 Limit

8.5 Test equipment used

_	Model Number	Manufacturer	Description	Serial Number	Due to Calibration
- 1	ESCS30	Rohde & Schwarz	EMI test receiver	839809/003	11. 27. 2007
■ -	ESI	Rohde & Schwarz	EMI test receiver	830482/010	12. 14. 2007
-	HK116	Rohde & Schwarz	Biconical ANT	826861/018	11. 27. 2007
■ -	HL223	Rohde & Schwarz	Log-periodic antenna	829228/011	11. 27. 2007
-	HD100	HD GmbH	Position Controller	100/692/01	N/A
■ -	DS415S	HD GmbH	Turntable	415/657/01	N/A
-	MA240	HD GmbH	Antenna Mast	240/565/01	N/A
-	BBHA9120D	Schwarzbeck	Horn ANT	207	11.20.2007
■ -	AFS44-00101800- 25-10P-44	MITEQ	Preamplifier	1258943	N/A

8.6 Radiated emission test data

- -. Test Date : July 24, 2007
- -. Reference standard : Part 15 Subpart C, Sec.15.231
- -. Operating condition : RF transmitting mode
- -. Measuring Distance : 3m
- -. Spectrum resolution bandwidth (6dB) : 120kHz / 1MHz
- -. Detector mode : Peak detector mode / Average detector mode
- -. Power Source : DC 5V (Lithium ion battery)
- -. Note : 1. Through three orthogonal axes were investigated and the worst case is reported.

2. The EUT was tested with new batteries.

Field Strength at the Fundamental frequency

Frequency (MHz)		ANT Height (cm)	Azimuth (Deg)	AFCL (dB/m)	Peak (dBuV/m)	Duty Cycle Correction (dB)	Average	Limits (dBuV/m)	Margin (dB)
418.00	Н	310	90	22.21	99.85	-24.20	75.65	80.28	4.63

Note: "H": Horizontal, "V": Vertical

Frequency (MHz)	Ant. Pol. (H/V)	ANT Height (cm)	Azimuth (Deg)	AFCL (dB/m)	Peak (dBuV/m)	Duty Cycle Correction (dB)	Average (dBuV/m)	Limits (dBuV/m)	Margin (dB)
835.99	Н	300	270	30.91	61.13	-24.20	36.93	61.94	25.01
1253.99	Н	300	270	-10.09	51.30	-24.20	27.10	61.94	34.84
1671.98	Н	315	90	-8.32	56.20	-24.20	32.00	54.00	22.00
2089.98	V	100	90	-6.88	65.50	-24.20	41.30	61.94	20.64
2507.98	V	100	90	-4.87	65.70	-24.20	41.50	61.94	20.44
2925.97	Н	321	275	-3.85	61.60	-24.20	37.40	61.94	24.54
3343.97	Н	310	105	-3.02	64.00	-24.20	39.80	61.94	22.14
3761.96	V	120	100	-1.95	59.50	-24.20	35.30	54.00	18.70
4179.96	V	140	90	-0.88	61.30	-24.20	37.10	54.00	16.90

Field Strength at the Harmonic frequencies

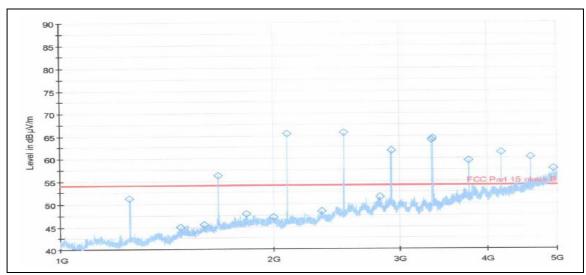
Note: "H": Horizontal, "V": Vertical

Comment: below 1GHz: Tranduce = ANT factor + cable loss

above 1GHz: Tranduce = ANT factor + cable loss + AMP gain

т			Measurement Level			T · · ·	Margin	Positioning System		
Frequency (MHz)	Reading Value(dBuV)		Antenna Factor(dB)	Cable Loss(dB)	Test Result (dBuV/m)	Limit (dBuV/m)	(dBuV/m)	Pol. (H/V)	Height (cm)	Angle (deg)
202.74	10	6.3	13.89	3.93	34.1	43.5	9.4	v	185	90
264.30	1	7.1	16.59	4.67	38.4	46.0	7.6	v	120	220
 Vertica Horizor Limit 	ntal	60 50 40 30 20 10	50		100					1000
		30	50		100	MHz		5	00	1000

• Field Strength of the spurious emission except the harmonic frequencies (30MHz ~ 1GHz)


11

< Fig 4. Radiated emission result (30MHz ~ 1000MHz) >

• Field Strength of the spurious emission except the harmonic frequencies (1GHz ~ 5GHz)

T.	Measurement Level					N .	Positioning System				
Frequency (MHz)	Reading Va	lue(dBuV)	AF	AMP / CL	Test Resul	t (dBuV/m)	AV Limit (dBuV/m)	Margin (dBuV/m)	Pol.	Height	Angle
()	Peak	Average	(dB)	(dB)	Peak	Average	(02007702)	(uzu ())	(H/V)	(cm)	(deg)
All frequency	-	-	-	-	<<	~<	-	-	-	-	-

"<<" The margin is more than 30dB

< Fig 5. Radiated Emission result (1000MHz ~ 5000MHz)>

9. Occupied Bandwidth Measurement

9.1 Operating environment

Temperature	:	25 ℃
Relative humidity	:	46 %

9.2 Test set-up

This measurement is performed with the antenna located close enough to give a full-scale deflection of the modulated carrier on the spectrum analyzer. The plot is taken at 200kHz/division frequency span, 10kHz 6dB resolution bandwidth and 5dB/division logarithmic display from an ESI spectrum analyzer.

The measuring bandwidth shall be set to a value greater than 5% of the allowed bandwidth(ANSI C63.4-1992 I6)

9.3 Limit

Frequency Range(MHz)	Occupied Bandwidth Limit
70 ~ 900 MHz	0.25%
>900 MHz	0.5%

9.4 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Due to Calibration
■ -	ESI	Rohde & Schwarz	EMI test receiver	830482/010	12. 14. 2007
■ -	HL223	Rohde & Schwarz	Log-periodic antenna	829228/011	11. 27. 2007

9.5 Test result of occupied bandwidth

Test Date	: July 24, 2007
Reference standard	: Part 15 Subpart C, Sec. 15.231
Operating condition	: RF transmitting mode
Spectrum resolution bandwidth(3dB)	: 100 kHz
Power Source	: DC 5V (Lithium ion battery)

Allowed Bandwidth : 417.996 x 0.0025 = 1044.99 kHz

Fundamental Frequency	Bandwidth(Measured)	Allowed Bandwidth	Result
417.996 MHz	920kHz	1044.99kHz	PASS

Refer to APPENDIX B: Test Plots of occupied bandwidth

10. Sample Calculations

$$\label{eq:masses} \begin{split} dB\mu V &= 20 \ Log \ _{10}(\mu V/m) \\ dB\mu V &= dBm + 107 \\ \mu V &= 10 \ ^{(dB\mu V/20)} \end{split}$$

10.1 Example 1 :

■ 20.3 MHz

Class B Limit	$= 250 \mu V \qquad = 48 dB\mu V$
Reading	= - 67.8 dBm(Calibrated level)
Convert to dBµV	$= -67.8 \text{ dBm} + 107 = 39.2 \text{ dB}\mu\text{V}$
$10^{(39.2dB\mu V/20)}$	$= 91.2 \mu V$
Margin	= 39.2 - 48 = -8.8
	= 8.8 dB below Limit

10.2 Example 2 :

■ 66.7 MHz

Class B Limit	$= 100 \ \mu V/m \qquad = 40.0 \ dB \mu V/m$
Reading	= - 76.0 dBm(Calibrated level)
Convert to dBµV/m	$= -67.8 \text{ dBm} + 107 = 31.0 \text{ dB}\mu\text{V/m}$
Antenna Factor + Cabl	e Loss = 5.8 dB
	Total = $36.8 \text{ dB}\mu\text{V/m}$
Margin	= 36.8 - 40.0 = -3.2
	= 3.2 dB below Limit

10. Recommendation & conclusion

The data collected shows that the Gumi College EMC Center.

OHSUNG ELECTRONICS CO., LTD. RF Transmitter Universal Remote (Model No.: MX-3000-N4) was complies with §15.231 of the FCC Rules.