

APPENDIX L

: MAXIMUM PERMISSIBLE EXPOSURE

Maximum Permissible Exposure

1.1 Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device

Frequency range(MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density(S) (mW/cm2)	Averaging Time E 2, H 2 or S (minutes)
0.3 ~ 3.0	614	1.63	(100)*	6
3.0~30	1842/f	4.89/f	(900/f)*	6
30~300	61.4	0.163	1.0	6
300 ~ 1,500			f/300	6
1,500 ~ 100,000			5.0	6

(A) Limits for Occupational / Controlled Exposure	(\mathbf{A})) Limits	for Occu	pational / C	ontrolled Ex	posure
---	----------------	----------	----------	--------------	--------------	--------

(B) Limits for General Population / Uncontrolled Exposure

Frequency range(MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density(S) (mW/cm2)	Averaging Time E 2, H 2 or S (minutes)
0.3 ~ 1.34	614	1.63	(100)*	30
1.34 ~ 30	824/f	2.19/f	(180/f)*	30
30~ 300	27.5	0.073	0.2	30
300 ~ 1,500			f/1500	30
1,500 ~ 100,000			1.0	30

Note: f=frequency in MHz; *Plane-wave equivalent power density

1.2 MPE Calculation Method

$$E(V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$

Power Density:
$$Pd(W/m^2) = \frac{E^2}{377}$$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

1.3 Calculated Result and Limit

Antenna type: Puck antenna

Channel	Antenna gain (dBi)	Antenna gain (numeric)	Peak output power (dBm)	Peak output power (mW)	Power Density (s) (mW/cm ²)	Limit of Power density (S) (mW/cm ²)
11	4.0	2.51	16.45	44.5	0.022	1
20	4.0	2.51	16.55	44.8	0.022	1
26	4.0	2.51	16.61	45.9	0.023	1