FCC Part 15E Measurement and Test Report

For

Shenzhen Four Seas Global Link Network Technology Co., Ltd

Room 607-610, Block B, TAOJINDI Electronic Business Incubation

Base, Tenglong Road, Longhua District, Shenzhen, China

FC	C ID: OYR-CF-WU925	Α
FCC Rule(s):	FCC Part 15E	
Product Description:	11AC USB Wireless Adapter	
Tested Model:	<u>CF-WU925A</u>	
Report No.:	BSL190612847602RF	
Tested Date:	2019-09-18 to 2019-09-24	
Issued Date:	2019-09-24	
Tested By:	Cindy Zheng/ Engineer	Cindy zheng Haley wen Milemo
Reviewed By:	<u>Haley Wen / EMC Manager</u>	Hacey wer
Approved & Authorized By:	Mike Mo / PSQ Manager	tilens
Prepared By:		
	BSL Testing Co.,LTD.	
	I Park, Nantou Nanshan District, Shenzhen, Guangdong, China	
Tel: 400-882-9628	Fax: 86- 755-20	6508703

TABLE OF CONTENTS

1. GENERAL INFORMATION	
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
1.2 TEST STANDARDS	
1.3 TEST METHODOLOGY	
1.4 TABLE FOR PARAMETERS OF TEST SOFTWARE SETTING	
1.5 EUT OPERATING DURING TEST 1.6 TEST FACILITY	
1.7 EUT SETUP AND TEST MODE	
1.8 MEASUREMENT UNCERTAINTY	
1.9 Test Equipment List and Details	6
2. SUMMARY OF TEST RESULTS	8
3. RF EXPOSURE	9
3.1 Standard Applicable	9
3.2 TEST RESULT	9
4. ANTENNA REQUIREMENT	. 10
4.1 Standard Applicable	. 10
4.2 EVALUATION INFORMATION	. 10
5. CONDUCTED EMISSIONS	11
5.1 Test Procedure	11
5.3 BASIC TEST SETUP BLOCK DIAGRAM	11
5.4 Environmental Conditions	
5.5 TEST RECEIVER SETUP	12
5.6 Summary of Test Results/Plots 5.7 Conducted Emissions Test Data	. 12
6. POWER SPECTRAL DENSITY	
6.1 STANDARD APPLICABLE.	
6.2 TEST PROCEDURE 6.3 Environmental Conditions	
6.4 SUMMARY OF TEST RESULTS/PLOTS	
7. EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH	. 21
7.1 Standard Applicable	. 21
7.2 Test Procedure	
7.3 Environmental Conditions	23
7.4 SUMMARY OF TEST RESULTS/PLOTS	. 23
8. MAXIMUM CONDUCTED OUTPUT POWER	. 27
8.1 Standard Applicable	
8.2 TEST PROCEDURE.	
8.3 Environmental Conditions 8.4 Summary of Test Results/Plots	
9. CONDUCTED SPURIOUS EMISSIONS	
9.1 STANDARD APPLICABLE.	
9.2 Test Procedure	
9.5 ENVIRONMENTAL CONDITIONS	
11. RADIATED SPURIOUS EMISSIONS	
11.1 Standard Applicable 11.2 Test Procedure	
11.2 TEST PROCEDURE	
11.4 Corrected Amplitude & Margin Calculation	
11.5 Environmental Conditions	34
11.6 SUMMARY OF TEST RESULTS/PLOTS	. 35
12. FREQUENCY STABILITY	. 42
12.1 Standard Applicable	. 42

12.2 TEST PROCEDURE	
12.3 Environmental Conditions	
12.4 SUMMARY OF TEST RESULTS/PLOTS	

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information	
Applicant:	Shenzhen Four Seas Global Link Network Technology Co., Ltd Room 607-610, Block B, TAOJINDI Electronic Business
Address of applicant:	Incubation Base,Tenglong Road,Longhua District, Shenzhen, China
Manufacturer:	Shenzhen Four Seas Global Link Network Technology Co., Ltd Room 607-610, Block B, TAOJINDI Electronic Business
Address of manufacturer:	Incubation Base,Tenglong Road,Longhua District, Shenzhen, China

General Description of EU	Т
Product Name:	11AC USB Wireless Adapter
Trade Name:	COMFAST
Model No.:	CF-WU925A
Adding Model:	CF-812AC,CF-811AC,CF-825N,CF-726B,CF-960AC,
Adding Model:	CF-783AC,CF-759BF,WU600,WU650
Hardware Version:	V1.0
Software Version:	V1.0
IMEI:	N/A
Rated Voltage:	DC 5V
Battery capacity:	N/A
Power Adapter Model:	N/A

Note: The test data is gathered from a production sample provided by the manufacturer.

Technical Characteristics of EUT		
Support Standards:	802.11a,802.11ac20	
Frequency Range:	5150-5250MHz	
RF Output Power:	12.77dBm (Conducted)	
Type of Modulation:	QPSK, 16QAM, 64QAM	
Data Rate:	6-54Mbps, up to 150Mbps	
Quantity of Channels:	4	
Channel Separation:	20MHz	
Type of Antenna:	Internal antenna	
Antenna Gain:	0dBi	
Lowest Internal Frequency	40MHz	

1.2 Test Standards

The following report is prepared on behalf of the Shenzhen Four Seas Global Link Network Technology Co., Ltd in accordance with FCC Part 15, Subpart C&E, and section 15.203, 15.205, 15.207, 15.209 and 15.407 of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC Part 15, Subpart C&E, and section 15.203, 15.205, 15.207, 15.209 and 15.407 of the Federal Communication Commissions rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2014, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. The measurement guide KDB 789033 D02 v01r02 for Unlicensed National Information Infrastructure (U-NII) Devices and KDB 662911 D01 Multiple Transmitter Output v02r01 shall be performed also.

1.4 Table for parameters of Test Software setting

The test utility software used during testing was "MPTool". During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

1.5 EUT Operating during test

EUT was programmed to be in continuously transmitting mode. During the test, EUT operation to normal function and programs under WIN XP were executed.

1.6 Test Facility

BSL Testing Co.,LTD. NO. 24, ZH Park, Nantou, Shenzhen, 518000 China Designation Number : CN1217 Test Firm Registration Number: 866035 Tel: 86- 755-26508703 Fax: 86- 755-26508703

1.7 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List			
Test Mode	Description	Remark	
TM1	802.11a		
TM1	802.11ac-HT20		
Note: All test modes (different data rate and different modulation) are performed, but only the worst			
case is recorded in this report.			

EUT Cable List and Details						
Cable Description	Description Length (m) Shielded/Unshielded With / Without Core					
/	/	/	/			

Special Cable List and Details						
Cable Description	Cable Description Length (m) Shielded/Unshielded With / Without Ferrite					
/	/	/	/			

Auxiliary Equipment List and Details					
Description	Manufacturer Model Serial Num				
Notebook	Lenovo	E10	/		

1.8 Measurement Uncertainty

Measurement uncertainty				
Parameter	Conditions	Uncertainty		
RF Output Power	Conducted	± 0.42 dB		
Occupied Bandwidth	Conducted	±1.5%		
Power Spectral Density	Conducted	± 1.8 dB		
Conducted Spurious Emission	Conducted	±2.17dB		
Conducted Emissions	Conducted	±2.88dB		
Transmitter Spurious Emissions	Radiated	±5.1dB		

1.9 Test Equipment List and Details

Description	Manufacturer	Model	Serial No.	Cal Date	Due. Date
Communication Tester	Rohde & Schwarz	CMW500	100358	2018-11-08	2019-11-07
Spectrum Analyzer	R&S	FSP40	100550	2018-10-08	2019-10-07

[1		1		[
Test Receiver	R&S	ESCI7	US47140102	2018-10-08	2019-10-07
Signal Generator	HP	83630B	3844A01028	2018-10-08	2019-10-07
Test Receiver	R&S	ESPI-3	100180	2018-10-08	2019-10-07
Amplifier	Agilent	8449B	4035A00116	2018-10-08	2019-10-07
Amplifier	HP	8447E	2945A02770	2018-10-08	2019-10-07
Signal Generator	IFR	2023A	202307/242	2018-10-08	2019-10-07
Broadband Antenna	SCHAFFNER	2774	2774	2018-11-06	2019-11-05
Biconical and log	ELECTRO-METRI	EM (017D 1	171	2018-10-21	2010 10 20
periodic antennas	CS	EM-6917B-1	171	2018-10-21	2019-10-20
Horn Antenna	R&S	HF906	100253	2018-10-21	2019-10-20
Horn Antenna	EM	EM-6961	6462	2018-11-03	2019-11-02
LISN	R&S	ESH3-Z5	100196	2018-10-08	2019-10-07
LISN	COM-POWER	LI-115	02027	2018-10-08	2019-10-07
3m Semi-Anechoic	Chengyu Electron	9 (L)*6 (W)* 6 (H)	BSL086	2018-10-08	2019-10-07
Chamber			DSL080	2018-10-08	2019-10-07
Horn Antenna	Schwarzbeck	BBHA9170	00814	2018-10-21	2019-10-20
Loop Antenna	Schwarz beck	FMZB 1519B	9773	2018-10-21	2019-10-20
power meter	DARE	RPR3006W	15I00041SNO03	2018-10-21	2019-10-20
EZ	EMC test software	/	/	/	/

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result
§ 15.203; § 15.405	Antenna Requirement	Compliant
§ 15.207; § 15.407(b)(6)	Conducted Emission	Compliant
§ 15.407(a)(1),(2)	Power Spectral Density	Compliant
§ 15.407(e)	Emission Bandwidth and Occupied Bandwidth	Compliant
§ 15.407(a)(1),(2)	Maximum Conducted Output Power	Compliant
§ 15.407(b)(1),(2),(3)	Conducted Spurious Emission	Compliant
§ 15.205; § 15.407(b)(1),(2),(3)	Radiated Emission	Compliant
§ 15.407(g)	Frequency Stability	Compliant
§ 15.407(h)	Dynamic Frequency Selection (DFS)	N/A

N/A: not applicable

3. RF Exposure

3.1 Standard Applicable

According to § 2.1091, the portable transmitter must comply the RF exposure requirements.

3.2 Test Result

This product complied with the requirement of the RF exposure, please see the RF exposure report MPE Report.

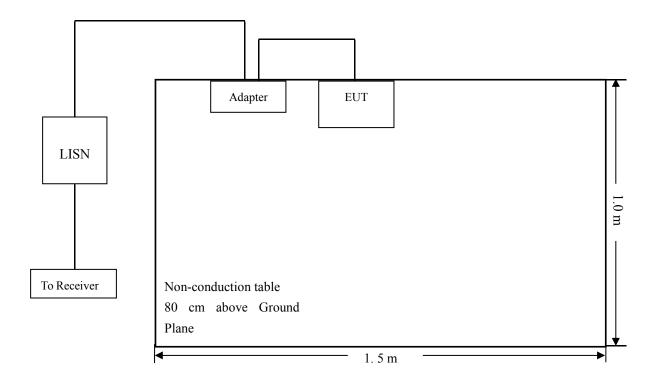
4. Antenna Requirement

4.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

4.2 Evaluation Information

This product has an Wire antenna, fulfill the requirement of this section.


5. Conducted Emissions

5.1 Test Procedure

The setup of EUT is according with per ANSI C63.4-2014 measurement procedure. The specification used was with the FCC Part 15.207 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

5.3 Basic Test Setup Block Diagram

5.4 Environmental Conditions

Temperature:	25 °C
Relative Humidity:	52%
ATM Pressure:	1012 mbar

5.5 Test Receiver Setup

During the conducted emission test, the test receiver was set with the following configurations:

Start Frequency	.150 kHz
Stop Frequency	. 30 MHz
Sweep Speed	. Auto
IF Bandwidth	. 10 kHz
Quasi-Peak Adapter Bandwidth	. 9 kHz
Quasi-Peak Adapter Mode	Normal

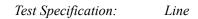
5.6 Summary of Test Results/Plots

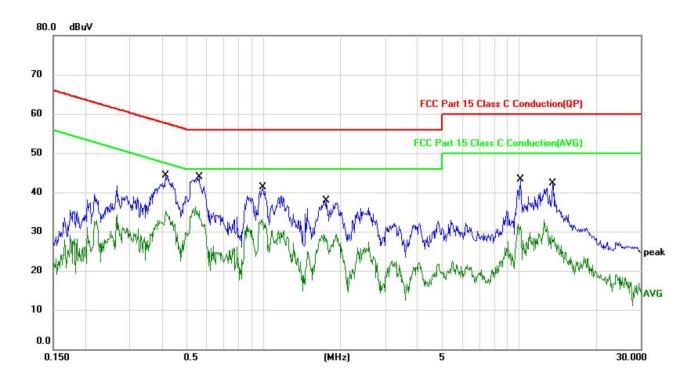
According to the data in section 3.8, the EUT <u>complied with the FCC Part 15.207</u> Conducted margin for a Class B device, with the *worst* margin reading of:

-2.19 dB at 0.4420 MHz in the Neutral, Peak detector, 0.15-30MHz

5.7 Conducted Emissions Test Data

Plot of Conducted Emissions Test Data


EUT:	11AC USB Wireless Adapter
Tested Model:	CF-WU925A
Operating Condition:	Transmiting
Comment:	DC 5V


Neutral

Test Specification:

80.0 dBuV 70 FCC Part 15 Class C Conduction(QP) 60 FCC Part 15 Class C Conduction(AVG) 50 40 30 MAG . 20 VG 10 0.0 0.150 0.5 (MHz) 30.000 5

No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2220	42.31	0.29	42.60	62.74	-20.14	QP	
2		0.2220	35.42	0.29	35.71	52.74	-17.03	AVG	
3		0.4259	38.93	0.39	39.32	57.33	-18.01	QP	
4		0.4259	32.69	0.39	33.08	47.33	-14.25	AVG	
5		0.5670	42.52	0.44	42.96	56.00	-13.04	QP	
6	*	0.5670	34.59	0.44	35.03	46.00	-10.97	AVG	
7		0.9633	37.46	0.65	38.11	56.00	-17.89	QP	
8		0.9633	28.84	0.65	29.49	46.00	-16.51	AVG	
9		1.6891	34.82	0.75	35.57	56.00	-20.43	QP	
10		1.6891	24.44	0.75	25.19	46.00	-20.81	AVG	
11		9.9130	38.89	1.06	39.95	60.00	-20.05	QP	
12		9.9130	27.45	1.06	28.51	50.00	-21.49	AVG	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.4127	43.90	0.39	44.29	57.59	-13.30	QP	
2		0.4127	33.79	0.39	34.18	47.59	-13.41	AVG	
3		0.5581	43.44	0.45	43.89	56.00	-12.11	QP	
4	*	0.5581	33.84	0.45	34.29	46.00	-11.71	AVG	
5		0.9942	40.53	0.67	41.20	56.00	-14.80	QP	
6		0.9942	30.96	0.67	31.63	46.00	-14.37	AVG	
7		1.7621	37.13	0.77	37.90	56.00	-18.10	QP	
8		1.7621	26.55	0.77	27.32	46.00	-18.68	AVG	
9		10.1254	42.15	1.07	43.22	60.00	-16.78	QP	
10		10.1254	28.16	1.07	29.23	50.00	-20.77	AVG	
11		13.5509	40.90	1.41	42.31	60.00	-17.69	QP	
12		13.5509	28.53	1.41	29.94	50.00	-20.06	AVG	

6. Power Spectral Density

6.1 Standard Applicable

Section 15.407(a) Power limits:

(1) For the band 5.15-5.25 GHz.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

6.2 Test Procedure

According to 789033 D02 General UNII Test Procedures New Rules v01, the following is the measurement procedure.

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

a) Set RBW $\geq 1/T$, where T is defined in section II.B.l.a).

b) Set VBW \geq 3 RBW.

c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.

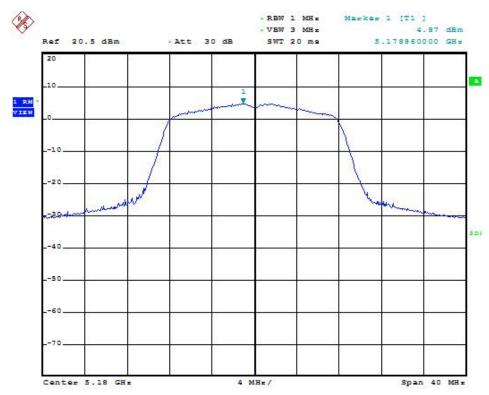
e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

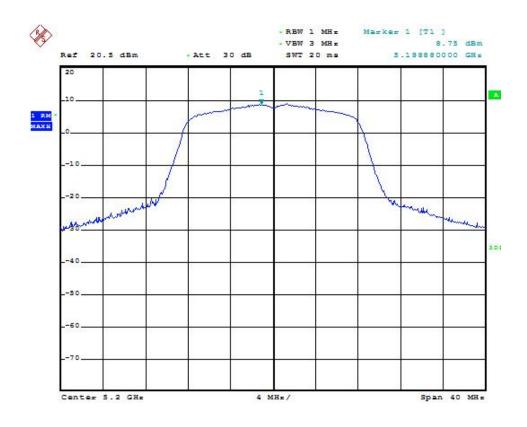
Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

6.3 Environmental Conditions

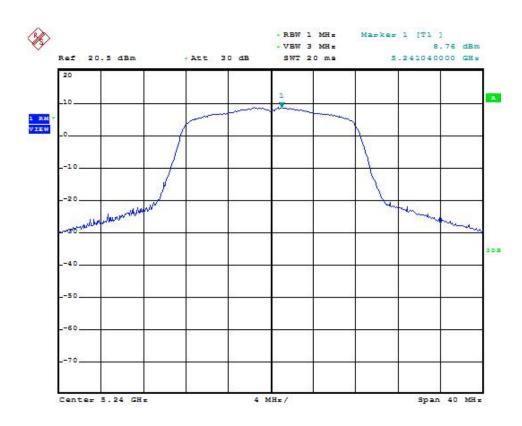
Temperature:	20° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

6.4 Summary of Test Results/Plots

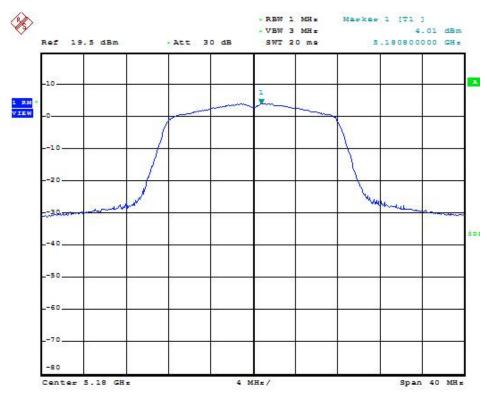

802.11a *5150-5250MHz*

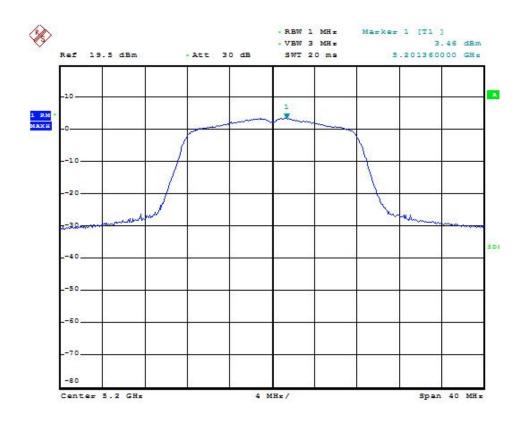

On continue and to	Test Channel	Power Spectral Density	Limit
Operating mode	Test Channel	dBm/MHz	(dBm/MHz)
802.11a	5180	4.87	11
	5200	8.75	11
	5240	8.76	11

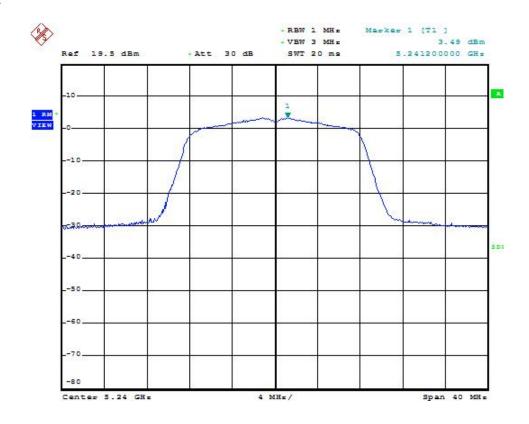
802.11ac-HT20 *5150-5250MHz*


Operating mode	Test Channel	Power Spectral Density	Limit
Operating mode	Test Channel	dBm/MHz	(dBm/MHz)
802.11ac-HT20	5180	4.01	11
	5200	3.46	11
	5240	3.49	11

Test Mode: 802.11a 5180MHz




5240MHz



802.11ac-HT20 5180MHz

7. Emission Bandwidth and Occupied Bandwidth

7.1 Standard Applicable

According to 15.407 (a) and (e)

(1) For the band 5.15-5.25 GHz.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(e) Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

7.2 Test Procedure

According to 789033 D02 v01r02 section C&D, the following is the measurement procedure.

- 1. Emission Bandwidth (EBW)
- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare

this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

2. Minimum Emission Bandwidth for the band 5.725-5.85 GHz

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

a) Set RBW = 100 kHz.

b) Set the video bandwidth (VBW) \geq 3 \times RBW.

c) Detector = Peak.

d) Trace mode = max hold.

e) Sweep = auto couple.

f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

D. 99 Percent Occupied Bandwidth

The 99-percent occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5 % of the total mean power of the given emission. Measurement of the 99-percent occupied bandwidth is required only as a condition for using the optional band-edge measurement techniques described in section II.G.3.d). Measurements of 99-percent occupied bandwidth may also optionally be used in lieu of the EBW to 789033 D02 v01r02 General UNII Test Procedures New Rules v01 define the minimum frequency range over which the spectrum is integrated when measuring maximum conducted output power as described in section II.E. However, the EBW must be measured to determine bandwidth dependent limits on maximum conducted output power in accordance with 15.407(a).

The following procedure shall be used for measuring (99 %) power bandwidth:

1. Set center frequency to the nominal EUT channel center frequency.

- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW
- 4. Set VBW \geq 3 RBW

5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

6. Use the 99 % power bandwidth function of the instrument (if available).

7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

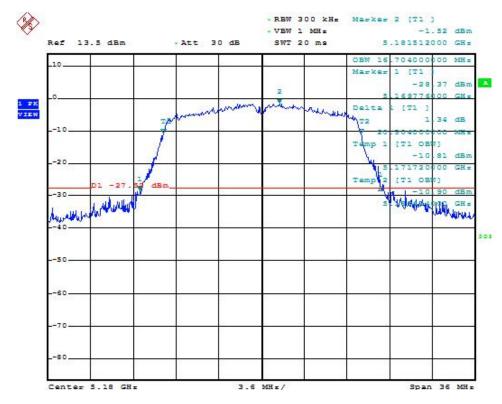
7.3 Environmental Conditions

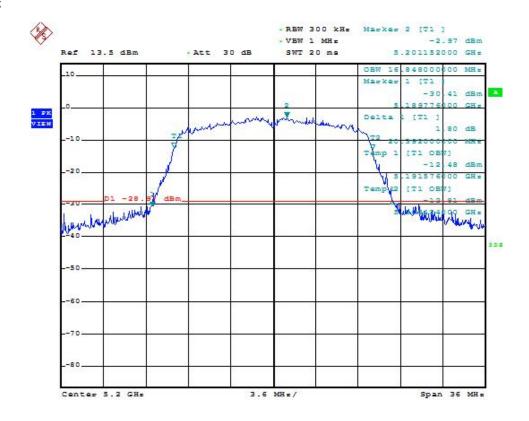
Temperature:	24° C
Relative Humidity:	53%
ATM Pressure:	1018 mbar

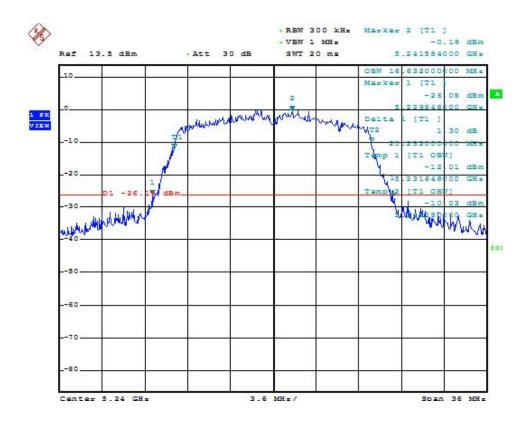
7.4 Summary of Test Results/Plots

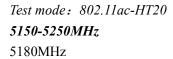
802.11a

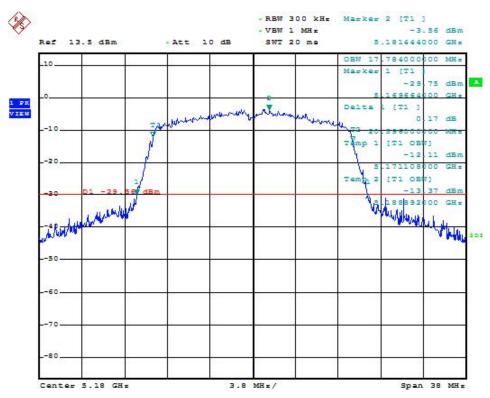
5150-5250MHz

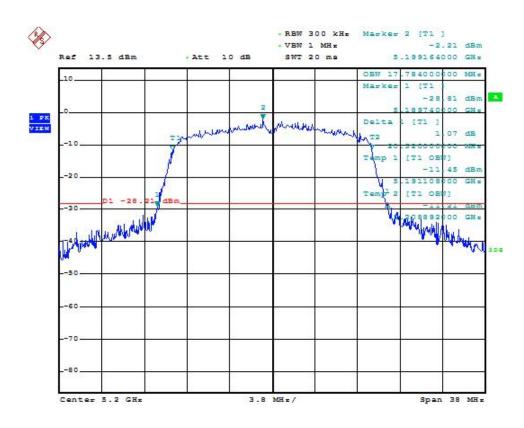

Test Mode	Test Channel MHz	26 dB Bandwidth MHz	99% Bandwidth MHz	Limit MHz
	5180	20.304	16.704	Pass
802.11a	5200	20.332	16.848	Pass
	5240	20.232	16.632	Pass

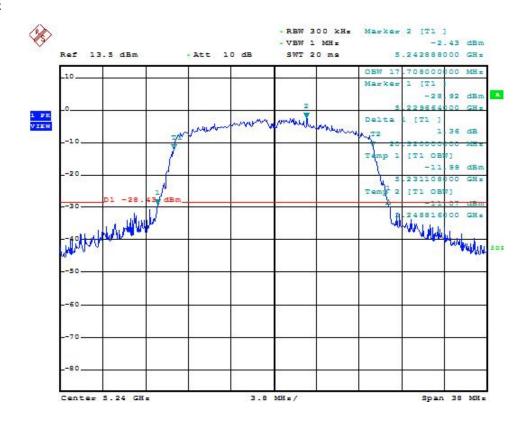

802.11ac-HT20


5150-5250MHz


Test Mode	Test Channel MHz	26 dB Bandwidth MHz	99% Bandwidth MHz	Limit MHz
	5180	20.558	17.784	Pass
802.11a	5200	20.520	17.784	Pass
	5240	20.520	17.708	Pass


Test mode: 802.11a 5150-5250MHz 5180MHz





5200MHz

8. Maximum Conducted Output Power

8.1 Standard Applicable

Section 15.407(a) Power limits:

(1) For the band 5.15-5.25 GHz.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

8.2 Test Procedure

According to KDB789033 D02 v01r02 section E, the following is the measurement procedure.

(i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.

(ii) Set RBW = 1 MHz.

(iii) Set VBW \geq 3 MHz.

(iv) Number of points in sweep ≥ 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)

(v) Sweep time = auto.

(vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.

(vii) If transmit duty cycle < 98 percent, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \ge 98 percent, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".

(viii) Trace average at least 100 traces in power averaging (i.e., RMS) mode.

(ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the spectrum.

8.3 Environmental Conditions

Temperature:	26° C
Relative Humidity:	65%
ATM Pressure:	1011 mbar

8.4 Summary of Test Results/Plots

	Frequency	Output Power	Output Power	Limit
Test mode	MHz	dBm	mW	mW
	5180	12.77	18.9234	250
802.11a	a 5200 11.56		14.3219	250
	5240	11.23	13.2739	250
	5180	12.67	18.4927	250
802.11ac-HT20	5200	11.13	12.9718	250
	5240	11.46	13.9959	250

For the frequency band 5.15-5.25GHz

9. Conducted Spurious Emissions

9.1 Standard Applicable

According to §15.407 (b) (b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

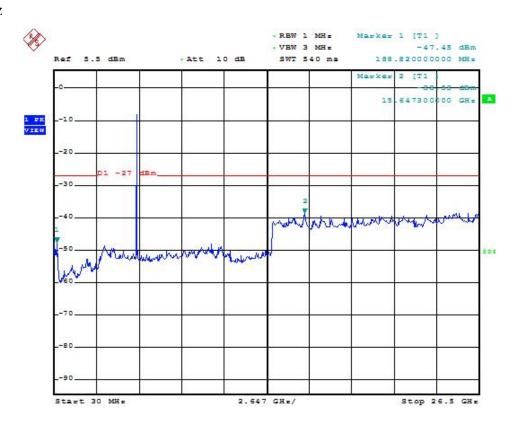
(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

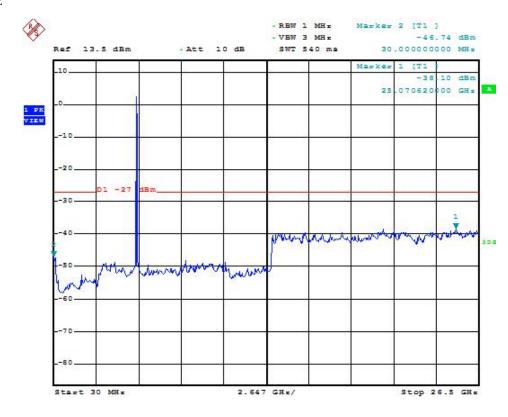
(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

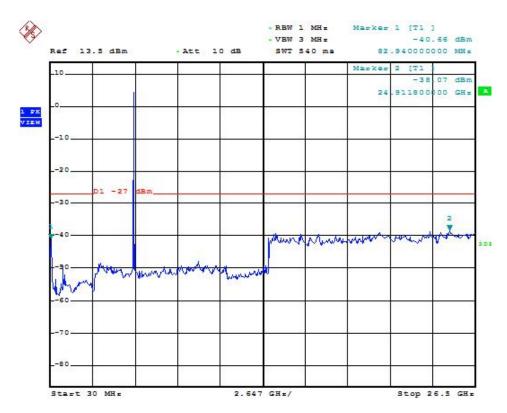
9.2 Test Procedure

- 1. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer via a RF combiner.
- 2. Set the spectrum analyzer as RBW = 100kHz/1MHz, VBW=300kHz/3MHz, Sweep = auto
- 3. Set the Lowest, Middle and Highest Transmitting Channel, observed the outside band of 30MHz to 40GHz, then mark the higher-level emission for comparing with the FCC rules.

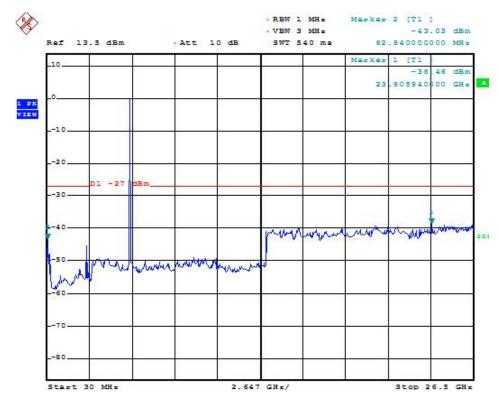

9.3 Environmental Conditions

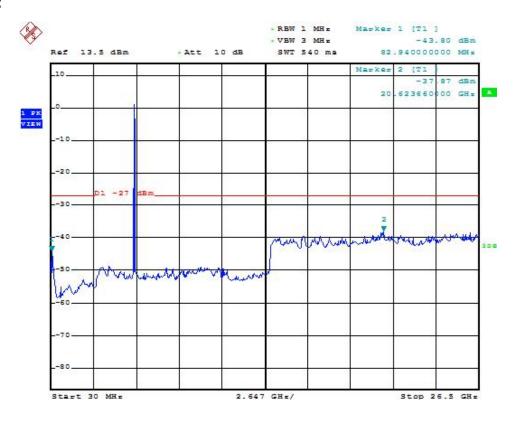

Temperature:	21° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

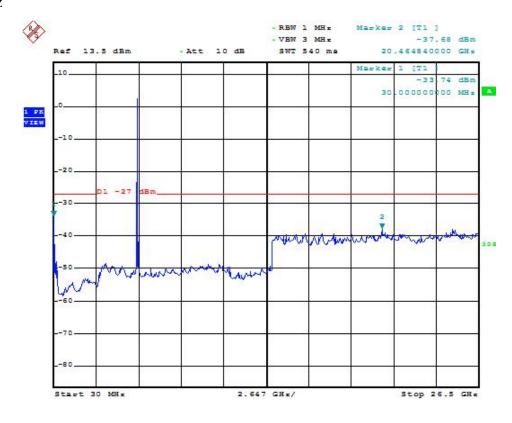
10.4 Summary of Test Results/Plots


Emissions above 26.5GHz are attenuated more than 20dB below the permissible limits and test data are not reported.

802.11a 5180MHz




5240MHz



802.11ac-HT20 5180MHz

5200MHz

11. Radiated Spurious Emissions

11.1 Standard Applicable

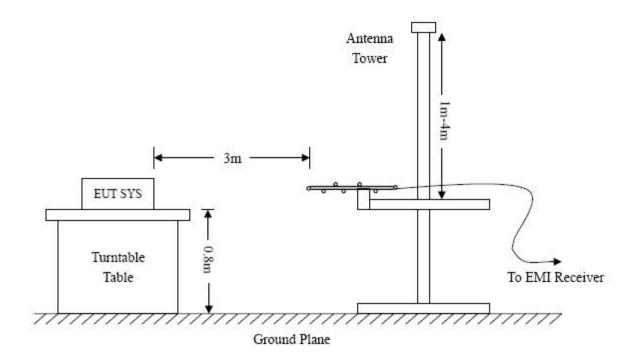
According to §15.407(b)(6), Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209.

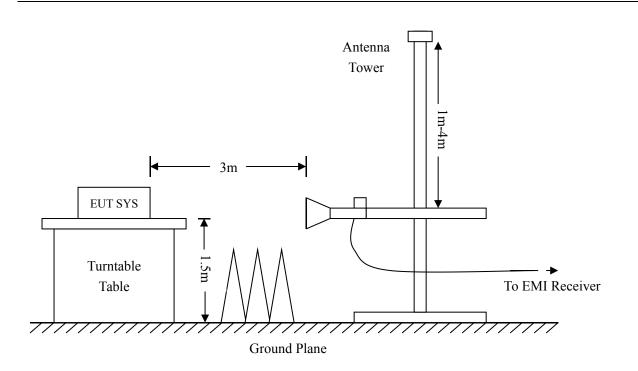
According to §15.407(b)(7), The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.

789033 D02 v01r02 General UNII Test Procedures New Rules v01

If radiated measurements are performed, field strength is then converted to EIRP as follows:

 $EIRP = ((E*d)^2) / 30$


where:


- E is the field strength in V/m;
- d is the measurement distance in meters;
- EIRP is the equivalent isotropically radiated power in watts.

11.2 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.407(b)(6) and FCC Part 15.209 Limit..

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

11.3 Test Receiver Setup

During the radiated emission test for above 1GHz, the test receiver was set with the following configurations:

For peak detector: RBW = 1000kHz, VBW = 3000kHz, Sweep Time = Auto

For average detector: RBW = 1000kHz, VBW = 10Hz, Sweep Time = Auto

11.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

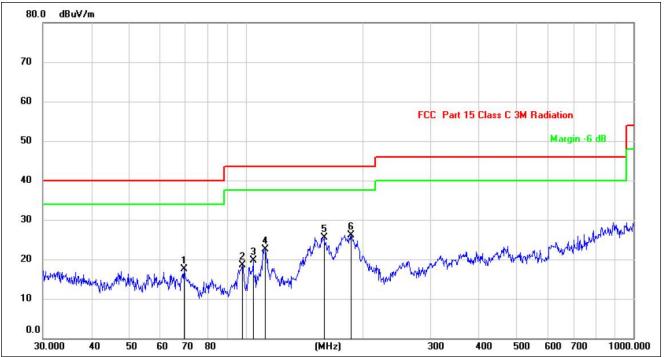
Corr. Ampl. = Indicated Reading + Ant. Factor + Cable Loss – Ampl. Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-6dB\mu V$ means the emission is $6dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – FCC Part 15 Limit

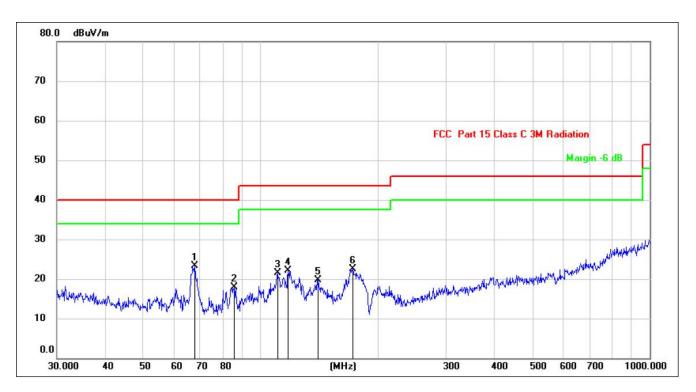
11.5 Environmental Conditions

Temperature:	22° C
Relative Humidity:	52%
ATM Pressure:	1012 mbar

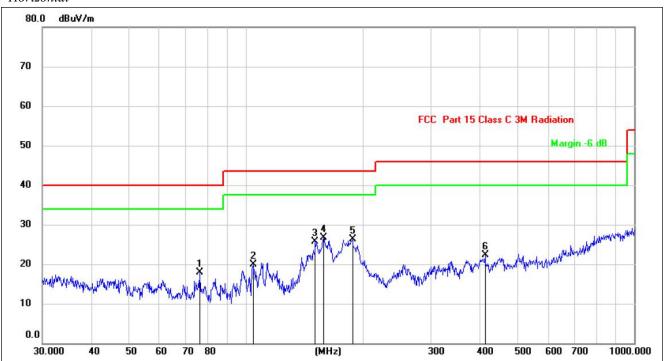

11.6 Summary of Test Results/Plots

According to the data below, the FCC Part 15.205, 15.209 and 15.407(b)(6) standards, and had the worst margin of:

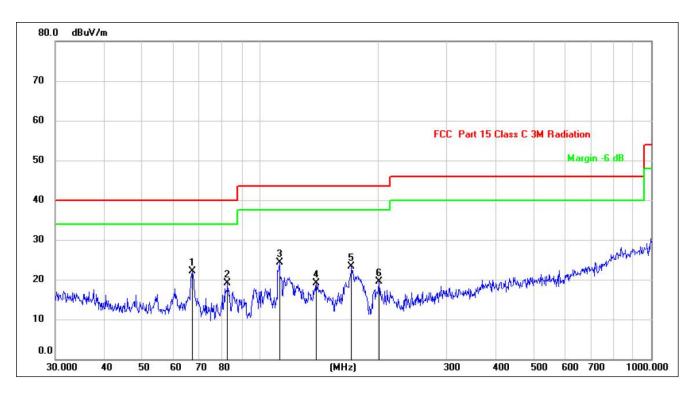
Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.


For 802.11a

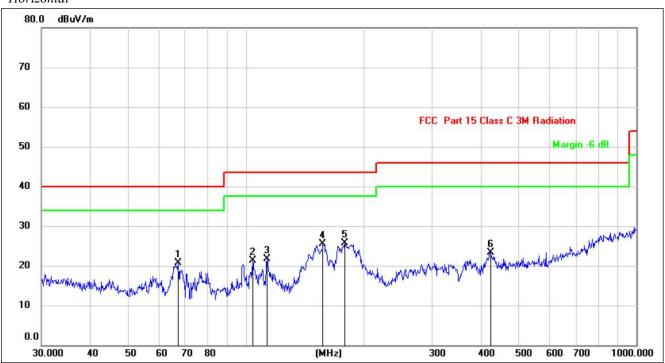
Spurious Emission From 30 MHz to 1 GHz Test mode: Transmitting Channel 5180MHz Horizontal


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dBuV/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		69.3568	17.70	-0.15	17.55	40.00	-22.45	QP	
2		98.1419	18.27	0.15	18.42	43.50	-25.08	QP	
3		104.5361	18.87	0.80	19.67	43.50	-23.83	QP	
4		112.5242	20.88	1.70	22.58	43.50	-20.92	QP	
5		159.2249	24.92	0.65	25.57	43.50	-17.93	QP	
6	*	187.0956	25.97	0.09	26.06	43.50	-17.44	QP	

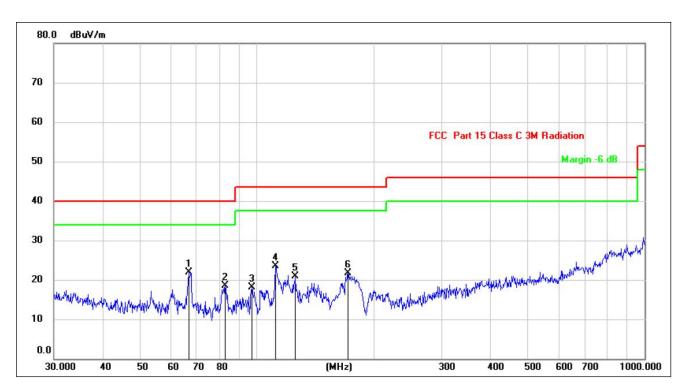
Test Specification: Vertical


	MHz			ment	Limit	Over		
	1VII 12	dBuV	dBuV/m	dBuV/m	dBuV/m	dB	Detector	Comment
4	67.9128	23.31	-0.05	23.26	40.00	-16.74	QP	
	85.5977	18.19	-0.28	17.91	40.00	-22.09	QP	
	110.5687	19.98	1.47	21.45	43.50	-22.05	QP	
	117.7724	19.82	2.33	22.15	43.50	-21.35	QP	
	140.8351	18.07	1.57	19.64	43.50	-23.86	QP	
	172.5988	21.95	0.65	22.60	43.50	-20.90	QP	
		117.7724 140.8351	117.772419.82140.835118.07	117.772419.822.33140.835118.071.57	117.772419.822.3322.15140.835118.071.5719.64	117.772419.822.3322.1543.50140.835118.071.5719.6443.50	117.772419.822.3322.1543.50-21.35140.835118.071.5719.6443.50-23.86	117.772419.822.3322.1543.50-21.35QP140.835118.071.5719.6443.50-23.86QP

Test mode: Transmitting Channel 5200MHz Horizontal


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dBuV/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		76.2442	17.94	-0.08	17.86	40.00	-22.14	QP	
2		104.5361	19.20	0.80	20.00	43.50	-23.50	QP	
3		151.0664	24.58	1.14	25.72	43.50	-17.78	QP	
4	*	158.6675	26.04	0.68	26.72	43.50	-16.78	QP	
5		188.4123	26.25	-0.04	26.21	43.50	-17.29	QP	
6		413.2706	15.73	6.54	22.27	46.00	-23.73	QP	

Test Specification: Vertical


No. Mk.		Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dBuV/m	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	67.2022	22.13	0.00	22.13	40.00	-17.87	QP	
2		82.6482	19.29	-0.13	19.16	40.00	-20.84	QP	
3		112.1304	22.59	1.66	24.25	43.50	-19.25	QP	
4		139.3611	17.58	1.62	19.20	43.50	-24.30	QP	
5		171.3925	22.59	0.63	23.22	43.50	-20.28	QP	
6		201.3930	18.05	1.50	19.55	43.50	-23.95	QP	

Test mode: Transmitting Channel 5240MHz Horizontal

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dBuV/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		67.2022	20.72	0.00	20.72	40.00	-19.28	QP	
2		104.1701	20.46	0.76	21.22	43.50	-22.28	QP	
3		113.3162	19.97	1.80	21.77	43.50	-21.73	QP	
4		157.5588	24.77	0.75	25.52	43.50	-17.98	QP	
5	*	179.3863	25.01	0.79	25.80	43.50	-17.70	QP	
6		423.5403	16.95	6.42	23.37	46.00	-22.63	QP	

Test Specification: Vertical

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dBuV/m	dBuV/m	dBuV/m	dB	Detector	Comment
*	66.7325	21.90	0.03	21.93	40.00	-18.07	QP	
	82.9385	18.71	-0.15	18.56	40.00	-21.44	QP	
	97.1148	17.98	0.07	18.05	43.50	-25.45	QP	
	111.7379	21.89	1.61	23.50	43.50	-20.00	QP	
	125.8863	18.64	2.19	20.83	43.50	-22.67	QP	
	171.9945	21.09	0.64	21.73	43.50	-21.77	QP	
	0 0.000000000	MHz * 66.7325 82.9385 97.1148 111.7379 125.8863	Mk. Freq. Level MHz dBuV * 66.7325 21.90 82.9385 18.71 97.1148 17.98 111.7379 21.89 125.8863 18.64	Mk. Freq. Level Factor MHz dBuV dBuV/m * 66.7325 21.90 0.03 82.9385 18.71 -0.15 97.1148 17.98 0.07 111.7379 21.89 1.61 125.8863 18.64 2.19	Mk. Freq. Level Factor ment MHz dBuV dBuV/m dBuV/m * 66.7325 21.90 0.03 21.93 82.9385 18.71 -0.15 18.56 97.1148 17.98 0.07 18.05 111.7379 21.89 1.61 23.50 125.8863 18.64 2.19 20.83	Mk. Freq. Level Factor ment Limit MHz dBuV dBuV/m dBuV/m dBuV/m dBuV/m * 66.7325 21.90 0.03 21.93 40.00 82.9385 18.71 -0.15 18.56 40.00 97.1148 17.98 0.07 18.05 43.50 111.7379 21.89 1.61 23.50 43.50 125.8863 18.64 2.19 20.83 43.50	Mk. Freq. Level Factor ment Limit Over MHz dBuV dBuV/m dBu	Mk. Freq. Level Factor ment Limit Over MHz dBuV dBuV/m dP 82.9385 18.71 -0.15 18.05 43.50 -25.45 QP 97.1148 17.98 0.07 18.05 43.50 -20.00 QP 111.7379 21.89 1.61

Frequency MHz	Detector	Meter Reading dBuV	Direction Degree	Polar H / V	Antenna Loss dB	Cable loss dB	Amplifier dB	Correction Amplitude dBuV/m	Limit dBuV/m	Margin dB	
Low Channel (5180MHz)											
15540	PK	50.8	360	V	40.7	10.9	39.6	62.8	74	-11.2	
15540	PK	49.2	360	Н	40.7	10.9	39.6	61.2	74	-12.8	
15540	AV	37.3	360	V	40.7	10.9	39.6	49.3	54	-4.7	
15540	AV	34.6	360	Н	40.7	10.9	39.6	46.6	54	-7.4	
				High	Channel (5240MHz)					
15720	PK	51.2	360	V	40.7	10.9	39.6	63.3	74	-10.7	
15720	PK	49.6	360	Н	40.7	10.9	39.6	61.6	74	-12.4	
15720	AV	36.4	360	V	40.7	10.9	39.6	48.4	54	-5.6	
15720	AV	34.7	360	Н	40.7	10.9	39.6	46.7	54	-7.3	

Hormonics And Spurious Emissions

Out of Band edge

Test CII	Test Segment	Result	Limit	
Test CH.	MHz	dBm/MHz	dBm/MHz	
Lowest	Below 5150	-46.67	-27	
Highest	Above 5350	-43.44	-27	
Note: the data just list the worst cases				

12. Frequency Stability

12.1 Standard Applicable

According to §15.407(g), Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

12.2 Test Procedure

According to §2.1055, the following test procedure was performed.

The Frequency Stability is measured directly with a Frequency Domain Analyzer. Frequency Deviation in ppm is calculated from the measured peak to peak value.

The Carrier Frequency Stability over Power Supply Voltage and over Temperature is measured with a Frequency Domain Analyzer in histogram mode

Temperature:	Supply Voltage	
20°C	85-115% of declared nominal voltage	
-30°C to +50°C	Normal	

12.3 Environmental Conditions

Temperature:	20°C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

12.4 Summary of Test Results/Plots

802.11a 5150-5250MHz

	Reference Frequency(Middle Channel): 5200 MHz			
Environment	Power Supplied (VDC)	Frequency Measure with Time Elapsed		
Temperature (°C)		MCF (Hz)	Error (ppm)	
50	5	127	0.0244	
40	5	112	0.0215	
30	5	116	0.023	
20	5	124	0.0238	
10	5	131	0.0252	
0	5	138	0.0265	
-10	5	133	0.0256	
-20	5	125	0.0240	
-30	5	140	0.0269	

802.11ac-HT20

5150-5250MHz

Reference Frequency(Middle Channel): 5200 MHz			
Environment	Power Supplied (VDC)	Frequency Measure with Time Elapsed	
Temperature (°C)		MCF (Hz)	Error (ppm)
50	5	122	0.0235
40	5	127	0.0244
30	5	114	0.0219
20	5	123	0.0236
10	5	138	0.0265
0	5	143	0.0275
-10	5	127	0.0244
-20	5	134	0.0257
-30	5	145	0.0279

So, Frequency Stability Versus Input Voltage is:

802.11a

5150-5250MHz

Reference Frequency(Middle Channel): 5200 MHz			
Environment	Power Supplied (VDC)	Frequency Measure with Time Elapsed	
Temperature (°C)		Frequency (Hz)	Error (ppm)
20	4.5	137	0.0263
	5	138	0.0265
	5.5	133	0.0256

802.11ac-HT20

5150-5250MHz

Reference Frequency(Middle Channel): 5200 MHz			
Environment Temperature	Power Supplied (VDC)	Frequency Measure with Time Elapsed	
(°C)		Frequency (Hz)	Error (ppm)
20	4.5	132	0.0254
	5	136	0.0261
	5.5	139	0.0267

***** END OF REPORT *****