

FCC Test Report

Test Report
On Behalf of

Shenzhen Four Seas Global Link Network Technology Co., Ltd

For

Wireless network card

Model No.: CF-811AC, CF-822AC, CF-921AC, CF-922AC, CF-WU782AC V2, CF-723B V2, CF-927BF, CF-933AC, CF-934AC

FCC ID: OYR-CF-811AC

Prepared For: Shenzhen Four Seas Global Link Network Technology Co., Ltd

Room 607-610, Block B, TAOJINDI Electronic Business Incubation Base,

Tenglong Road, Longhua District, Shenzhen, China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Feb. 28, 2023 ~ Mar. 07, 2023

Date of Report: Mar. 07, 2023

Report Number: HK2303020598-3E

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

Test Result Certification

Applicant's Name	Shenzhen Four S	Seas Global Link	Network Technology	ogy Co., Ltd
------------------	-----------------	------------------	--------------------	--------------

Room 607-610, Block B, TAOJINDI Electronic Business

Report No.: HK2303020598-3E

Address Incubation Base, Tenglong Road, Longhua District, Shenzhen,

China

Manufacture's Name............ Shenzhen Four Seas Global Link Network Technology Co., Ltd

Room 607-610, Block B, TAOJINDI Electronic Business

Address Incubation Base, Tenglong Road, Longhua District, Shenzhen,

China

Product Description

Trade Mark COMFAST

Product Name: Wireless network card

Model and/or Type Reference: CF-811AC, CF-822AC, CF-921AC, CF-922AC, CF-WU782AC

V2, CF-723B V2, CF-927BF, CF-933AC, CF-934AC

FCC Rules and Regulations Part 15 Subpart E Section 15.407

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date (s) of Performance of Tests Feb. 28, 2023 ~ Mar. 07, 2023

Test Result..... Pass

Testing Engineer :

(Gary Qian)

Technical Manager

en Pw

(Eden Hu)

Authorized Signatory:

Jason Yhou

(Jason Zhou)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

Table of Contents

1.	Te	st Result Summary	5
	1.1.	Test Procedures and Results	
	1.2.	Information of the Test Laboratory	5
	1.3.	Measurement Uncertainty	6
2.		T Description	
		General Description of EUT	
	2.2.	Operation Frequency Each of Channel	8
	2.3.	Operation of EUT during Testing	8
	2.4.	Description of Test Setup	9
3.	Ge	neral Information	10
		Test Environment and Mode	
	3.2.	Description of Support Units	11
4.	Te	st Results and Measurement Data	12
	4.1.	Conducted Emission	12
	4.2.	Maximum Conducted Output Power	16
	4.3.	6dB Emission Bandwidth	18
	4.4.	26dB Bandwidth and 99% Occupied Bandwidth	25
		Power Spectral Density	
	4.6.	Band Edge	33
	4.7.	Spurious Emission	48
		Frequency Stability Measurement	
	4.9.	Antenna Requirement	58
5.	Ph	otographs of Test Setup	59
CUN	Dh	otoo of the CUT	61

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Mar. 07, 2023	Jason Zhou
a)G	aG aG	a)G	G aG
	STILL	TESTII V	N. TESTIN

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

1. Test Result Summary

1.1. Test Procedures and Results

CFR 47 Section	Result
§15.203	PASS
§15.207	PASS
§15.407(a)	PASS
§15.407(e)	PASS
§15.407(a)	N/A
§15.407(a)	PASS
§15.407(b)/15.209/15.205	PASS
§15.407(b)/15.209/15.205	PASS
§15.407(g)	PASS
	§15.203 §15.207 §15.407(a) §15.407(e) §15.407(a) §15.407(b)/15.209/15.205 §15.407(b)/15.209/15.205

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd. Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

1.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of

	confide	nce of	approx	imately	95	%.	
--	---------	--------	--------	---------	----	----	--

No.	Item	MU
_m G 1	Conducted Emission	±2.71dB
2	RF power, conducted	±0.37dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.90dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2. EUT Description

2.1. General Description of EUT

Equipment:	Wireless network card
Model Name:	CF-811AC
Series Model:	CF-822AC, CF-921AC, CF-922AC, CF-WU782AC V2, CF-723B V2, CF-927BF, CF-933AC, CF-934AC
Trade Mark:	COMFAST
Model Difference:	All model's the function, software and electric circuit are the same, only with product model named different. Test sample model: CF-811AC.
FCC ID:	OYR-CF-811AC
Operation Frequency:	IEEE 802.11a/n/ac(HT20)5.745GHz-5.825GHz IEEE 802.11n/ac(HT40)5.755GHz-5.795GHz IEEE 802.11ac(HT80) 5.775GHz
Modulation Technology:	IEEE 802.11a/n/ac
Modulation Type:	OFDM
Antenna Type:	Internal Antenna
Antenna Gain:	2dBi
Power Source:	DC 5V from USB
Power Supply:	DC 5V from USB

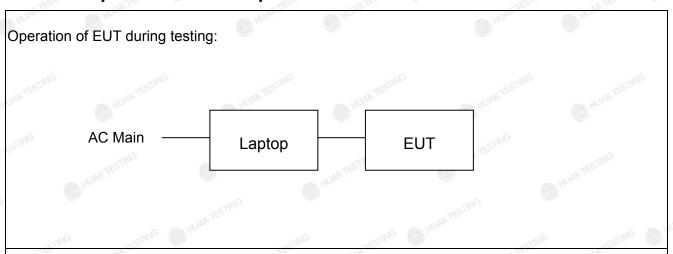
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.2. Operation Frequency Each of Channel

	802.11a/802.11n(HT20) 802.11ac(HT20)		802.11n(HT40)/ 802.11ac(HT40)		ac(HT80)
Channel	Frequency	Channel	Frequency	Channel	Frequency
149	5745	151	5755	155	5775
153	5765	159	5790	OKTESTIV	.a.G
157	5785		MAKTESTA	O Marie	MAKTESTA
161	5805		100	·G	0,,,
165	5825	10.0		AKTESTING	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:


2.3. Operation of EUT during Testing

l IV (5725 - 5850 MH:	z)
2.11a/ n HT20/ac HT	20
Channel	Frequency (MHz)
Low	5745
Mid	5785
High	5825
02.11n HT40/ac HT 4	10
Channel	Frequency (MHz)
Low	5755
High	5795
02.11n HT40/ac HT 4	10
Channel	Frequency (MHz)
All PUPA	5775
	Low Mid High 302.11n HT40/ac HT 4 Channel Low High 802.11n HT40/ac HT 4

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.4. Description of Test Setup

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is Z position.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

3. General Information

3.1. Test Environment and Mode

Operating Environment:		
Temperature:	25.0 °C	HUAKTEST
Humidity:	56 % RH	
Atmospheric Pressure:	1010 mbar	TESTING
Test Mode:	,	
Engineering mode:	Keep the EUT in continuous by select channel and modul value of duty cycle is 100%)	

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

TESTING	Mode		X TESTING	Data rate	
	802.11a	HUMA	(1) HOW	6 Mbps	O HOM
WE	802.11n(HT20)	JK TESTING	-NG	MCS0	Q
802.11n(HT40)		MAKTESTA	MCS0	HUAKTESIN	
802.118	ac(HT20)/ac(HT40)/	ac(HT80)		MCS0	
Final Tag	4 Mada.				

Final Test Mode:

Operation mode:	Keep the EUT in continuous transmitting
Operation mode.	with modulation

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Laptop	TP00096A	I STING	I HUAY TESTIN	Lenovo

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

Test Results and Measurement Data

Conducted Emission

4.1.1. Test Specification

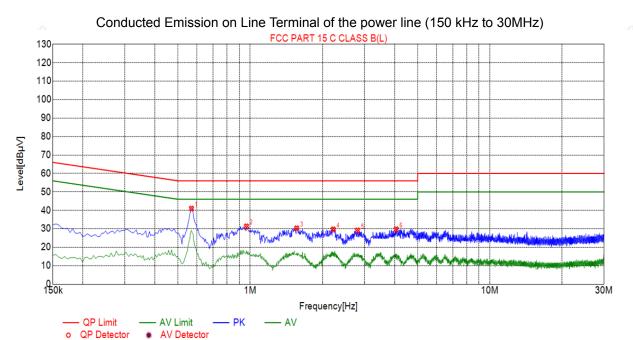
	TETTINE	NO.	No.
Test Requirement:	FCC Part15 C Section	15.207	HUAK .
Test Method:	ANSI C63.10:2013	STING	
Frequency Range:	150 kHz to 30 MHz	Mak IL	LOKTESTING
Receiver Setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	=auto
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (c Quasi-peak 66 to 56* 56 60	Average 56 to 46* 46 50
Test Setup:	Referent 40cm E.U.T AC pov Test table/Insulation plan Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	EMI Receiver	C power ESTING
Test Mode:	TX Mode		
Test Procedure:	1. The E.U.T and simul power through a line (L.I.S.N.). This provious impedance for the m. 2. The peripheral device power through a LIS coupling impedance refer to the block dial photographs). 3. Both sides of A.C. line conducted interferent emission, the relative the interface cables (ANSI C63.10: 2013 of the conducted interface).	impedance stabil des a 500hm/50ul easuring equipme es are also conne N that provides a with 500hm termi gram of the test some are checked for ece. In order to find e positions of equipmust be changed	ization network H coupling ent. ected to the main 50ohm/50uH nation. (Please etup and r maximum d the maximum ipment and all of according to
Test Result:	PASS	O HONE	(C) HUND

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Report No.: HK2303020598-3E

4.1.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Receiver	R&S	ESR-7	HKE-005	Feb. 17, 2023	Feb. 16, 2024	
LISN	R&S	ENV216	HKE-002	Feb. 17, 2023	Feb. 16, 2024	
Coax cable (9KHz-30MHz)	Times	381806-002	N/A	Feb. 17, 2023	Feb. 16, 2024	
Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	_M rte ^{Sthic} N/A	N/A	


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

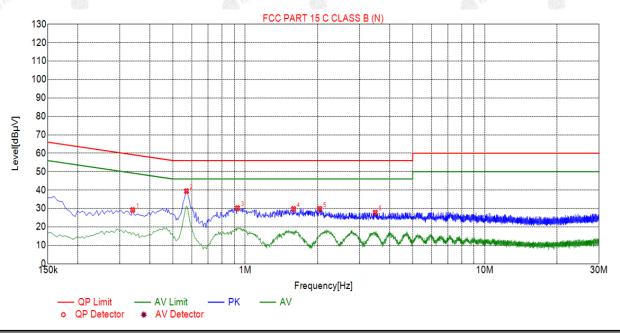
TEST RESULTS

PASS

All the test modes completed for test. only the worst result of (802.11a at 5745MHz) was reported as below:

	Suspected List									
•	NO.	Freq. [MHz]	Level [dBµ∀]	Factor [dB]	Limit [dBµ∀]	Margin [dB]	Reading [dBµ∀]	Detector	Туре	
The same	1	0.5685	40.96	20.05	56.00	15.04	20.91	PK	L	
	2	0.9645	31.31	20.06	56.00	24.69	11.25	PK	L	
	3	1.5630	30.28	20.11	56.00	25.72	10.17	PK	L	
Ž.	4	2.2200	29.71	20.17	56.00	26.29	9.54	PK	L	
	5	2.8050	29.11	20.21	56.00	26.89	8.90	PK	L	
)	6	4.0695	29.75	20.25	56.00	26.25	9.50	PK	L	

Remark: Margin = Limit - Level


Correction factor = Cable lose + LISN insertion loss

Level=Test receiver reading + correction factor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Report No.: HK2303020598-3E

Sus	Suspected List								
NO.	Freq. [MHz]	Level [dBµ∀]	Factor [dB]	Limit [dBµ∀]	Margin [dB]	Reading [dBµ∀]	Detector	Туре	
1	0.3390	29.18	20.03	59.23	30.05	9.15	PK	N	
2	0.5685	39.41	20.05	56.00	16.59	19.36	PK	N	
3	0.9285	30.22	20.06	56.00	25.78	10.16	PK	N	
4	1.5900	29.78	20.11	56.00	26.22	9.67	PK	N	
5	2.0445	29.78	20.15	56.00	26.22	9.63	PK	N	
6	3.4890	27.81	20.25	56.00	28.19	7.56	PK	Ν	

Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss

Level=Test receiver reading + correction factor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.2. Maximum Conducted Output Power

4.2.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407(a)				
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02.r01 Section E				
Limit:	Frequency Band (MHz)				
	5725-5850 1 W				
Test Setup:	Power meter EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 				
Test Result:	PASS				
Remark:	Conducted output power= measurement power +10log(1/x) X is duty cycle=1, so 10log(1/1)=0 Conducted output power= measurement power				

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.2.2. Test Instruments

	RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023	Feb. 16, 2024		
Power meter	Agilent	E4419B	HKE-085	Feb. 17, 2023	Feb. 16, 2024		
Power Sensor	Agilent	E9300A	HKE-086	Feb. 17, 2023	Feb. 16, 2024		
RF cable	Times	1-40G	HKE-034	Feb. 17, 2023	Feb. 16, 2024		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 17, 2023	Feb. 16, 2024		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test Data

	Config	uration Band IV (5725 - 5850	MHz)		
Mode Test channel		Maximum Conducted Output Power (dBm)	FCC Limit (dBm)	Result	
11a	CH149	7.39	30	PASS	
11a	CH157	6.92	30	PASS	
11a	CH165	7.18	30	PASS	
11n HT20	CH149	7.12 TESTING	30	PASS	
11n HT20	CH157	5.45	30	PASS	
11n HT20	CH165	6.38	30	PASS	
11n HT40	CH151	6.78	30	PASS	
11n HT40	CH159	6.18	30	PASS	
11ac HT20	CH149	6.12	30	PASS	
11ac HT20	CH157	6.37	30	PASS	
11ac HT20	CH165	6.33	30	PASS	
11ac HT40	CH151	6.29	30	PASS	
11ac HT40	CH159	6.25 TESTING	30	PASS	
11ac HT80	CH155	5.02	30	PASS	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.3. 6dB Emission Bandwidth

4.3.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)	FCC CFR47 Part 15 Section 15.407(e)				
Test Method:	KDB789033 D02 General UNII Test Procedures Nev Rules v02r01 Section C	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C				
Limit:	>500kHz					
Test Setup:	Spectrum Archara EUT	STING				
Test Mode:	Transmitting mode with modulation	STE				
Test Procedure:	Rules v02r01 Section C. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyz resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to measurement.	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. 				
Test Result:	PASS ESTIGNATION OF THE STIPLE	TESTING				

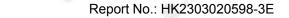
4.3.2. Test Instruments

RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023	Feb. 16, 2024		
RF cable	Times	1-40G	HKE-034	Feb. 17, 2023	Feb. 16, 2024		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 17, 2023	Feb. 16, 2024		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

AFICATION.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

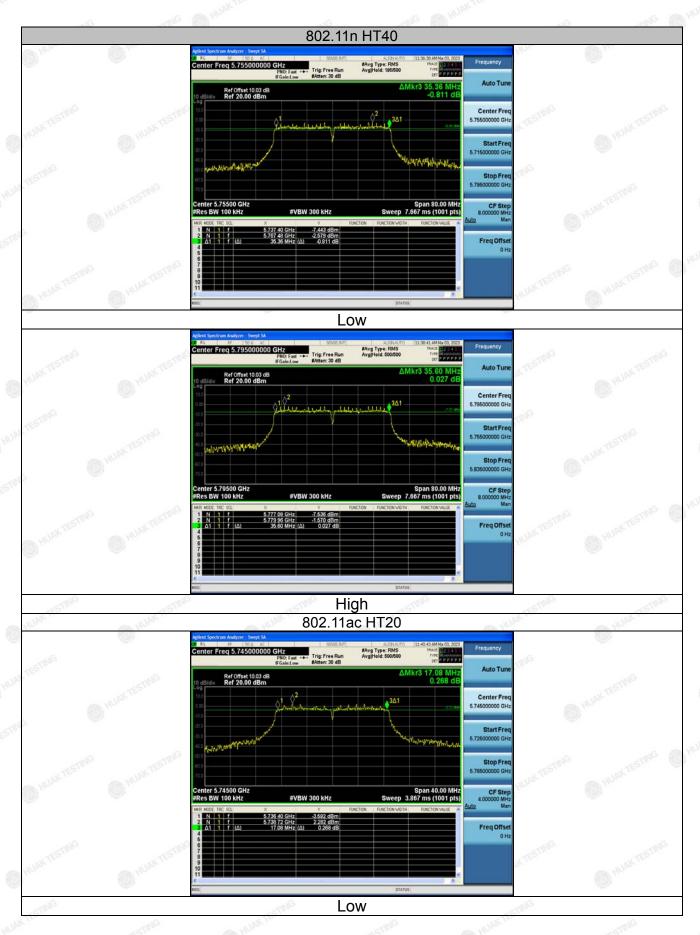


Test data

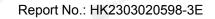
Band IV (5725	5 - 5850 MHz)				
Mode	Test channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Result
11a 💮	CH149	5745	16.280	0.5	PASS
11a	CH157	5785	16.320	0.5	PASS
11a	CH165	5825	16.280	0.5	PASS
11n HT20	CH149	5745	17.000	0.5	PASS
11n HT20	CH157	5785	16.960	0.5	PASS
11n HT20	CH165	5825	16.920	0.5	PASS
11n HT40	CH151	5755	35.360	0.5	PASS
11n HT40	CH159	5795	35.600	0.5	PASS
11ac HT20	CH149	5745	17.080	0.5	PASS
11ac HT20	CH157	5785	16.880	0.5	PASS
11ac HT20	CH165	5825	16.960	0.5	PASS
11ac HT40	CH151	5755	35.360	0.5	PASS
11ac HT40	CH159	5795	35.760	0.5	PASS
11ac HT80	CH155	5775	75.040	0.5	PASS

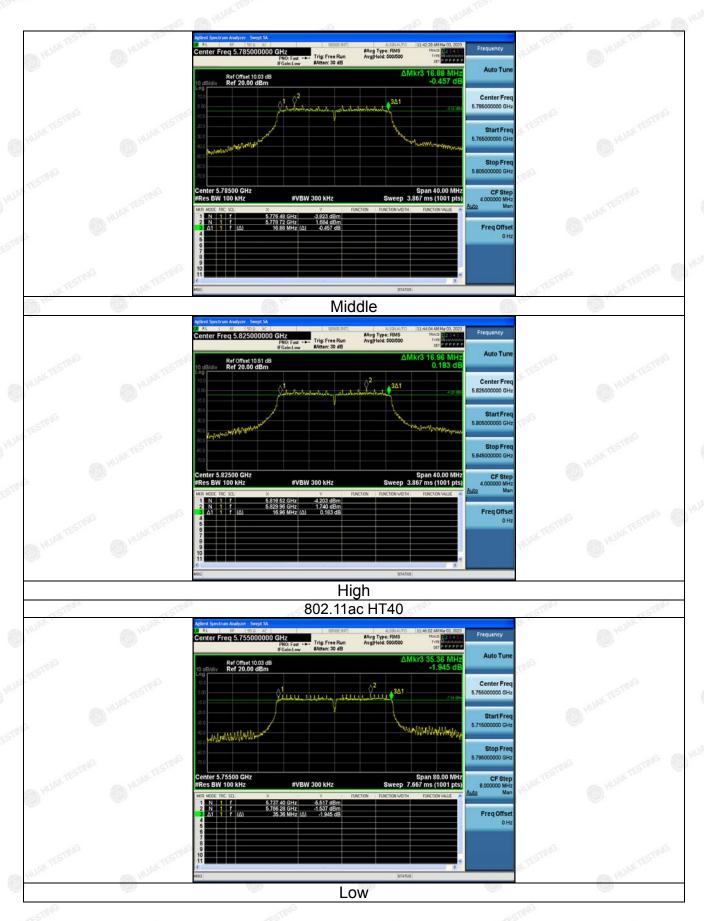
Test plots as follows:

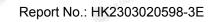
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.




The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.




The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.4. 26dB Bandwidth and 99% Occupied Bandwidth

4.4.1. Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)	47 CFR Part 15C Section 15.407 (a)					
Test Method:	KDB789033 D02 General UNII Test Procedures Nev Rules v02r01 Section C	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C					
Limit:	No restriction limits						
Test Setup:	Spectrum Analyzer EUT	TESTING					
Test Mode:	Transmitting mode with modulation						
Test Procedure:	 KDB789033 D02 General UNII Test Procedures I Rules v02r01 Section C. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyz resolution bandwidth RBW = 1% EBW, VBW≥3R In order to make an accurate measurement. Measure and record the results in the test report. 	er's					
Test Result:	N/A						

4.4.2. Test Instruments

RF Test Room								
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due			
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023	Feb. 16, 2024			
RF cable	Times	1-40G	HKE-034	Feb. 17, 2023	Feb. 16, 2024			
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 17, 2023	Feb. 16, 2024			

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.4.3. Test Result

N/A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.5. Power Spectral Density

4.5.1. Test Specification

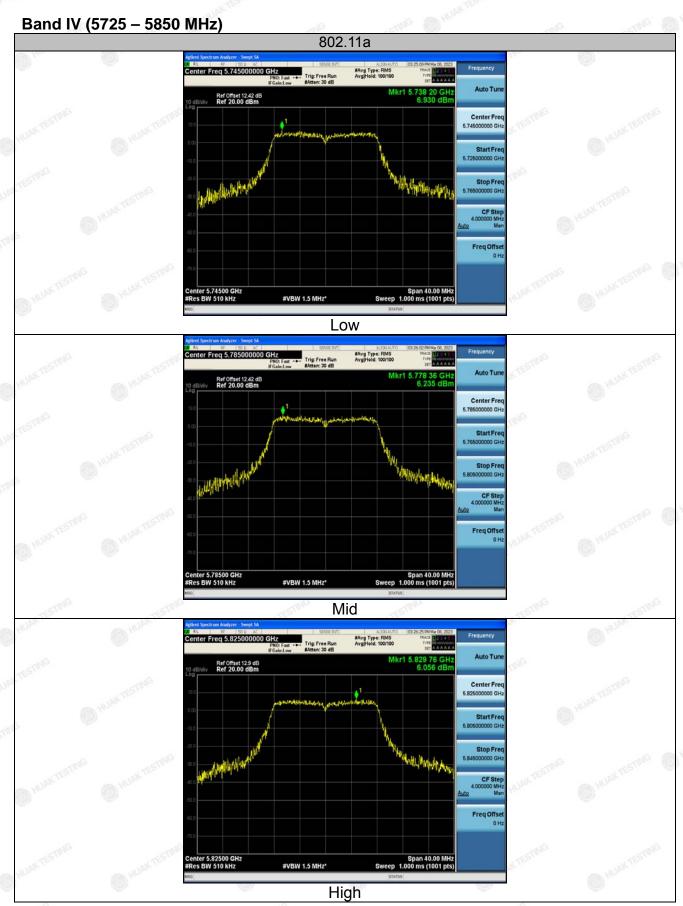
Test Requirement:	FCC Part15 E Section 15.407 (a)					
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F					
Limit:	≤11.00dBm/MHz for Band I 5150MHz-5250MHz ≤30.00dBm/500KHz for Band IV 5725MHz-5850MHz					
Test Setup:	EUT EUT					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment. 					
Test Result:	PASS					

4.5.2. Test Instruments

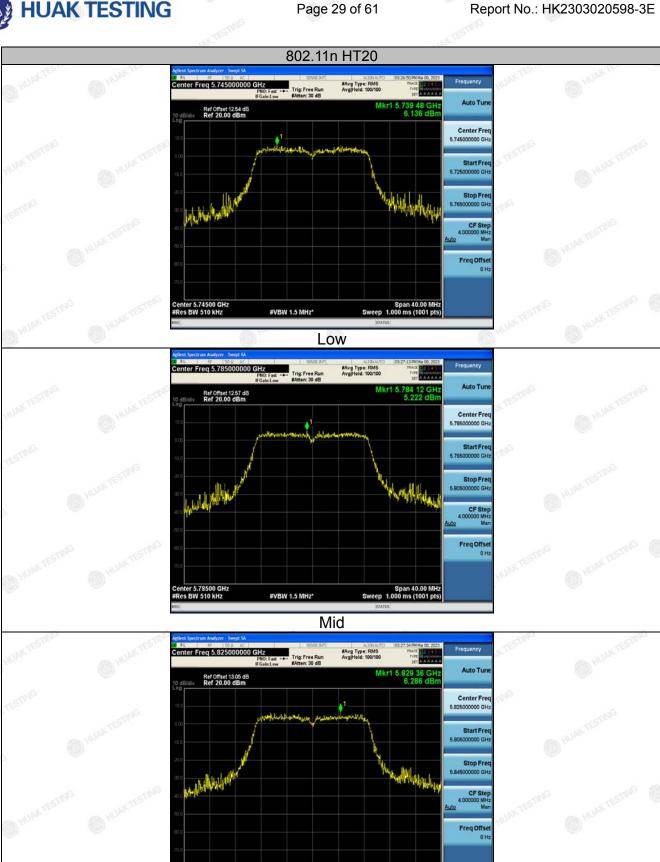
-617	16.71	C/11	C.///	.6\\\	-6.///				
RF Test Room									
Equipment Manufacturer Model Serial Number Calibration Date Calibration									
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023	Feb. 16, 2024				
RF cable	Times	1-40G	HKE-034	Feb. 17, 2023	Feb. 16, 2024				
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 17, 2023	Feb. 16, 2024				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

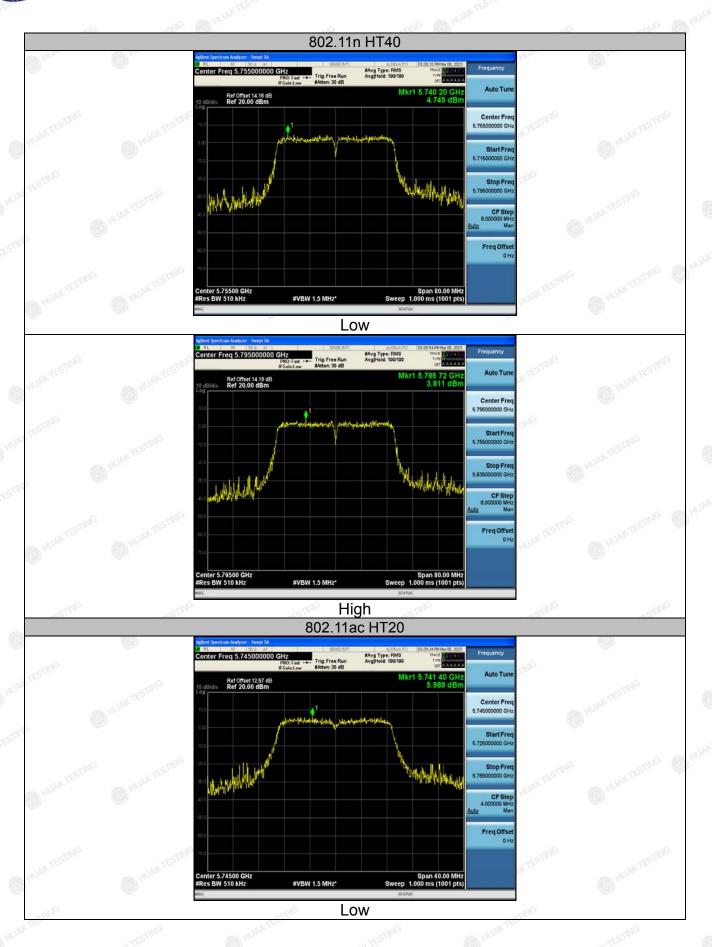

4.5.3. Test data

Configuration Band IV (5725 - 5850 MHz)									
Mode	Test channel	Level [dBm/510kHz]	10log(500/ 510)	Power Spectral Density	Limit (dBm/500kH z)	Result			
11a	CH149	6.93	-0.086	6.844	30 HUAN	PASS			
11a	CH157	6.24	-0.086	6.154	30	PASS			
11a	CH165	6.06	-0.086	5.974	30	PASS			
11n HT20	CH149	6.14	-0.086	6.054	30	PASS			
11n HT20	CH157	5.22	-0.086	5.134	30	PASS			
11n HT20	CH165	6.29	-0.086	6.204	30	PASS			
11n HT40	CH151	4.75	-0.086	4.664	30	PASS			
11n HT40	CH159	3.81	-0.086	3.724	30	PASS			
11ac HT20	CH149	5.99	-0.086	5.904	30	PASS			
11ac HT20	CH157	5.76	-0.086	5.674	30 MUAN	PASS			
11ac HT20	CH165	6.2	-0.086	6.114	30	PASS			
11ac HT40	CH151	4.46	-0.086	4.374	30	PASS			
11ac HT40	CH159	3.67	-0.086	3.584	30	PASS			
11ac HT80	CH155	3.54	-0.086	3.454	30	PASS			

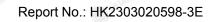

Note: Power Spectral Density= Level [dBm/510kHz]+ (10log(Limit RBW/Test RBW))

Test plots as follows:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

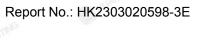


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

High



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.6. Band Edge

4.6.1. Test Specification

Test Requirement:	FCC CFR47 Part 15E Section 15.407					
Test Method:	ANSI C63.10 2013					
Limit:	(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. The limit of frequency below 1GHz and which fall in restricted bands should complies 15.209.					
Test Setup:	Ant. feed point See Table Ground Plane Receiver Amp.					
Test Mode:	Transmitting mode with modulation					
1. The EUT was placed on the top of a rotating meters above the ground at a 3 meter camber. was rotated 360 degrees to determine the posit highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mouthe top of a variable-height antenna tower. 3. The antenna height is varied from one meter meters above the ground to determine the maxivalue of the field strength. Both horizontal and value of the antenna are set to make the measurement.						

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Procedure:	 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak quasi peak or average method as specified and then reported in a data sheet.
Test Result:	PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.6.2. Test Instruments

	Radiated Emission Test Site (966)								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due				
Receiver	R&S	ESR-7	HKE-010	Feb. 17, 2023	Feb. 16, 2024				
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023	Feb. 16, 2024				
Preamplifier	EMCI	EMC051845S E	HKE-015	Feb. 17, 2023	Feb. 16, 2024				
Preamplifier	Agilent	83051A	HKE-016	Feb. 17, 2023	Feb. 16, 2024				
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Feb. 17, 2023	Feb. 16, 2024				
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Feb. 17, 2023	Feb. 16, 2024				
Horn antenna	Schwarzbeck	9120D	HKE-013	Feb. 17, 2023	Feb. 16, 2024				
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	N/A				
Position controller	Taiwan MF	MF7802	HKE-011	Feb. 17, 2023	Feb. 16, 2024				
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A				
RF cable (9KHz-1GHz)	Times	381806-001	N/A	N/A	N/A				
Hf antenna	Schwarzbeck	LB-180400-K F	HKE-031	Feb. 17, 2023	Feb. 16, 2024				
RF cable	Tonscend	1-18G	HKE-099	Feb. 17, 2023	Feb. 16, 2024				
RF cable	Times	1-40G	HKE-034	Feb. 17, 2023	Feb. 16, 2024				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.6.3. Test Data

Operation Mode: 802.11a Mode with 5.8G TX CH Low

Horizontal

402	N. The	N. C.	ak The		A COLOR	A K TOO
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	54.19	-2.06	52.13	68.2	-16.07	peak
5700	84.25	-1.96	82.29	105.2	-22.91	peak
5720	91.73	-2.87	88.86	110.8	-21.94	peak
5725	105.92	-2.14	103.78	122.2	-18.42	peak
1000		V690 40	(650)		The same of the sa	10333

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

JOH	= 10	- U/U/P		301	- 70
Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
52.38	-2.06	50.32	68.2	-17.88	peak
84.95	-1.96	82.99	105.2	-22.21	peak
89.07	-2.87	86.2	110.8	-24.6	peak
108.25	-2.14	106.11	122.2	-16.09	peak
	(dBµV) 52.38 84.95 89.07	(dBμV) (dB) 52.38 -2.06 84.95 -1.96 89.07 -2.87	(dBμV) (dB) (dBμV/m) 52.38 -2.06 50.32 84.95 -1.96 82.99 89.07 -2.87 86.2	(dBμV) (dB) (dBμV/m) (dBμV/m) 52.38 -2.06 50.32 68.2 84.95 -1.96 82.99 105.2 89.07 -2.87 86.2 110.8	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 52.38 -2.06 50.32 68.2 -17.88 84.95 -1.96 82.99 105.2 -22.21 89.07 -2.87 86.2 110.8 -24.6

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

AFICATION

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ata 15 Timo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	106.44	-1.97	104.47	122.2	-17.73	peak
5855	91.51	-2.13	89.38	110.8	-21.42	peak
5875	86.32	-2.65	83.67	105.2	-21.53	peak
5925	50.09	-2.28	47.81	68.2	-20.39	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	112.84	-1.97	110.87	122.2	-11.33	peak
5855	89.73	-2.13	87.6	110.8	-23.2	peak
5875	86.52	-2.65	83.87	105.2	-21.33	peak
5925	49.16	-2.28	46.88	68.2	-21.32	peak
		(5)53			(3)73	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: 802.11n20 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	53.07	-2.06	51.01	68.2	-17.19	peak
5700	85.16	-1.96	83.2	105.2	-22	peak
5720	91.29	-2.87	88.42	110.8	-22.38	peak
5725	108.32	-2.14	106.18	122.2	-16.02°	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

CLES.	NOK TES	- JAK TEST	- LAKTES		LAKTES	LAKTES
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	61.11	-2.06	59.05	68.2	-9.15	peak
5700	96.45	-1.96	94.49	105.2	-10.71	peak
5720	93.03	-2.87	90.16	110.8	-20.64	peak
5725	105.98	-2.14	103.84	122.2	-18.36	peak
O THE STATE OF THE		ALL DIDE	Access		ALL DIO	100.000

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: TX CH High with 5.8G

Horizontal

-11.3	- 1/2		~ U.S	-11.3	-11.3	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	110.12	-1.97	108.15	122.2	-14.05	peak
5855	90.49	-2.13	88.36	110.8	-22.44	peak
5875	85.38	-2.65	82.73	105.2	-22.47	peak
5925	52.52	-2.28	50.24	68.2	-17.96	peak
C III	31	40,000 44	907-57/27		(018) Y	1653.237

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Dis.	100	. 100	100		1 1 200	100
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	106.46	-1.97	104.49	122.2	-17.71	peak
5855	91.07	-2.13	88.94	110.8	-21.86	peak
5875	81.18	-2.65	78.53	105.2	-26.67	peak
5925	52.49	-2.28	50.21	68.2	-17.99	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: 802.11n40 Mode with 5.8G TX CH Low

Horizontal

765	requency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ata # Tura
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
IN ^G	5650	54.19	-2.06	52.13	68.2	-16.07	peak
	5700	88.26	-1.96	86.3	105.2	-18.9	peak
	5720	87.08	-2.87	84.21	110.8	-26.59	peak
	5725	107.94	-2.14	105.8	122.2	-16.4	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	58.11	-2.06	56.05	68.2	-12.15	peak
5700	95.58	-1.96	93.62	105.2	-11.58	peak
5720	83.29	-2.87	80.42	110.8	-30.38	peak
5725	110.35	-2.14	108.21	122.2	-13.99	peak
45	170	-60	170		160	170

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	DO HUAKTESTIL
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	109.25	-1.97	107.28	122.2	-14.92	peak
5855	92.18	-2.13	90.05	110.8	-20.75	peak
5875	82.92	-2.65	80.27	105.2	-24.93	peak
5925	52.07	-2.28	49.79	68.2	-18.41	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

		. 1100	7.100			1.100	1,120
	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
TIL	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
	5850	105.84	-1.97	103.87	122.2	-18.33	peak
	5855	87.59	-2.13	85.46	110.8	-25.34	peak
	5875	82.26	-2.65	79.61	105.2	-25.59	peak
111	5925	50.63	-2.28	48.35	68.2	-19.85	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: 802.11ac20 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	52.53	-2.06	50.47	68.2	-17.73	peak
5700	87.19	-1.96	85.23	105.2	-19.97	peak
5720	91.74	-2.87	88.87	110.8	-21.93	peak
5725	107.92	-2.14	105.78	122.2	-16.42	peak
- Alle	2577		-TING		-1114co	-CS(1)

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	51.18	-2.06	49.12	68.2	-19.08	peak
5700	87.09	-1.96	85.13	105.2	-20.07	peak
5720	89.42	-2.87	86.55	110.8	-24.25	peak
5725	106.33	-2.14	104.19	122.2	-18.01	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ata X Tura	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
5850	106.88	-1.97	104.91	122.2	-17.29	peak	
5855	92.46	-2.13	90.33	110.8	-20.47	peak	
5875	87.12	-2.65	84.47	105.2	-20.73	peak	
5925	48.54	-2.28	46.26	68.2	-21.94	peak	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

- Lilla	- Lilla	711	77	10	-11/4	-711/2
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	107.37	-1.97	105.4	122.2	-16.8	peak
5855	89.21	-2.13	87.08	110.8	-23.72	peak
5875	85.07	-2.65	82.42	105.2	-22.78	peak
5925	53.25	-2.28	50.97	68.2	-17.23	peak
1000		WEST-01	V:007		15/10/1	V387

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: 802.11ac40 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
§ 5650	54.19	-2.06	52.13	68.2	-16.07	peak	
5700	84.38	-1.96	82.42	105.2	-22.78	peak	
5720	90.96	-2.87	88.09	110.8	-22.71	peak	
5725	107.47	-2.14	105.33	122.2	-16.87	peak	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
5650	57.32	-2.06	55.26	68.2	-12.94	peak	
5700	83.19	-1.96	81.23	105.2	-23.97	peak	
5720	91.05	-2.87	88.18	110.8	-22.62	peak	
5725	109.42	-2.14	107.28	122.2	-14.92	peak	

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
5850	109.36	-1.97	107.39	122.2	-14.81	peak	
5855	91.46	-2.13	89.33	110.8	-21.47	peak	
5875	82.74	-2.65	80.09	105.2	-25.11	peak	
5925	49.85	-2.28	47.57	68.2	-20.63	peak	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

~~~		777	17.0	) · ·	~ (1)	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	109.24	-1.97	107.27	122.2	-14.93	peak
5855	89.18	-2.13	87.05	110.8	-23.75	peak
5875	86.99	-2.65	84.34	105.2	-20.86	peak
5925	49.65	-2.28	47.37	68.2	-20.83	peak
10000		BEN-3797	VICEO 7			Court of the Court

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.



Operation Mode: 802.11ac80 Mode with 5.8G TX CH Low

### Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Tune	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type	
5650	54.12	-2.06	52.06	68.2	-16.14	peak	
5700	84.96	-1.96	83	105.2	-22.2	peak	
5720	90.83	-2.87	87.96	110.8	-22.84	peak	
5725	106.07	-2.14	103.93	122.2	-18.27	peak	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

### Vertical:

Data ata Tuna	Margin	Limits	Emission Level	Factor	Meter Reading	Frequency
Detector Type	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(dBµV)	(MHz)
peak	-16.12	68.2	52.08	-2.06	54.14	5650
peak	-17.79	105.2	87.41	-1.96	89.37	5700
peak	-23.11	110.8	87.69	-2.87	90.56	5720
peak	-14.26	122.2	107.94	-2.14	110.08	5725

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: TX CH High with 5.8G

### Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	108.25	-1.97	106.28	122.2	-15.92	peak
5855	88.83	-2.13	86.7	110.8	-24.1	peak
5875	83.16	-2.65	80.51	105.2	-24.69	peak
5925	53.27	-2.28	50.99	68.2	-17.21	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

### Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	HUAKTES
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	103.84	-1.97	101.87	122.2	-20.33	peak
5855	91.98	-2.13	89.85	110.8	-20.95	peak
5875	80.21	-2.65	77.56	105.2	-27.64	peak
5925	54.36	-2.28	52.08	68.2	-16.12	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

## 4.7. Spurious Emission

## 4.7.1.1. Test Specification

Test Requirement:	FCC CFR47	Part 15 Se	ction 15	.407 & 1	5.209 & 15.205
Test Method:	KDB 789033	D02 v02r0	1 (	MUAN	MUAN (
Frequency Range:	9kHz to 40G	Hz		STING	
Measurement Distance:	3 m	.X TESTING	W III	Jak 1	OK TESTING
Antenna Polarization:	Horizontal &	Vertical		-16	O HUL
Operation mode:	Transmitting	mode with	modulat	ion	
	Frequency	Detector	RBW	VBW	Remark
	9kHz- 150kHz	Quasi-peak	200Hz	1kHz	Quasi-peak Value
Receiver Setup:	150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value
·	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value
	TING	Peak	1MHz	3MHz	Peak Value
	Above 1GHz	Peak	1MHz	10Hz	Average Value
Limit:	shall not exc. (2) For transic band: All emishall not exc. (3) For transic band: All emishall not exc. (4) For transic band: (i) All emission dBm/MHz at edge increase above or below the 15.6 dBm/MH and from 5 Mincreasing linedge.	eed an e.i.r mitters ope issions outseed an e.i.r mitters ope issions outseed an e.i.r mitters ope ons shall be 75 MHz or sing linearly ow the band edge Hz at 5 MHz above hearly to a linearly to a l	r.p. of -2 rating in side of the r.p. of -2 rating in side of the r.p. of -2 rating in elimited more also to 10 de dedge, increasing above or below evel of 2 elow 1G	the 5.25 ne 5.15-5 ne 5.15-5 ne 5.47-5 ne below or below or below or the ban ne for dBm/N Hz and vertical ne for he ban ne for dBm/N hz and vertical ne for he ban ne for dBm/N hz and vertical ne for he ban ne for dBm/N hz and vertical ne for he ban ne for dBm/N hz and vertical ne for he ban ne for he	5-5.35 GHz 5.35 GHz band MHz. 7-5.725 GHz 5.725 GHz band MHz. 25-5.85 GHz below the band at 25 MHz 1 25 MHz above rly to a level of the band edge,



For radiated emissions below 30MHz Ground Plane 30MHz to 1GHz Antenna Test setup: RF Test Ground Plane Above 1GHz EUT Receiver 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on **Test Procedure:** the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

measurement.

Test Procedu	ıre:	4. For each susp to its worst case heights from 1 m turned from 0 de maximum readin 5. The test-recei Function and Sp Mode. 6. If the emission 10dB lower than be stopped and reported. Othery 10dB margin wo quasi-peak or av reported in a dat	and then the and then to 4 meters to 4 meters to 360 de ag.  ver system was ecified Bandwid the limit specified the peak values wise the emission uld bere-tested exerage method and the second to the second the	tenna was tune and the rotatal grees to find the set to Peak Death with Maximum T in peak mode ed, then testing of the EUT wouns that did not hone by one usir	ed to ole was e tect m Hold e was could uld be have ng peak,
Test Results		PASS			



### 4.7.2. Test Data

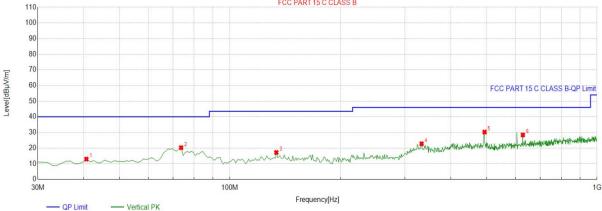
Remark: All the test modes completed for test. The worst case of Radiated Emission is CH 149; the test data of this mode was reported.

### **Below 1GHz**

### Horizontal



QP Detector


Suspected List										
	NO.	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Dalasita
1		[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
	1	87.2873	-18.05	27.00	8.95	40.00	31.05	100	244	Horizontal
L	2	181.4715	-16.94	33.90	16.96	43.50	26.54	100	315	Horizontal
	3	310.6106	-11.82	35.28	23.46	46.00	22.54	100	93	Horizontal
Q	4	492.1822	-7.43	31.47	24.04	46.00	21.96	100	304	Horizontal
	5	656.2763	-4.49	27.68	23.19	46.00	22.81	100	56	Horizontal
	6	877.6577	-0.93	27.00	26.07	46.00	19.93	100	233	Horizontal

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level;

Vertical

# FCC PART 15 C CLASS B

Report No.: HK2303020598-3E



Suspe	Suspected List											
NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delegit			
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
. 1	40.6807	-15.30	28.23	12.93	40.00	27.07	100	30	Vertical			
2	73.6937	-16.44	36.67	20.23	40.00	19.77	100	45	Vertical			
3	133.8939	-17.31	34.50	17.19	43.50	26.31	100	45	Vertical			
4	332.9429	-11.54	34.28	22.74	46.00	23.26	100	32	Vertical			
5	494.1241	-7.29	37.54	30.25	46.00	15.75	100	27	Vertical			
6	628.1181	-4.36	32.77	28.41	46.00	17.59	100	336	Vertical			

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level;

## **Harmonics and Spurious Emissions**

### Frequency Range (9kHz-30MHz)

QP Detector

	Frequency (MHz)	Level(	@3m (dBµV/m)	Limit@	)3m (c	lΒμV/m)
7/2	HATAN.	HUAR		HUAR		HUAR
TING		TESTING		TESTING		
	TESTING AND	War.	TESTING	HUAR		TESTING

**Note:** 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

### **Above 1GHz**

### LOW CH 149 (802.11 a Mode with 5.8G)/5745

### Horizontal:

- 11.7	4/1/2		- N. 2	+W2	- 11.7	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	62.14	-4.59	57.55	74	-16.45	peak
3647	44.92	-4.59	40.33	54	-13.67	AVG
11570	57.38	4.21	61.59	74	-12.41	peak
11570	43.09	4.21	47.3	54	-6.7	AVG
MAK.	HUPE	MALIN	HUM.		- MAK	HUM

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

### Vertical:

-(1)	-111			411.0	-111"	-111
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	61.21	-4.59	56.62	74	-17.38	peak
3647	44.82	-4.59	40.23	54	-13.77	AVG
11570	51.07	4.21	55.28	74	-18.72	peak
11570	40.56	4.21	44.77	54	-9.23	AVG
1.100	W. C.	- 100			1.75%	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China





### MID CH157 (802.11 a Mode with 5.8G)/5785

### Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	59.44	-4.59	54.85	74	-19.15	peak
3647	41.98	-4.59	37.39	54	-16.61	AVG
11570	51.12	4.21	55.33	74	-18.67	peak
11570	40.35	4.21	44.56	54	-9.44	AVG
	AND 1999		•	VACO VERMIT		- 40.3

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

### Vertical:

(MHz) (dBµV) 3647 62.87	(dB) -4.59	(dBµV/m) 58.28	(dBµV/m)	(dB)	Detector Type
3647 62.87	-4.59	50.20			
The	-chhi	30.20	74	-15.72	peak
3647 45.96	-4.59	41.37	54	-12.63	AVG
11570 52.26	4.21	56.47	74	-17.53	peak
11570 42.18	4.21	46.39	54	-7.61	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

HIGH CH 165 (802.11a Mode with 5.8G)/5825

### Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data stan Tyma
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	60.09	-4.59	55.5	74	-18.5	peak
3647	48.25	-4.59	43.66	54	-10.34	AVG
11650	53.14	4.84	57.98	74	-16.02	peak
11650	42.26	4.84	47.1	54	-6.9	AVG
100	700 min		150	TO BUILDY	-6	-10/2

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

### Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data star Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	62.39	-4.59	57.8	74	-16.2	peak
3647	47.07	-4.59	42.48	54 @ M	-11.52	AVG
11650	53.98	4.84	58.82	74	-15.18	peak
11650	42.41	4.84	47.25	54	-6.75	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

#### Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.



AN TESTING

## 4.8. Frequency Stability Measurement

## 4.8.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g)
Test Method:	ANSI C63.10: 2013
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 35 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Setup:	Spectrum Analyzer EUT  AC/DC Power supply
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Test Result:	PASS
Remark:	N/A MATERIAL ON MA

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



## Test Result as follows:

Mode	Voltage (V)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
	4.25V	5744.989	-11	5824.968	-32
5.8G Band	5V	5745.031	31	5825.024	24
HUAKTES	5.75V	5745.007	7	5824.982	-18

Mode	Temperature (°C)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
3	-30	5744.981	-19	5824.989	-11
HUAKTE	-20	5744.976	-24	5824.975	-25
	-10	5744.984	-16	5825.034	34
ESTING	O HUMET	5745.016	16	5825.016	16
5.8G Band	10	5744.979	-21	5825.024	24
	20	5745.027	27	5824.983	-17
STING NY TEST	30	5744.953	-47	5825.017	17
O HUND	40	5744.970	-30	5825.002	2
	50	5745.032	32	5825.016	16

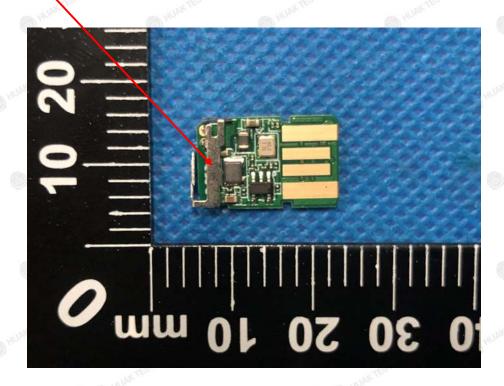
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



### 4.9. Antenna Requirement

### **Standard Applicable**

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

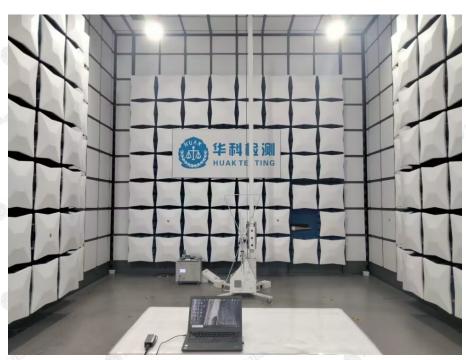

### Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

### **Antenna Connected Construction**

The antenna used in this product is an Internal Antenna, need professional installation, not easy to remove. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 2dBi.

### WIFI Antenna




The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



## 5. Photographs of Test Setup

### **Radiated Emission**





The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.







The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



6. Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

-----End of test report-----

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.