Preco, Inc.

WZPV4015

Report No. PRCO0049

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2009 Northwest EMC, Inc

Certificate of Test Last Date of Test: December 9, 2009 Preco, Inc. Model: WZPV4015

	Emissions		
Test Description	Specification	Test Method	Pass/Fail
Field Strength of Fundamental	FCC 15.249:2009	ANSI C63.4:2003	Pass
Field Strength of Spurious Emissions	FCC 15.249:2009	ANSI C63.4:2003	Pass

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066

Fax: (503) 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-1).

Approved By:	-
Donald Mandan	
Don Facteau, IS Manager	

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
00	None		

Barometric Pressure

The recorded barometric pressure has been normalized to sea level.

Accreditations and Authorizations

FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP

Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

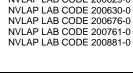
Industry Canada

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (*Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1*)

CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

NEMKO


Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Accreditations and Authorizations

Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Numbers. - Hillsboro: C-1071, R-1025, G-84, C-2687, T-1658, and R-2318, Irvine: R-1943, G-85, C-2766, and T-1659, Sultan: R-871, G-83, C-1784, and T-1511, Brooklyn Park: R-3125, G-86, C-3464, and T-1634).*

BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

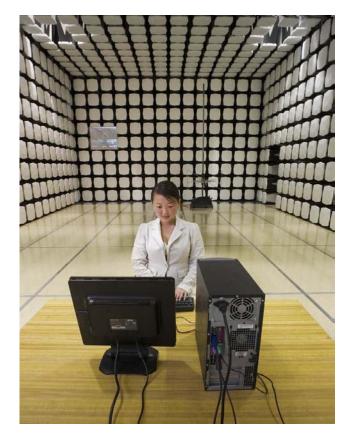
KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)

SCOPE For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/accreditations/</u>

BSMI

Northwest EMC Locations



Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Rev 11/17/06

Party Requesting the Test

Company Name:	Preco, Inc.
Address:	415 N. Maple Grove
City, State, Zip:	Boise, ID 83704-8241
Test Requested By:	John Fadgen
Model:	WZPV4015
First Date of Test:	November 18, 2009
Last Date of Test:	December 9, 2009
Receipt Date of Samples:	November 18, 2009
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

5.725-5.875 GHz pulsed carrier

Testing Objective:

To demonstrate compliance with FCC 15.249 limits.

CONFIGURATION 1 PRCO0049

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Antenna sensor assembly	Preco Electronics, Inc.	WZPV4015	Unit #1
Operator display unit	Preco Electronics, Inc.	Unknown	1210012D

Remote Equipment Outside of	Test Setup Boundar	у	
Description	Manufacturer	Model/Part Number	Serial Number
13.8VDC Power Supply	Radio Shack	22-504	023976

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Interface cable	No	7.6m	No	Antenna sensor assembly	Operator display unit
+12 VDC cable	No	1.0m	No	Antenna sensor assembly	13.8VDC Power Supply
Ground cable	No	1.0m	No	Antenna sensor assembly	13.8VDC Power Supply
Auxiliary output cable	No	1.0m	No	Antenna sensor assembly	Unterminated
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

	Equipment modifications				
Item	Date	Test	Modification	Note	Disposition of EUT
1	11/18/2009	Field Strength of Fundamental	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
2	12/9/2009	Field Strength of Spurious Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting with pulsed modulated carrier. Pulse Width = 2/130.8 MHz, Pulse Rep

POWER SETTINGS INVE	STIGATED		
13.8 VDC			
FREQUENCY RANGE IN	/ESTIGATED		
Start Frequency	5725 MHz	Stop Frequency	5875 MHz

SAMPLE CALCULATIONS

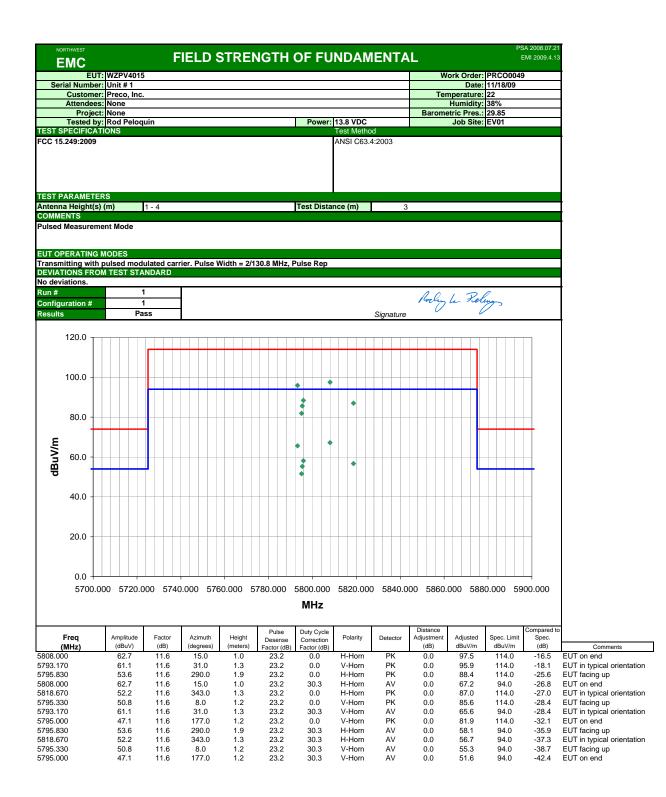
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAY	12/11/2008	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	7/10/2009	13
Antenna, Horn	EMCO	3115	AHC	8/12/2008	24
EV01 Cables		Double Ridge Horn Cables	EVB	7/10/2009	13

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

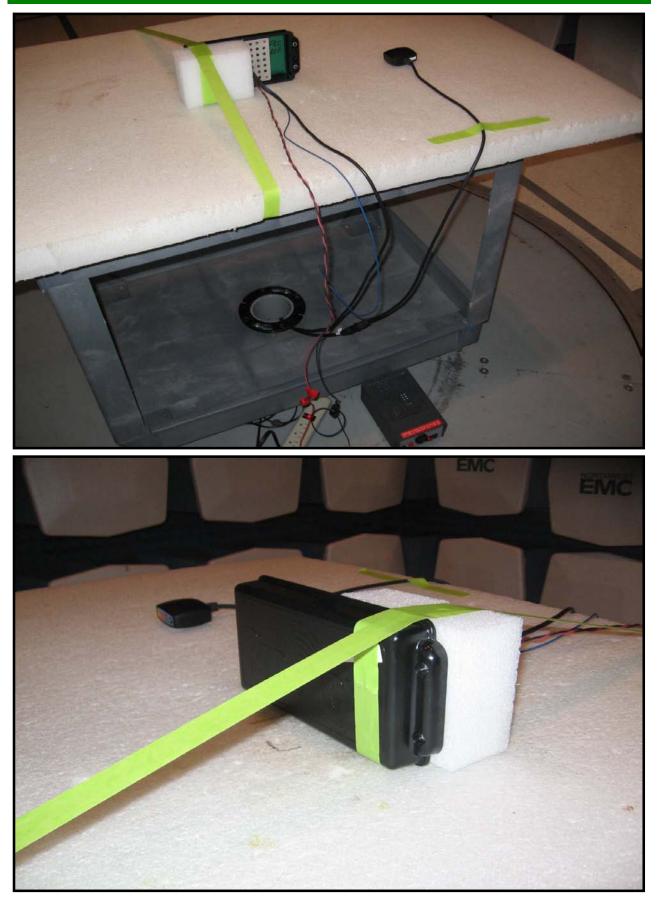

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting and/or receiving while set at the lowest channel, a middle channel, and the highest channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003).

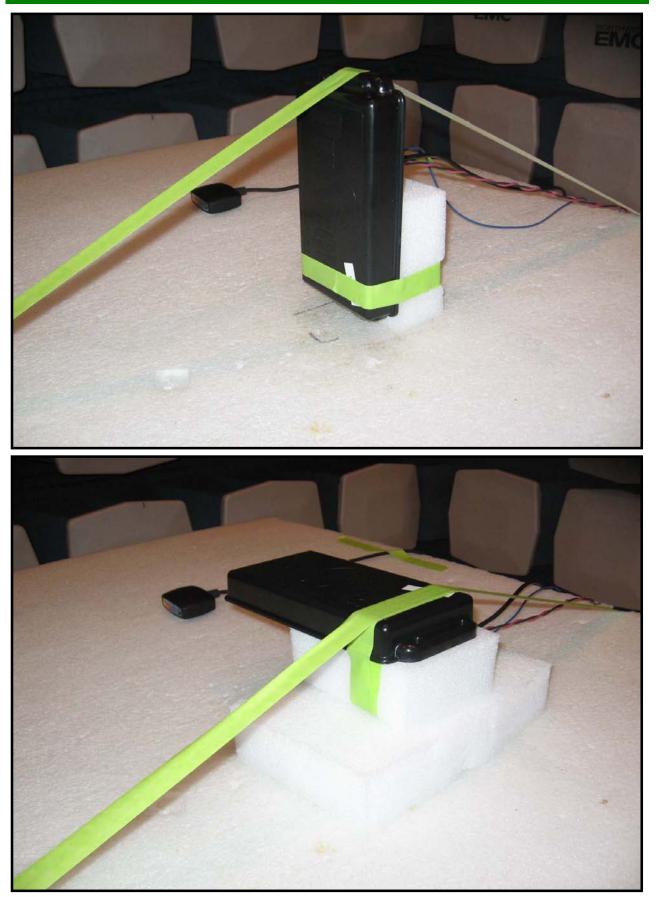
To determine the "true peak level", the measurement procedure described by Andy Leimer of the FCC OET Laboratory (FCC Procedure for Pulsed Signals.txt, dated 11/16/99) was used. Per step (C), if the emission is viewed in pulse spectrum mode, the level of the fundamental emissions is measured using analyzer settings as listed in the Hewlett Packard Application Note 150-2 (Spectrum Analysis...Pulsed RF, Nov. 1971) such that a true pulse spectrum is obtained (RBW greater than PRF). The video bandwidth should be equal to, or greater than the RBW. The pulse repetition frequency (PRF) was measured to be 2 MHz; therefore a 3 MHz resolution bandwidth (RBW) and an 8 MHz video bandwidth (VBW) were used to measure the fundamental emission. A pulse desensitization factor in dB (calculated from Equation 10 in HP Note 150-2) is added to this measured level to obtain the "true peak level". The pulse width was measured to be 15.3 nS; therefore a 23.2 dB pulse desensitization factor was used (k = 1.5, B = 3 MHz).

The average level of the fundamental emission is the "true peak level" measured above minus the calculated duty cycle factor in dB. The duty cycle correction factor is calculated from Equation 4 in HP Note 150-2. The pulse width was measured to be 15.3 nS and the PRF = 2 MHz; therefore a 30.3 dB duty cycle correction factor was used.

The main lobe of the fundamental emission lies entirely within the specified frequency band.


NORTHWEST EMC

FIELD STRENGTH OF FUNDAMENTAL



FIELD STRENGTH OF FUNDAMENTAL

FIELD STRENGTH OF FUNDAMENTAL

FIELD STRENGTH OF SPURIOUS EMISSIONS

PSA 2008.07.2

40 GHz

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

Stop Frequency

MODES OF OPERATION

EMC

Transmitting with pulsed modulated carrier. Pulse Width = 15.3 nS, Pulse Rep = 2 MHz
POWER SETTINGS INVESTIGATED
13.8 VDC
FREQUENCY RANGE INVESTIGATED

SAMPLE CALCULATIONS

Start Frequency

TEAT FALLAND

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

30 MHz

ST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAY	12/11/2008	13
Antenna, Biconilog	EMCO	3141	AXE	1/15/2008	24
Pre-Amplifier	Miteq	AM-1616-1000	AOL	7/10/2009	13
EV01 Cables		Bilog Cables	EVA	7/10/2009	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	7/10/2009	13
Antenna, Horn	EMCO	3115	AHC	8/12/2008	24
EV01 Cables		Double Ridge Horn Cables	EVB	7/10/2009	13
Antenna, Horn	ETS	3160-07	AHU	NCR	0
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	7/10/2009	13
Antenna, Horn	ETS	3160-08	AHV	NCR	0
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	7/10/2009	13
EV01 Cables		Standard Gain Horns Cables	EVF	11/13/2008	16
Antenna, Horn	ETS Lindgren	3160-09	AIV	NCR	0
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AVU	5/19/2009	13
Cable	ESM Cable Corp.	KMKM-72	EVY	11/3/2009	13
Antenna, Horn	ETS	3160-10	AIC	NCR	0
Pre-Amplifier	Miteq	JSW45-26004000-40-5P	AVN	9/30/2009	13
26-40GHz Cable		TTBJ141-KMKM-72	EVX	9/30/2009	13

MEASUREMENT BANDWIDTHS									
Frequency	Range Peak Data	Quasi-Peak Data	Average Data						
(MHz)	(kHz)	(kHz)	(kHz)						
0.01 - 0.	15 1.0	0.2	0.2						
0.15 - 30	.0 10.0	9.0	9.0						
30.0 - 10	00 100.0	120.0	120.0						
Above 10	00 1000.0	N/A	1000.0						
Measurements were made using the bandwidths and detectors specified. No video filter was used.									

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

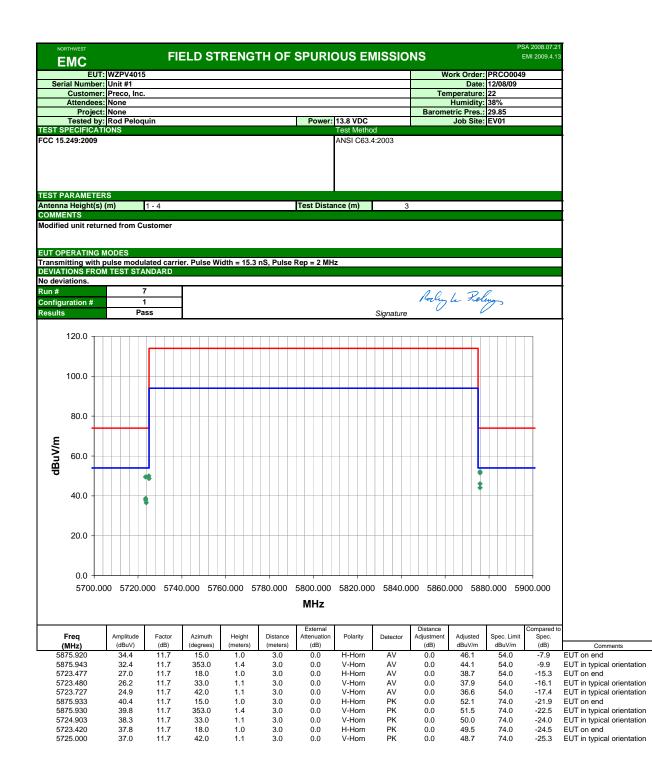
Requirement: The field strength of harmonics and spurious radiated emissions shall comply with the limits as defined in 47 CFR 15.249. Field strength limits are specified at a distance of 3 meters. Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Sec. 15.209, whichever is the lesser attenuated strength of any emission shall not exceed the maximum permitted average limits specified in Sec. 15.249 by more than 20 dB under any condition of modulation.

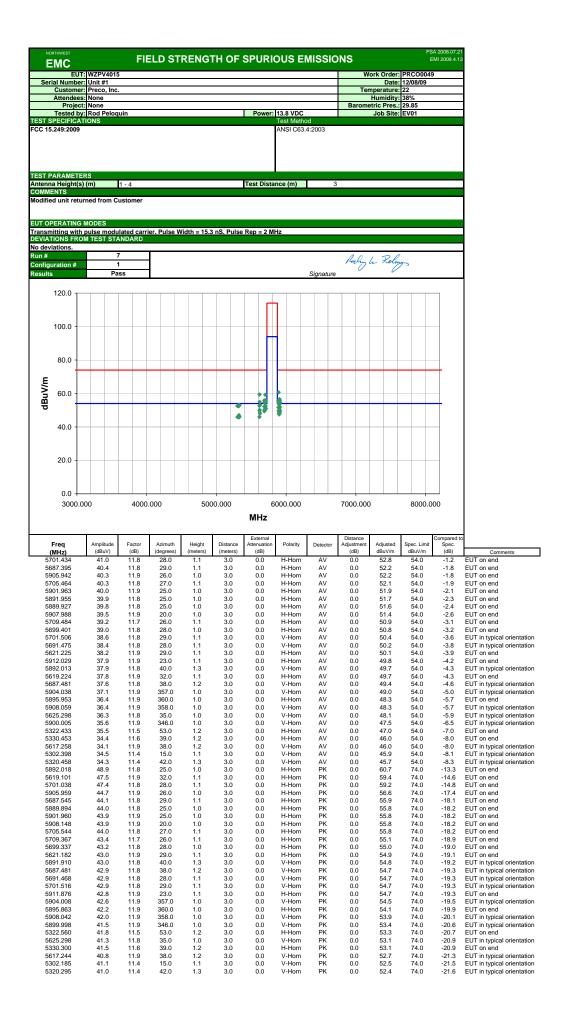
Configuration: The antenna to be used with the EUT was tested. The EUT was configured for continuous modulated operation at its single transmit frequency.

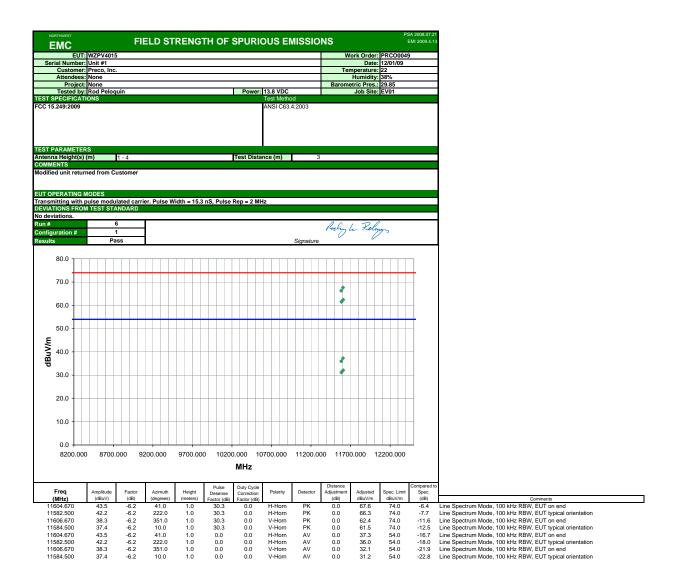
While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003). Preamps were used for this test in order to provide sufficient measurement sensitivity.

Harmonic Emissions

To determine the "true peak level" of harmonic emissions, the measurement procedure described by Andy Leimer of the FCC OET Laboratory (FCC Procedure for Pulsed Signals.txt, dated 11/16/99) was used. Per step (C), if the harmonic emissions are viewed in pulse spectrum Markies...Pulsed the harmonic emissions are measured using analyzer settings as listed in the Hewlett Packard Application Note 150-2 (Spectrum Analysis...Pulsed *RF*, Nov. 1971) such that a true pulse spectrum is obtained (RBW greater than PRF). The video bandwidth should be equal to, or greater than the RBW. The pulse repetition frequency (PRF) of the fundamental emission was measured to be 2 MHz; therefore a 3 MHz resolution bandwidth (RBW) and a 8 MHz video bandwidth (VBW) were used to measure the harmonic emissions. A pulse desensitization factor in dB (calculated from Equation 10 in HP Note 150-2) is added to the measured levels to obtain the "true peak levels". The pulse width was measured to be 15.3 nS; therefore a 23.2 dB pulse desensitization factor was used (k = 1.5, B = 3 MHz).

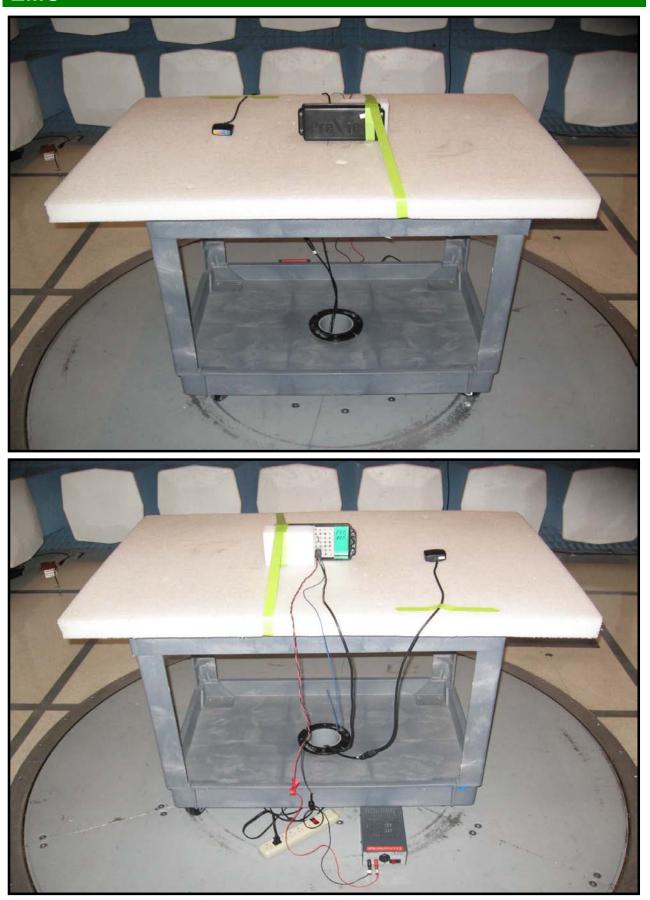

The average levels of the harmonic emissions are the "true peak levels" measured above minus the calculated duty cycle factor in dB. The duty cycle correction factor is calculated from Equation 4 in HP Note 150-2. The pulse width was measured to be 15.3 nS and the PRF = 2 MHz; therefore a 30.3 dB duty cycle correction factor was used.


Spurious Emissions

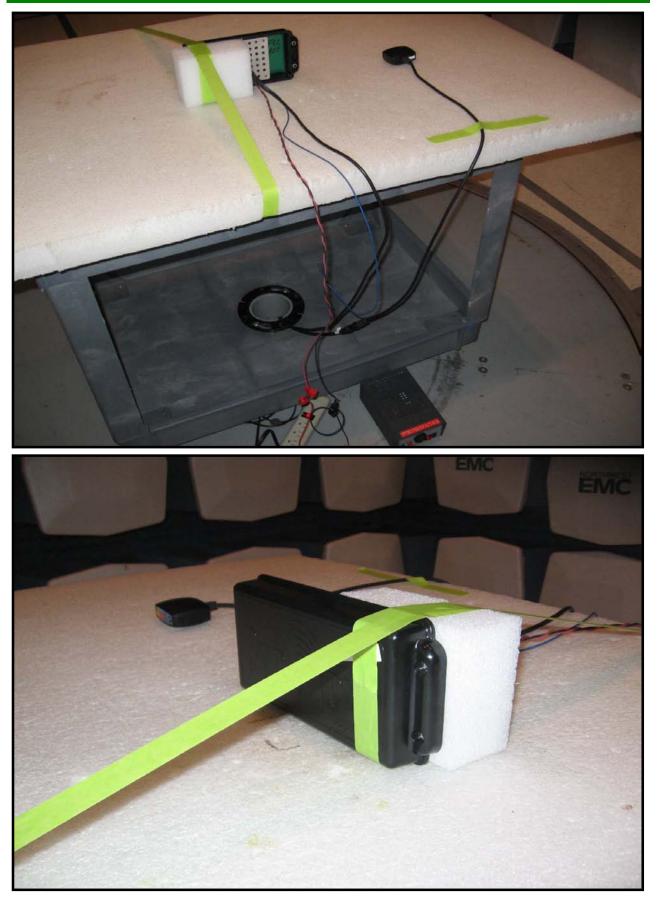

The peak level of spurious emissions were measured with a 1 MHz resolution bandwidth and a 3 MHz video bandwidth. No pulse desensitization factor was added to these levels.

The average level of spurious emissions were measured with a 1 MHz resolution bandwidth and a 10 Hz video bandwidth. No pulse desensitization factor was added to these levels

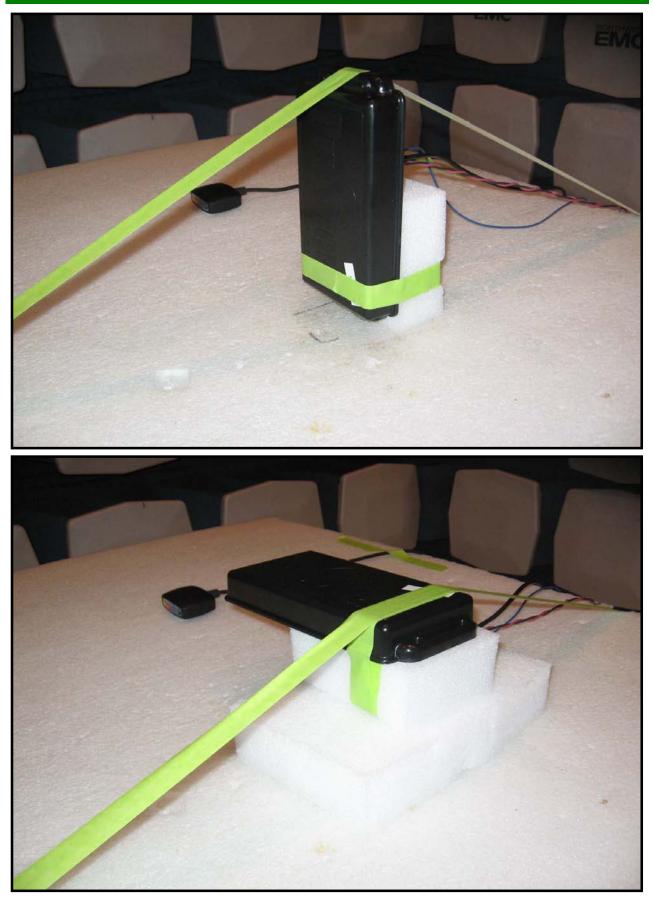
	FIELD STRENGTH OF SPURIOUS EMISSIONS								PSA 2008.07.21				
E	EMC				RENG		SPORIC		13310				EMI 2009.4.13
		WZPV4015								W		PRCO004	9
Se	rial Number:									Terr		12/08/09	
	Attendees:	Preco, Inc. None									nperature: Humidity:		
	Project:										tric Pres.:		
		Rod Peloq	uin				Power:	13.8 VDC			Job Site:	EV01	
	SPECIFICAT	ONS						Test Metho					
FCC 1	5.249:2009							ANSI C63.	4:2003				
TEST	PARAMETER	s											
	na Height(s)		1 - 4				Test Dista	nce (m)	3	}			
сомм	IENTS												
Modifie	ed unit returi	ned from Cu	ustomer										
FUT O	PERATING N												
	nitting with p		lated carri	er. Pulse W	/idth = 15.3	nS. Pulse	Rep = 2 MH	z					
DEVIA	TIONS FROM												
	viations.												
Run #		8								Rocky	. Pelen		
v	uration #	1 Pa							<u>.</u>		0		
Result	S	Pa	55						Signature				
	00.0												
	80.0												
	70.0												_
	60.0												_
	50.0												П
	50.0												
<u>ع</u>													
2	40.0											•	_
dBuV/m											•		
σ												•	
	30.0												-
	20.0												
	20.0												
	10.0												_
	0.0 +												_
	10.000						100.000					10	000.000
MHz													
External Distance Compare								Compared to					
	Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
	(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)	11.01	05	(dB)	dBuV/m	dBuV/m	(dB)
	605.652 597.629	35.5 35.6	8.1 7.9	185.0 195.0	1.5 1.5	3.0 3.0	0.0 0.0	H-Bilog H-Bilog	QP QP	0.0 0.0	43.6 43.5	46.0 46.0	-2.4 -2.5
	613.674	34.8	8.4	184.0	1.5	3.0	0.0	H-Bilog	QP	0.0	43.2	46.0	-2.8
5	581.586	35.6	7.6	185.0	1.5	3.0	0.0	H-Bilog	QP	0.0	43.2	46.0	-2.8
	565.542	35.7	7.2	187.0	1.5	3.0	0.0	H-Bilog	QP	0.0	42.9	46.0	-3.1
	621.695	33.8	8.8	180.0	1.5	3.0	0.0	H-Bilog	QP	0.0	42.6	46.0	-3.4
	573.565 561.532	32.8 29.4	7.4 7.1	232.0 181.0	1.7 1.0	3.0 3.0	0.0 0.0	H-Bilog H-Bilog	QP QP	0.0 0.0	40.2 36.5	46.0 46.0	-5.8 -9.5
	637.740	29.4	8.7	130.0	1.4	3.0	0.0	H-Bilog	QP	0.0	33.6	46.0	-9.5
	589.608	23.5	7.8	177.0	1.0	3.0	0.0	H-Bilog	QP	0.0	31.3	46.0	-14.7
	593.620	21.4	7.8	186.0	1.0	3.0	0.0	H-Bilog	QP	0.0	29.2	46.0	-16.8



NORTHWEST


FIELD STRENGTH OF SPURIOUS EMISSIONS

PSA 2008.07.21


FIELD STRENGTH OF SPURIOUS EMISSIONS

FIELD STRENGTH OF SPURIOUS EMISSIONS

PSA 2008.07.21

