

Preco, Inc. Wireless WorkSight PreView Sensor Model WWS7220 FCC 15.247:2015

Report # PRCO0074.1

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report may only be duplicated in its entirety

Last Date of Test: April 28, 2015 Preco, Inc. Wireless WorkSight PreView Sensor Model WWS7220

Radio Equipment Testing

Standards

Specification	Method
FCC 15.247:2015	ANSI C63.10:2009

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required for vehicle mounted devices.
6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	
6.7	Band Edge Compliance	Yes	Pass	
6.7	Spurious Conducted Emissions	Yes	Pass	
6.9.1	Occupied Bandwidth	Yes	Pass	
6.10.2	Output Power	Yes	Pass	
6.11.2	Power Spectral Density	Yes	Pass	
7.5	Duty Cycle	Yes	N/A	Characterization of radio operation.

Deviations From Test Standards

None

Approved By:

Kyle Holgate, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

REVISION HISTORY

Revision Number		Description	Date	Page Number
00	None			

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission – Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/accreditations/</u> http://gsi.nist.gov/global/docs/cabs/designations.html

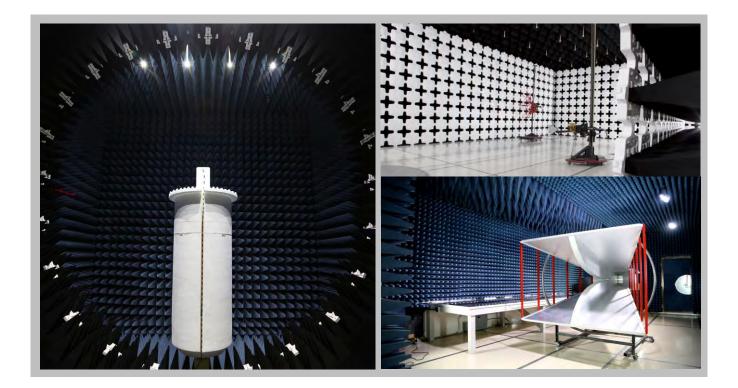
MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error gualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) for each test is on each data sheet. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.


Test	+ MU	<u>- MU</u>
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.9 dB	-2.9 dB

FACILITIES

California Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214	Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 9801 (425)984-6600	
		NV	'LAP			
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0	
	Industry Canada					
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1	
		BS	MI			
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R	
	VCCI					
A-0029	A-0109	N/A	A-0108	A-0201	A-0110	
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	N/A	US0017	US0191	US0157	

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Preco, Inc.
Address:	10355 W Emerald St
City, State, Zip:	Boise, ID 83704-8241
Test Requested By:	John Fadgen
Model:	Wireless WorkSight PreView Sensor Model WWS7220
First Date of Test:	April 27, 2015
Last Date of Test:	April 28, 2015
Receipt Date of Samples:	April 27, 2015
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

'Sensor' unit utilizing a 5.8 GHz pulsed radio for sensing objects and a 2.4 GHz DTS radio for communicating with the LCD display.

Testing Objective:

To demonstrate compliance of the 2.4 GHz ISM radio to FCC 15.247 requirements.

CONFIGURATIONS

Configuration PRCO0074-1

Software/Firmware Running during test			
Description	Version		
Firmware	1.9		
Firmware	1.1		

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
Sensor	Preco, Inc.	WWS7220	10997		

Peripherals in test setup boundary					
Description Manufacturer Model/Part Number Serial Number					
Display	Preco, Inc.	WD7102	3		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC and I/O Cable	No	1.6m	No	DC Power Supply	Display
DC and I/O Cable	No	1.8m	No	DC Power Supply	Cable Adapter
Cable adapter	No	.3m	No	Sensor	DC and I/O Cable

Configuration PRCO0074-2

Software/Firmware Running during test				
Description	Version			
Firmware	1.1			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Sensor	Preco, Inc.	WWS7220	10997

Cables										
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2					
DC and I/O Cable	No	1.8m	No	DC Power Supply	Cable Adapter					
Cable adapter	No	.3m	No	Sensor	DC and I/O Cable					

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	4/27/2015	Spurious Radiated	Tested as delivered to	No EMI suppression devices were added or	EUT remained at Northwest EMC
		Emissions	Test Station.	modified during this test.	following the test.
2	4/28/2015	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
3	4/28/2015	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
4	4/28/2015	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
5	4/28/2015	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
6	4/28/2015	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

EMC

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Continuous Tx, OQPSK

CHANNELS OF OPERATION

CH.11 2405MHz, Low Channel CH.18 2440MHz, Mid Channel CH.25 2480MHz, High Channel

POWER SETTINGS INVESTIGATED

12 VDC

CONFIGURATIONS INVESTIGATED

PRCO0074 - 2

FREQUENCY RANGE INVESTIGATED

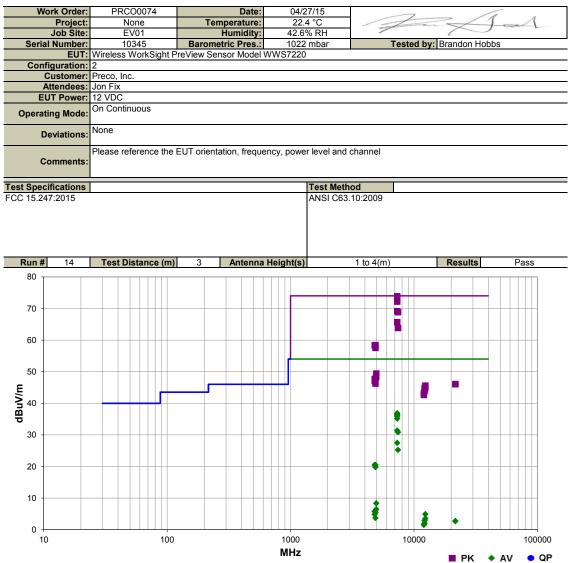
Start Frequency 30 MHz

Stop Frequency 26500 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

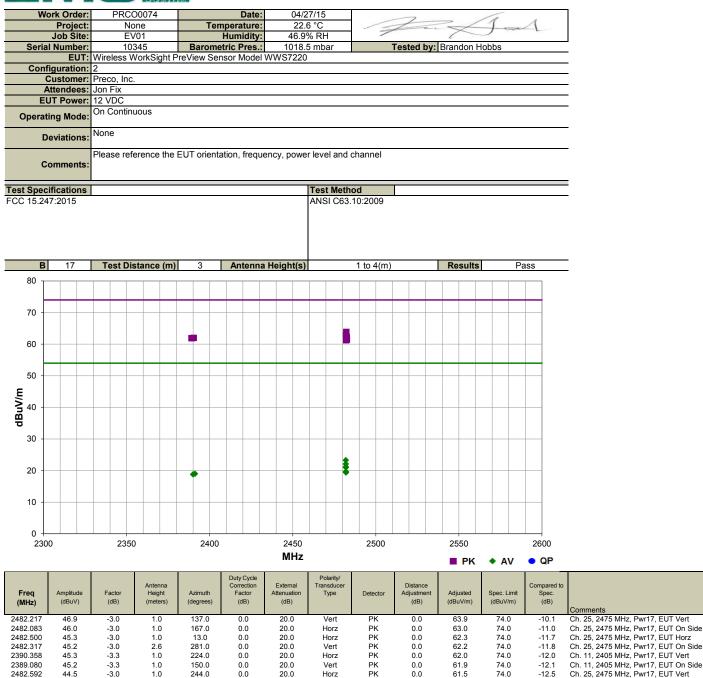
TEST EQUIPMENT


Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator - 20dB, HF	Coaxicom	3910-20	AXZ	6/19/2014	12 mo
(1000MHz - 18000MHz)					
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	4/16/2015	12 mo
Antenna, Horn	ETS	3160-08	AHV	NCR	0 mo
Cable	None	Standard Gain Horns Cable	EVF	4/20/2015	12 mo
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	4/20/2015	12 mo
Antenna, Horn	ETS	3160-07	AHU	NCR	0 mo
Cable	N/A	Double Ridge Horn Cables	EVB	4/16/2015	12 mo
Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	PAG	4/16/2015	12 mo
Antenna, Horn	ETS	3115	AIZ	1/27/2014	24 mo
High Pass Filter, 2.8 - 18 GHz	Micro-Tronics	HPM50111	HFO	3/31/2015	12 mo
Low Pass Filter, 0 - 1000 MHz	Micro-Tronics	LPM50004	LFD	6/18/2014	12 mo
Cable	N/A	Bilog Cables	EVA	2/10/2015	12 mo
Pre-Amplifier	Miteq	AM-1616-1000	AOL	2/10/2015	12 mo
Antenna, Biconilog	EMCO	3141	AXE	8/29/2014	24 mo
Signal Analyzer	Keysight	KT-N9010A	AFN	2/10/2015	12 mo

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization. A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

SPURIOUS RADIATED EMISSIONS



Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
7320.783	58.7	15.2	1.7	137.0	0.0	0.0	Horz	PK	0.0	73.9	74.0	-0.1	Ch.18, 2440 MHz, Pwr19, EUT Horz
7318.042	58.1	15.2	2.2	249.0	0.0	0.0	Horz	PK	0.0	73.3	74.0	-0.7	Ch.18, 2440 MHz, Pwr19, EUT Vert
7318.008	57.9	15.2	1.8	139.0	0.0	0.0	Vert	PK	0.0	73.1	74.0	-0.9	Ch.18, 2440 MHz, Pwr19, EUT Horz
7317.975	57.8	15.2	1.0	53.0	0.0	0.0	Vert	PK	0.0	73.0	74.0	-1.0	Ch.18, 2440 MHz, Pwr19, EUT On Side
7318.358	57.6	15.2	1.0	360.0	0.0	0.0	Horz	PK	0.0	72.8	74.0	-1.2	Ch.18, 2440 MHz, Pwr19, EUT On Side
7318.192	57.0	15.2	1.0	348.0	0.0	0.0	Vert	PK	0.0	72.2	74.0	-1.8	Ch.18, 2440 MHz, Pwr19, EUT Vert
7318.333	54.0	15.2	1.8	136.0	0.0	0.0	Horz	PK	0.0	69.2	74.0	-4.8	Ch.18, 2440 MHz, Pwr17, EUT Horz
7423.275	53.4	15.4	1.9	133.0	0.0	0.0	Horz	PK	0.0	68.8	74.0	-5.2	Ch.25, 2475 MHz, Pwr17, EUT Horz
7321.275	50.5	15.2	1.0	46.0	0.0	0.0	Vert	PK	0.0	65.7	74.0	-8.3	Ch.18, 2440 MHz, Pwr17, EUT On Side
7423.275	48.4	15.4	1.2	49.0	0.0	0.0	Vert	PK	0.0	63.8	74.0	-10.2	Ch. 25, 2475 MHz, Pwr17, EUT On Side
4878.958	51.0	7.4	1.0	37.0	0.0	0.0	Horz	PK	0.0	58.4	74.0	-15.6	Ch.18, 2440 MHz, Pwr19, EUT Horz
4809.225	51.0	7.4	1.1	215.0	0.0	0.0	Vert	PK	0.0	58.4	74.0	-15.6	Ch.11, 2405 MHz, Pwr19, EUT On Side
4878.733	50.1	7.4	1.4	212.0	0.0	0.0	Vert	PK	0.0	57.5	74.0	-16.5	Ch.18, 2440 MHz, Pwr19, EUT On Side
7318.342	53.4	15.2	1.7	137.0	-31.7	0.0	Horz	AV	0.0	36.9	54.0	-17.1	Ch.18, 2440 MHz, Pwr19, EUT Horz
7318.450	53.0	15.2	2.2	249.0	-31.7	0.0	Horz	AV	0.0	36.5	54.0	-17.5	Ch.18, 2440 MHz, Pwr19, EUT Vert
7318.283	52.6	15.2	1.0	53.0	-31.7	0.0	Vert	AV	0.0	36.1	54.0	-17.9	Ch.18, 2440 MHz, Pwr19, EUT On Side
7318.275	52.6	15.2	1.8	139.0	-31.7	0.0	Vert	AV	0.0	36.1	54.0	-17.9	Ch.18, 2440 MHz, Pwr19, EUT Horz
7318.325	52.4	15.2	1.0	360.0	-31.7	0.0	Horz	AV	0.0	35.9	54.0	-18.1	Ch.18, 2440 MHz, Pwr19, EUT On Side
7318.325	51.7	15.2	1.0	348.0	-31.7	0.0	Vert	AV	0.0	35.2	54.0	-18.8	Ch.18, 2440 MHz, Pwr19, EUT Vert
7318.350	47.9	15.2	1.8	136.0	-31.7	0.0	Horz	AV	0.0	31.4	54.0	-22.6	Ch.18, 2440 MHz, Pwr17, EUT Horz
7423.350	47.1	15.4	1.9	133.0	-31.7	0.0	Horz	AV	0.0	30.8	54.0	-23.2	Ch.25, 2475 MHz, Pwr17, EUT Horz
4948.925	41.9	7.5	1.8	34.0	0.0	0.0	Horz	PK	0.0	49.4	74.0	-24.6	Ch. 25, 2475 MHz, Pwr17, EUT Horz
4949.075	40.8	7.5	1.2	212.0	0.0	0.0	Vert	PK	0.0	48.3	74.0	-25.7	Ch. 25, 2475 MHz, Pwr17, EUT On Side
4881.150	40.4	7.4	1.0	212.0	0.0	0.0	Vert	PK	0.0	47.8	74.0	-26.2	Ch.18, 2440 MHz, Pwr17, EUT On Side
4808.975	40.3	7.4	1.0	204.0	0.0	0.0	Horz	PK	0.0	47.7	74.0	-26.3	Ch.11, 2405 MHz, Pwr17, EUT Horz
7321.275	44.0	15.2	1.0	46.0	-31.7	0.0	Vert	AV	0.0	27.5	54.0	-26.5	Ch.18, 2440 MHz, Pwr17, EUT On Side
4809.225	39.7	7.4	2.0	205.0	0.0	0.0	Vert	PK	0.0	47.1	74.0	-26.9	Ch.11, 2405 MHz, Pwr17, EUT On Side
4877.592	38.8	7.4	1.0	48.0	0.0	0.0	Horz	PK	0.0	46.2	74.0	-27.8	Ch.18, 2440 MHz, Pwr17, EUT Horz
21649.430	46.1	0.0	1.2	267.0	0.0	0.0	Horz	PK	0.0	46.1	74.0	-27.9	Ch. 11, 2405 MHz, Pwr17, EUT Horz
21650.690	46.0	0.0	1.2	66.0	0.0	0.0	Vert	PK	0.0	46.0	74.0	-28.0	Ch. 11, 2405 MHz, Pwr17, EUT On Side

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
12377.170	43.8	1.8	1.5	20.0	0.0	0.0	Horz	PK	0.0	45.6	74.0	-28.4	Ch. 25, 2475 MHz, Pwr17, EUT Horz
7423.392	41.5	15.4	1.2	49.0	-31.7	0.0	Vert	AV	0.0	25.2	54.0	-28.8	Ch. 25, 2475 MHz, Pwr17, EUT On Side
12201.760	43.7	1.1	1.0	153.0	0.0	0.0	Vert	PK	0.0	44.8	74.0	-29.2	Ch. 18, 2440 MHz, Pwr17, EUT On Side
12376.800	43.0	1.8	1.0	159.0	0.0	0.0	Vert	PK	0.0	44.8	74.0	-29.2	Ch. 25, 2475 MHz, Pwr17, EUT On Side
12202.380	42.8	1.1	1.5	20.0	0.0	0.0	Horz	PK	0.0	43.9	74.0	-30.1	Ch. 18, 2440 MHz, Pwr17, EUT Horz
12027.030	43.0	0.2	1.0	48.0	0.0	0.0	Vert	PK	0.0	43.2	74.0	-30.8	Ch.11, 2405 MHz, Pwr17, EUT On Side
12027.400	42.4	0.2	1.0	200.0	0.0	0.0	Horz	PK	0.0	42.6	74.0	-31.4	Ch.11, 2405 MHz, Pwr17, EUT Horz
4878.883	44.8	7.4	1.0	37.0	-31.7	0.0	Horz	AV	0.0	20.5	54.0	-33.5	Ch.18, 2440 MHz, Pwr19, EUT Horz
4808.983	44.8	7.4	1.1	215.0	-31.7	0.0	Vert	AV	0.0	20.5	54.0	-33.5	Ch.11, 2405 MHz, Pwr19, EUT On Side
4878.883	44.1	7.4	1.4	212.0	-31.7	0.0	Vert	AV	0.0	19.8	54.0	-34.2	Ch.18, 2440 MHz, Pwr19, EUT On Side
4948.842	32.5	7.5	1.8	34.0	-31.7	0.0	Horz	AV	0.0	8.3	54.0	-45.7	Ch. 25, 2475 MHz, Pwr17, EUT Horz
4950.833	30.6	7.5	1.2	212.0	-31.7	0.0	Vert	AV	0.0	6.4	54.0	-47.6	Ch. 25, 2475 MHz, Pwr17, EUT On Side
4808.908	30.1	7.4	1.0	204.0	-31.7	0.0	Horz	AV	0.0	5.8	54.0	-48.2	Ch.11, 2405 MHz, Pwr17, EUT Horz
4878.808	29.7	7.4	1.0	212.0	-31.7	0.0	Vert	AV	0.0	5.4	54.0	-48.6	Ch.18, 2440 MHz, Pwr17, EUT On Side
12377.110	34.8	1.8	1.5	20.0	-31.7	0.0	Horz	AV	0.0	4.9	54.0	-49.1	Ch. 25, 2475 MHz, Pwr17, EUT Horz
4808.950	29.2	7.4	2.0	205.0	-31.7	0.0	Vert	AV	0.0	4.9	54.0	-49.1	Ch.11, 2405 MHz, Pwr17, EUT On Side
4879.925	28.0	7.4	1.0	48.0	-31.7	0.0	Horz	AV	0.0	3.7	54.0	-50.3	Ch.18, 2440 MHz, Pwr17, EUT Horz
12377.180	33.4	1.8	1.0	159.0	-31.7	0.0	Vert	AV	0.0	3.5	54.0	-50.5	Ch. 25, 2475 MHz, Pwr17, EUT On Side
12202.090	33.4	1.1	1.0	153.0	-31.7	0.0	Vert	AV	0.0	2.8	54.0	-51.2	Ch. 18, 2440 MHz, Pwr17, EUT On Side
21648.550	34.4	0.0	1.2	267.0	-31.7	0.0	Horz	AV	0.0	2.7	54.0	-51.3	Ch. 11, 2405 MHz, Pwr17, EUT Horz
21648.260	34.4	0.0	1.2	66.0	-31.7	0.0	Vert	AV	0.0	2.7	54.0	-51.3	Ch. 11, 2405 MHz, Pwr17, EUT On Side
12202.230	32.6	1.1	1.5	20.0	-31.7	0.0	Horz	AV	0.0	2.0	54.0	-52.0	Ch. 18, 2440 MHz, Pwr17, EUT Horz
12027.280	33.0	0.2	1.0	48.0	-31.7	0.0	Vert	AV	0.0	1.5	54.0	-52.5	Ch.11, 2405 MHz, Pwr17, EUT On Side
12027.210	30.9	0.2	1.0	200.0	-31.7	0.0	Horz	AV	0.0	-0.6	54.0	-54.6	Ch.11, 2405 MHz, Pwr17, EUT Horz

SPURIOUS RADIATED EMISSIONS

1.0

1.0

1.0

1.0

2.6 1.0

1.0

1.0

1.0

1.0

337.0

137.0

167.0

281.0

13.0

337.0

244.0

224.0

150.0

2482.133

2482.000

2482.000

2482 000

2482.033

2482.025

2482.075

2391.175

2389.990

44.3

38.0

36.8

35.9

35.7

34.4

34.1

34.0

33.8

-3.0

-3.0

-3.0

-3.0

-3.0

-3.0

-3.0

-3.3

-3.3

0.0

0.0

-31.7

-31.7

-31.7

-31.7

-31.7

-31.7

-31.7

-31.7

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

Vert

Vert

Horz

Vert

Horz

Vert

Horz

Horz

Vert

PK AV

AV AV AV

AV

AV AV

AV

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

61.3

23.3

22.1

21.2

21.0

19.7

19.4

19.0

18.8

74.0

54.0

54.0

54.0

54.0

54.0

54.0

54.0

54.0

-12.5

-12.7

-30.7

-31.9

-32.8

-33.0

-34.3

-34.6

-35.0

-35.2

Ch. 25, 2475 MHz, Pwr17, EUT Horz Ch. 25, 2475 MHz, Pwr17, EUT Vert

Ch. 25, 2475 MHz, Pwr17, EUT On Side

Ch. 25, 2475 MHz, Pwr17, EUT On Side

Ch. 11, 2405 MHz, Pwr17, EUT On Side

Ch. 25, 2475 MHz, Pwr17, EUT Horz

Ch. 25, 2475 MHz, Pwr17, EUT Horz

Ch. 25, 2475 MHz, Pwr17, EUT Vert

Ch. 11, 2405 MHz, Pwr17, EUT Vert

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

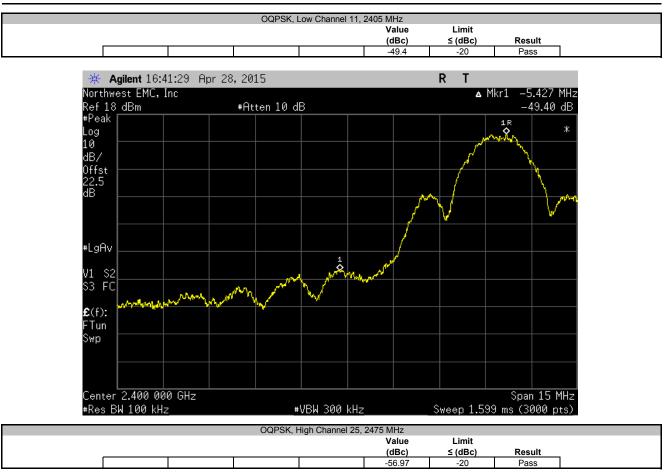
TEST EQUIPMENT

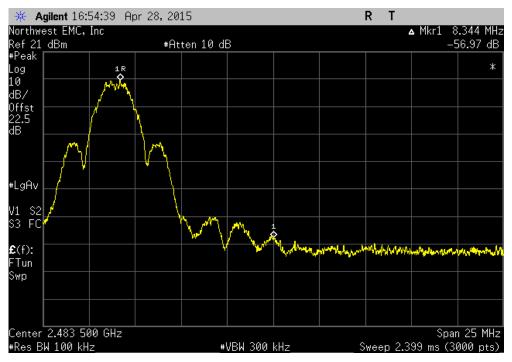
					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo)
Signal Generator	Keysight	N5182B	TFX	4/16/2015	36
Attenuator	S.M. Electronics	SA26B-20	AWU	NCR	0
DC Block, 40 GHz	Fairview Microwave	SD3379	AMK	12/11/2014	12
DC Power Supply	Topward	TPS-2000	TPD	NCR	0
Power Meter	Gigatronics	8651A	SPM	9/17/2014	12
Power Sensor	Gigatronics	80701A	SPL	5/28/2014	12
Spectrum Analyzer	Agilent	E4446A	AAQ	3/10/2015	12

TEST DESCRIPTION

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.


BAND EDGE COMPLIANCE

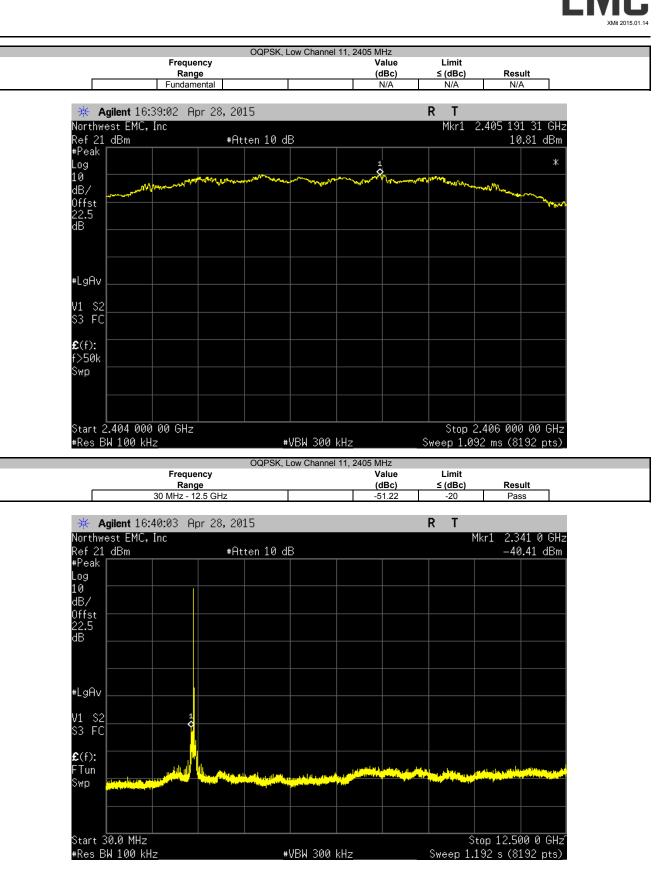


EUT	Wireless WorkSight PreView Sensor Model WWS7220		Work Order:	PRC00074	
Serial Number	: 10997		Date:	04/28/15	
Customer	Preco, Inc.		Temperature:	22.3°C	
Attendees	Jon Fix	Humidity:	41%		
Project	None	Barometric Pres.:	1024 mbar		
Tested by	Brandon Hobbs	Job Site:	EV06		
TEST SPECIFICAT	IONS	Test Method			
FCC 15.247:2015		ANSI C63.10:2009			
COMMENTS					
The EUT was runr	ing at 100% duty cycle.				
DEVIATIONS FRO	M TEST STANDARD				
None					
Configuration #	1 Signature	2 Jal			
			Value (dBc)	Limit ≤ (dBc)	Result
OQPSK					
	Low Channel 11, 2405 MHz		-49.4	-20	Pass
	High Channel 25, 2475 MHz		-56.97	-20	Pass

BAND EDGE COMPLIANCE

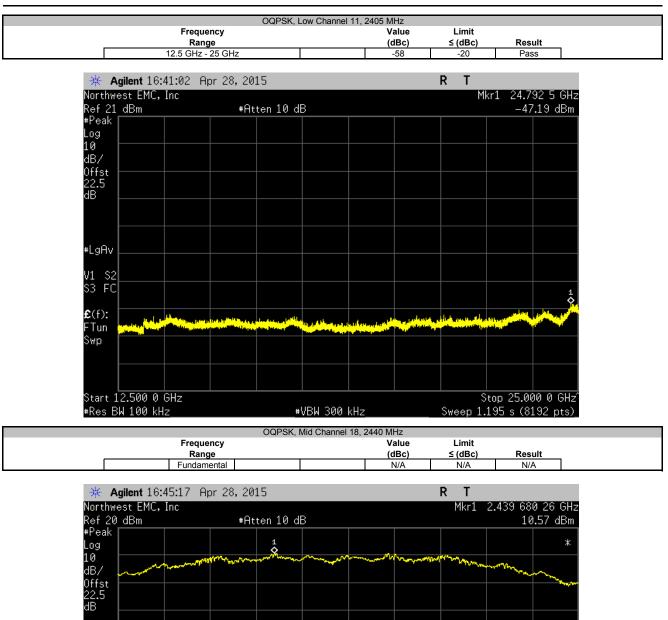
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

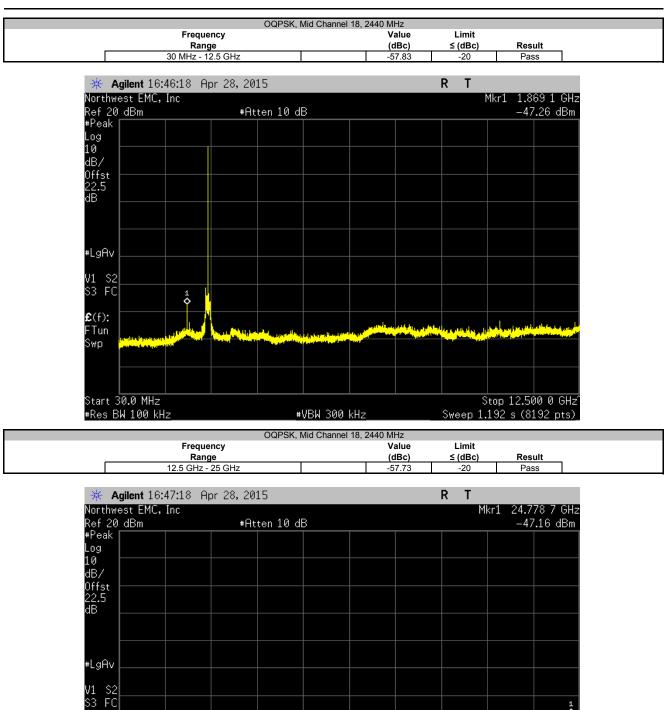

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo)
Signal Generator	Keysight	N5182B	TFX	4/16/2015	36
Attenuator	S.M. Electronics	SA26B-20	AWU	NCR	0
DC Block, 40 GHz	Fairview Microwave	SD3379	AMK	12/11/2014	12
DC Power Supply	Topward	TPS-2000	TPD	NCR	0
Power Meter	Gigatronics	8651A	SPM	9/17/2014	12
Power Sensor	Gigatronics	80701A	SPL	5/28/2014	12
Spectrum Analyzer	Agilent	E4446A	AAQ	3/10/2015	12

TEST DESCRIPTION

The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.



EUT:	Wireless WorkSight PreV	iew Sensor Model WWS7220			Work Order:	PRC00074	
Serial Number:					Date:	04/28/15	
Customer:	Preco, Inc.				Temperature:	22.3°C	
Attendees:	Jon Fix				Humidity: 41%		
Project:	None				Barometric Pres.:		
	Brandon Hobbs		Power: 12 VDC Test Method		Job Site:	EV06	
EST SPECIFICATIO	ONS						
CC 15.247:2015			ANSI C63.10:2009				
OMMENTS							
he EUT was runnin	ng at 100% duty cycle.						
	I TEST STANDARD						
EVIATIONS FROM	I TEST STANDARD						
	1 TEST STANDARD		1 And				
lone	I TEST STANDARD	Signature	Ja Jan	-			
lone	I TEST STANDARD	Signature	Frequency		Value	Limit	
lone	I TEST STANDARD	Signature	7 2 1	-	Value (dBc)	Limit ≤ (dBc)	Result
ione configuration # DQPSK	1	ž	Frequency Range	-	(dBc)	≤ (dBc)	
Configuration #	1 Low Channel 11, 2405 MH	z	Frequency Range Fundamental		(dBc) N/A	≤ (dBc) N/A	N/A
lone Configuration # DQPSK	1 Low Channel 11, 2405 MH Low Channel 11, 2405 MH	2 Z Z	Frequency Range Fundamental 30 MHz - 12.5 GHz		(dBc) N/A -51.22	≤ (dBc) N/A -20	N/A Pass
ione configuration # DQPSK	1 Low Channel 11, 2405 MH Low Channel 11, 2405 MH Low Channel 11, 2405 MH	z z z	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz		(dBc) N/A -51.22 -58	≤ (dBc) N/A -20 -20	N/A Pass Pass
lone configuration # DQPSK	1 Low Channel 11, 2405 MH Low Channel 11, 2405 MH Low Channel 11, 2405 MH Mid Channel 18, 2440 MH	z z z	Frequency Range Fundamental 30 MHz - 12.5 GHz		(dBc) N/A -51.22 -58 N/A	≤ (dBc) N/A -20 -20 N/A	N/A Pass
lone configuration # DQPSK	1 Low Channel 11, 2405 MH Low Channel 11, 2405 MH Low Channel 11, 2405 MH	z z z	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz		(dBc) N/A -51.22 -58	≤ (dBc) N/A -20 -20	N/A Pass Pass
ione configuration # DQPSK	1 Low Channel 11, 2405 MH Low Channel 11, 2405 MH Low Channel 11, 2405 MH Mid Channel 18, 2440 MH	2 Z Z Z Z	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental		(dBc) N/A -51.22 -58 N/A	≤ (dBc) N/A -20 -20 N/A	N/A Pass Pass N/A
lone configuration # DQPSK	1 Low Channel 11, 2405 MH Low Channel 11, 2405 MH Low Channel 11, 2405 MH Mid Channel 18, 2440 MH Mid Channel 18, 2440 MH Mid Channel 18, 2440 MH	z z z z z	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.6 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz		(dBc) N/A -51.22 -58 N/A -57.83	≤ (dBc) N/A -20 -20 N/A -20	N/A Pass Pass N/A Pass
lone configuration # DQPSK	1 Low Channel 11, 2405 MH Low Channel 11, 2405 MH Low Channel 11, 2405 MH Mid Channel 18, 2440 MH3 Mid Channel 18, 2440 MH3	z z z z z z z z	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz		(dBc) N/A -51.22 -58 N/A -57.83 -57.73	≤ (dBc) N/A -20 -20 N/A -20 -20 -20	N/A Pass Pass N/A Pass Pass


NORTHWEST

dB/	a starter		a the stand of the				and and an and a second se	and the second		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Offst 22.5 dB										
#LgAv										
V1 S2										
S3 FC										
£ (f): f>50k Sum										
Ѕพр										
	.439 000						0		2.441 000	
#Kes B	W 100 kH	Ζ		#1	VBW 300	KHZ	>	weep 1.0	92 ms (81	loz pts)_

an sila

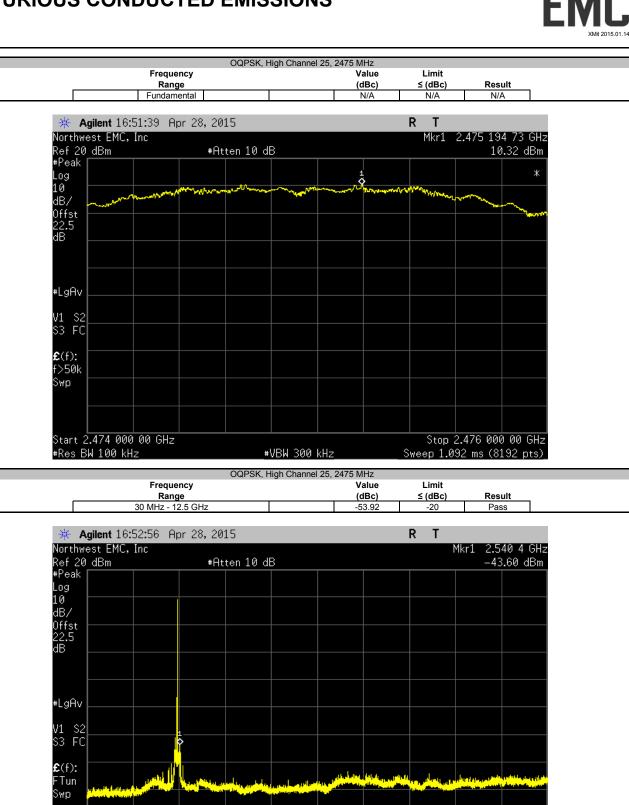
. . . here....

Labora

Stop 25.000 0 GHz

Sweep 1.195 s (8192 pts)

and the second second


#VBW 300 kHz

£(f):

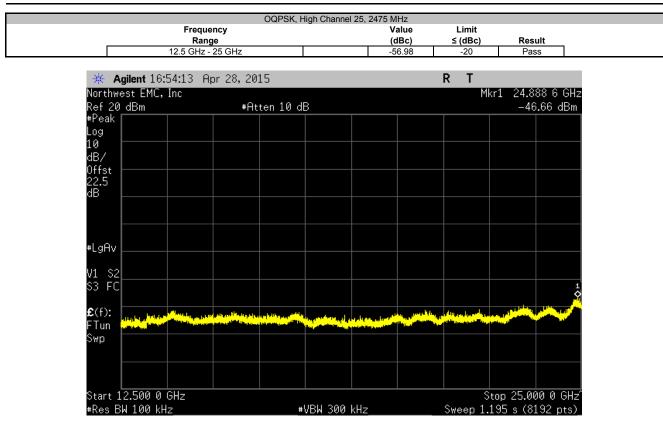
FTun Swp dilla, Milde

Start 12.500 0 GHz

#Res BW 100 kHz

#VBW 300 kHz

Start 3<mark>0.0 MH</mark>z


#Res BW 100 kHz

Stop 12.500 0 GHz

Sweep 1.192 s (8192 pts)

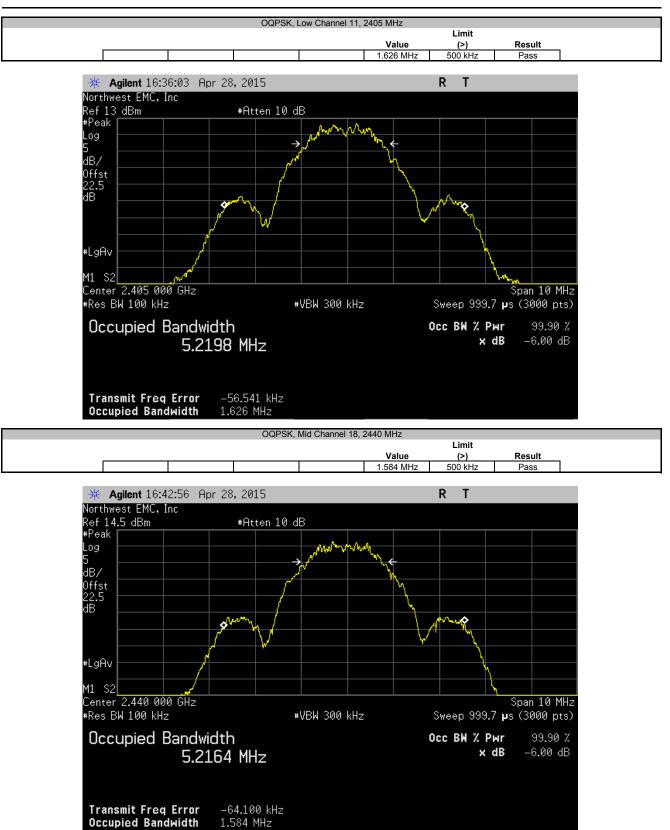
NORTHWEST

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

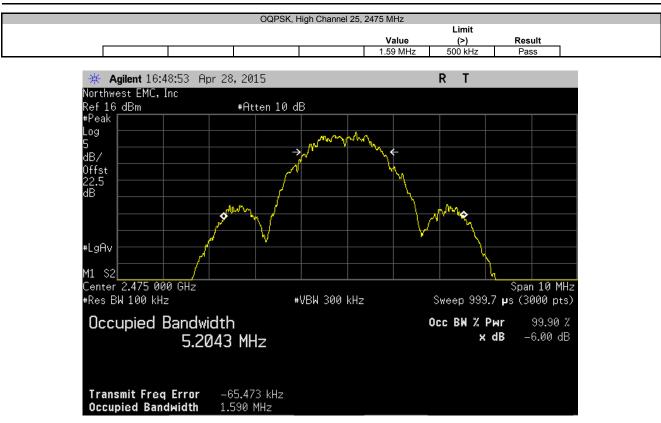
TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo)
Signal Generator	Keysight	N5182B	TFX	4/16/2015	36
Attenuator	S.M. Electronics	SA26B-20	AWU	NCR	0
DC Block, 40 GHz	Fairview Microwave	SD3379	AMK	12/11/2014	12
DC Power Supply	Topward	TPS-2000	TPD	NCR	0
Power Meter	Gigatronics	8651A	SPM	9/17/2014	12
Power Sensor	Gigatronics	80701A	SPL	5/28/2014	12
Spectrum Analyzer	Agilent	E4446A	AAQ	3/10/2015	12

TEST DESCRIPTION


The 6dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The 99.9% (approximate 26 dB) emission bandwidth (EBW) was also measured at the same time.

The EUT was set to the channels and modes listed in the datasheet. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer.



-						
EUT	Wireless WorkSight Pre	/iew Sensor Model WWS7220		Work Order:	PRC00074	
Serial Number	r: 10997				04/28/15	
Customer	r: Preco, Inc.			Temperature:	22.3°C	
Attendees	Jon Fix		Humidity:			
Project	t: None		Barometric Pres.:	1024 mbar		
Tested by	: Brandon Hobbs		Job Site:	EV06		
TEST SPECIFICA	TIONS					
FCC 15.247:2015			ANSI C63.10:2009			
COMMENTS						
The EUT was run	ning at 100% duty cycle.					
DEVIATIONS FRO	OM TEST STANDARD					
None						
Configuration #	1	Signature	2 Jal			
					Limit	
				Value	(>)	Result
OQPSK						
	Low Channel 11, 2405 MH	z		1.626 MHz	500 kHz	Pass
	Mid Channel 18, 2440 MH	Z		1.584 MHz	500 kHz	Pass
	High Channel 25, 2475 MH	Ηz		1.59 MHz	500 kHz	Pass

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo)
Signal Generator	Keysight	N5182B	TFX	4/16/2015	36
DC Block, 40 GHz	Fairview Microwave	SD3379	AMK	12/11/2014	12
DC Power Supply	Topward	TPS-2000	TPD	NCR	0
Attenuator	S.M. Electronics	SA26B-20	AWU	NCR	0
Power Meter	Gigatronics	8651A	SPM	9/17/2014	12
Power Sensor	Gigatronics	80701A	SPL	5/28/2014	12
Spectrum Analyzer	Agilent	E4446A	AAQ	3/10/2015	12

TEST DESCRIPTION

The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input.

Prior to measuring peak transmit power the DTS bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Maximum Conducted Output Power. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.

The method found in KDB 558074 DTS D01 Measurement Section 9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36 dBm.

EUT:	Wireless WorkSight PreView Sensor Model WWS7220		Work Order:	PRC00074	
Serial Number:	10997		Date:	04/28/15	
Customer:	Preco, Inc.		Temperature:	22.3°C	
Attendees:	Jon Fix		Humidity:		
Project:	None		Barometric Pres.:	1024 mbar	
Tested by:	Brandon Hobbs	Power: 12 VDC	Job Site:	EV06	
TEST SPECIFICAT	IONS	Test Method			
FCC 15.247:2015		ANSI C63.10:2009			
COMMENTS					
	ing at 100% duty cycle.				
	I IEST STANDARD				
None		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
Configuration #	1 Signature	2nd Jak			
				Limit	
			Value	(<)	Result
OQPSK					
	Low Channel 11, 2405 MHz		31.34 mW	1 W	Pass
	Mid Channel 18, 2440 MHz		27.631 mW	1 W	Pass
	High Channel 25, 2475 MHz		25.71 mW	1 W	Pass

	OQPSK,	Low Channel 1	1, 2405 MHz	Limit	
· · · · · · · · · · · · · · · · · · ·			Value 31.34 mV	(<)	Result
			31.34 111	V IVV	Pass
	pr 28, 2015			RT	
Northwest EMC, Inc		10		Mk	r1 2.404 734 GH
Ref 150 mW #Peak	#Atten 10 d	ц П			31.34 mW
Log					
5 dB/		↓ ♦			
Offst					
22.5					
dB					
#LgAv					
M1 S2					
\$3 F\$					
£(f):					
FTun					
Swp					
Center 2.405 000 GHz					Span 3 MHz
#Res BW 3 MHz		#VBW 8 MH:		#Sweep 3.2	:63 ms (1000 pts)
	OQPSK,	Mid Channel 1			
			5, 2440 101112	Limit	
[]			Value	(<)	Result Pass
				(<) W 1 W	Result Pass
★ Agilent 16:43:32 A			Value	(<) W 1 W R T	Pass
Northwest EMC, Inc	pr 28, 2015		Value	(<) W 1 W R T	Pass 2.439 535 8 GH
Northwest EMC, Inc Ref 100 mW #Peak	pr 28, 2015 #Atten 10 <		Value	(<) W 1 W R T	Pass
Northwest EMC, Inc Ref 100 mW	pr 28, 2015		Value	(<) W 1 W R T	Pass 2.439 535 8 GH
Northwest EMC, Inc Ref 100 mW #Peak Log 5 dB/	pr 28, 2015 #Atten 10 <		Value	(<) W 1 W R T	Pass 2.439 535 8 GH
Northwest EMC, Inc Ref 100 mW #Peak Log 5 dB/ 0ffst	pr 28, 2015 #Atten 10 <		Value	(<) W 1 W R T	Pass 2.439 535 8 GH
Northwest EMC, Inc Ref 100 mW #Peak Log 5 dB/	pr 28, 2015 #Atten 10 <		Value	(<) W 1 W R T	Pass 2.439 535 8 GH
Northwest EMC, Inc Ref 100 mW #Peak Log 5 dB/ 0ffst	pr 28, 2015 #Atten 10 <		Value	(<) W 1 W R T	Pass 2.439 535 8 GH
Northwest EMC, Inc Ref 100 mW #Peak Log 5 dB/ 0ffst	pr 28, 2015 #Atten 10 <		Value	(<) W 1 W R T	Pass 2.439 535 8 GH
Northwest EMC, Inc Ref 100 mW #Peak Log 5 dB/ 0ffst	pr 28, 2015 #Atten 10 <		Value	(<) W 1 W R T	Pass 2.439 535 8 GH
Northwest EMC, Inc Ref 100 mW #Peak 5 dB/ Offst 22.5 dB #LgAv	pr 28, 2015 #Atten 10 <		Value	(<) W 1 W R T	Pass 2.439 535 8 GH
Northwest EMC, Inc Ref 100 mW #Peak 5 dB/ Offst 22.5 dB #LgAv	pr 28, 2015 #Atten 10 <		Value	(<) W 1 W R T	Pass 2.439 535 8 GH
Northwest EMC, Inc Ref 100 mW #Peak 5 dB/ Offst 22.5 dB #LgAv M1 S2 S3 FS	pr 28, 2015 #Atten 10 <		Value	(<) W 1 W R T	Pass 2.439 535 8 GH
Northwest EMC, Inc Ref 100 mW #Peak Log 5 dB/ Offst 22.5 dB #LgAv M1 S2 S3 FS £(f):	pr 28, 2015 #Atten 10 <		Value	(<) W 1 W R T	Pass 2.439 535 8 GH
Northwest EMC, Inc Ref 100 mW #Peak 5 dB/ Offst 22.5 dB #LgAv M1 S2 S3 FS	pr 28, 2015 #Atten 10 <		Value	(<) W 1 W R T	Pass 2.439 535 8 GH
Northwest EMC, Inc Ref 100 mW #Peak Log 5 dB/ Offst 22.5 dB #LgAv M1 S2 S3 FS £(f): FTun	pr 28, 2015 #Atten 10 <		Value	(<) W 1 W R T	Pass 2.439 535 8 GH
Northwest EMC, Inc Ref 100 mW #Peak Log 5 dB/ Offst 22.5 dB #LgAv M1 S2 S3 FS £(f): FTun	pr 28, 2015 #Atten 10 <		Value	(<) W 1 W R T	Pass 2.439 535 8 GH
Northwest EMC, Inc Ref 100 mW #Peak Log 5 dB/ Offst 22.5 dB #LgAv M1 S2 S3 FS £(f): FTun	pr 28, 2015 #Atten 10 <		Value	(<) W 1 W R T	Pass 2.439 535 8 GH

		hannel 25, 2475 MHz	Limit	
		Value	(<)	Result
		25.71 mW	1 W	Pass
🔆 Agilent 16:49:36	Apr 28, 2015		RT	
Northwest EMC, Inc			Mkr1 2	2.474 473 2 GH:
Ref 100 mW	#Atten 10 dB			25.71 mW
#Peak				
Log 5				
dB/				
Offst 22.5				
22.5 dB				
۵D				
#LgAv				
uu oo				
M1 S2 S3 FS				
55 15				
£ (f):				
FTun				
Swp				
Center 2.475 000 0 G				Span 2.5 MHz

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo)
Signal Generator	Keysight	N5182B	TFX	4/16/2015	36
Attenuator	S.M. Electronics	SA26B-20	AWU	NCR	0
DC Block, 40 GHz	Fairview Microwave	SD3379	AMK	12/11/2014	12
DC Power Supply	Topward	TPS-2000	TPD	NCR	0
Power Sensor	Gigatronics	80701A	SPL	5/28/2014	12
Power Meter	Gigatronics	8651A	SPM	9/17/2014	12
Spectrum Analyzer	Agilent	E4446A	AAQ	3/10/2015	12

TEST DESCRIPTION

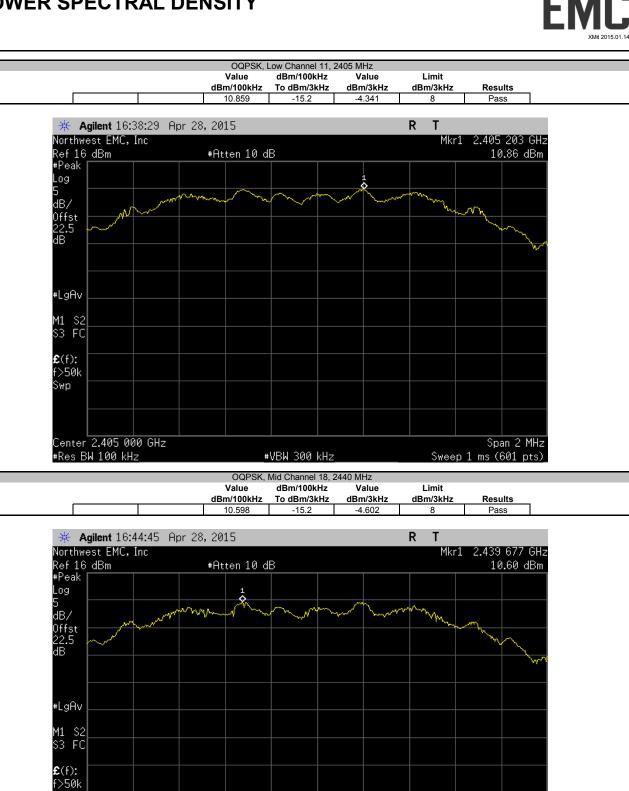
The maximum power spectral density measurements were measured with the EUT set to the required transmit frequencies in each band. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the lowest, middle, and maximum data rate for each modulation type available.

Per the procedure outlined in FCC KDB 558074 D01 DTS Measurement Section 5.3.1, the spectrum analyzer was used as follows:

≻RBW = 100 kHz

≻VBW = 300 kHz

>Detector = Peak (to match method used for power measurement)


≻Trace = Max hold

The observed power level is then scaled to an equivalent value in 3 kHz by adding a Bandwidth Correction Factor (BWCF) where:

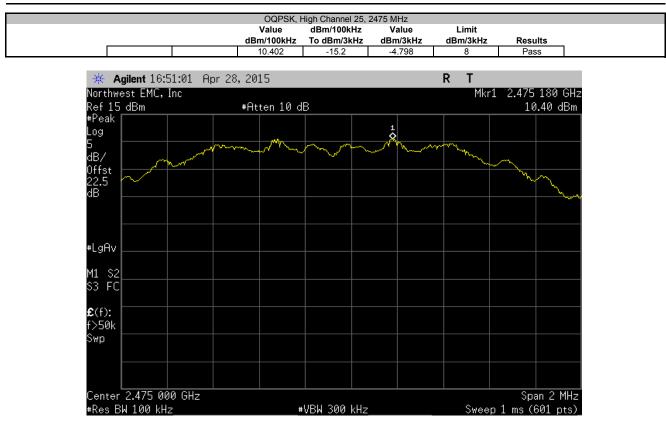
BWCF = 10*LOG (3 kHz / 100 kHz) = -15.2 dB

EUT:	Wireless WorkSight PreVie	ew Sensor Model WWS7220				Work Order:	PRC00074	
Serial Number:	10997					Date:	04/28/15	
Customer:	Preco, Inc.					Temperature:	22.3°C	
Attendees:	Jon Fix					Humidity:	41%	
Project:						Barometric Pres.:		
	Brandon Hobbs		Power: 12 VDC			Job Site:	EV06	
TEST SPECIFICATI	IONS		Test Method					
FCC 15.247:2015			ANSI C63.10:2009					
COMMENTS								
DEVIATIONS FROM	M TEST STANDARD							
	1 TEST STANDARD	Signature	Ja Jan					
None Configuration #	1 TEST STANDARD	Signature	Judjar	Value dBm/100kHz	dBm/100kHz To dBm/3kHz	Value dBm/3kHz	Limit dBm/3kHz	Results
None Configuration # DQPSK	1	Č.	Judan	dBm/100kHz	To dBm/3kHz	dBm/3kHz	dBm/3kHz	
None Configuration # DQPSK	I TEST STANDARD	2	J. J.					Results Pass Pass

#VBW 300 kHz

Swp

Center 2.440 000 GHz


#Res BW 100 kHz

Span 2 MHz

Sweep 1 ms (601 pts)

NORTHWEST

DUTY CYCLE

TEST DESCRIPTION

The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used

The test software provided for operation in a fixed, single channel mode allows the EUT to operate continuously at 100% Duty Cycle.