Exhibit M: Spurious Radiated Emissions

FCC ID: OXZSTDPREVIEW

Harmonics and Spurious Radiated Emissions

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Single
Operating Modes Investigated:
Typical
Antennas Investigated:
Integral Antenna
Data Rates Investigated:
Maximum
Output Power Setting(s) Investigated:
Maximum
Power Input Settings Investigated:
12 Vdc

Frequency Range In	vestigated		
Start Frequency	30 MHz	Stop Frequency	40 GHz

Software\Firmware A	Software\Firmware Applied During Test										
Exercise software	Standard Production Software	Version	Unknown								
Description											
The system was tested us device during the testing.	ing standard operating proc	luction software to exercise	the functions of the								

Equipment Modifications

The following modifications were made to achieve compliance: A ferrite bead was added to the sensor cable.

EUT and Peripherals

Description	Manufacturer	Model/Part Number	Serial Number
EUT	Preco, Inc.	SPV 2020	none
Display Unit	Preco, Inc.	Preview	none
DC Supply	Hewlett Packard	6654A	TPC

Cables

Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Sensor	PA	0.9	Yes	EUT	Display Cable
Display	PA	8.5m	No	Display Unit	Sensor Cable
DC Leads	No	1.2	No	DC supply	Sensor Cable

PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.

Measurement Equipment

Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	03/19/2002	12 mo
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	03/19/2002	12 mo
Antenna, Biconilog	EMCO	3141	AXE	12/31/2001	36 mo
Pre-Amplifier	Amplifier Research	LN1000A	APS	12/03/2001	14 mo
Antenna, Horn	EMCO	3115	AHC	08/12/2002	12 mo
Pre-Amplifier	Miteq	AMF-4D-010120-30-10P	AOP	07/09/2002	12 mo
Spectrum Analyzer	Tektronix	2784	AAO	03/08/2001	24 mo
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APC	07/09/2002	12 mo
High Pass Filter	K&L Microwave	1WP01-15000/E6000-O/	HFJ	08/09/2002	12 mo
Antenna, Horn	EMCO	3160-09	AHG	01/15/2000	36 mo
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	01/17/2000	36 mo
Antenna, Horn	EMCO	3160-10	AHI	01/15/2000	36 mo
Pre-Amplifier Miteq		JS4-26004000-40-SP	APV	06/26/2000	36 mo
DC Power Supply	Topward	TPS-2000	TPD	NCR	N/A

Test Description

Requirement: The field strength of harmonics and spurious radiated emissions shall comply with the limits as defined in 47 CFR 15.249. Field strength limits are specified at a distance of 3 meters. Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Sec. 15.209, whichever is the lesser attenuation. As shown in Sec. 15.35(b), for frequencies above 1000 MHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified in Sec. 15.249 by more than 20 dB under any condition of modulation.

<u>Configuration</u>: The antenna to be used with the EUT was tested. The EUT was configured for continuous modulated operation at its single transmit frequency.

While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:1992). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

Harmonic Emissions – Pulse Spectrum Mode

To determine the "true peak level" of harmonic emissions, the measurement procedure described by Andy Leimer of the FCC OET Laboratory (FCC Procedure for Pulsed Signals.txt, dated 11/16/99) was used. Per step (C), if the harmonic emissions are viewed in pulse spectrum mode, the level of the harmonic emissions are measured using analyzer settings as listed in the Hewlett Packard Application

Harmonics and Spurious Radiated Emissions

Note 150-2 (*Spectrum Analysis…Pulsed RF*, Nov. 1971) such that a true pulse spectrum is obtained (RBW greater than PRF). The video bandwidth should be equal to, or greater than the RBW. The pulse repetition frequency (PRF) of the fundamental emission was measured to be 2.78 MHz; therefore a 3 MHz resolution bandwidth (RBW) and a 7 MHz video bandwidth (VBW) were used to measure the harmonic emissions. A pulse desensitization factor in dB (calculated from Equation 10 in HP Note 150-2) is added to the measured levels to obtain the "true peak levels". The pulse width was measured to be 14.1 nS; therefore a 24 dB pulse desensitization factor was used (k = 1.5, B = 3 MHz).

The average levels of the harmonic emissions are the "true peak levels" measured above minus the calculated duty cycle factor in dB. The duty cycle correction factor is calculated from Equation 4 in HP Note 150-2. The pulse width was measured to be 14.1 nS and the PRF = 2.78 MHz; therefore a 28 dB duty cycle correction factor was used.

Harmonic Emissions - Line Spectrum Mode

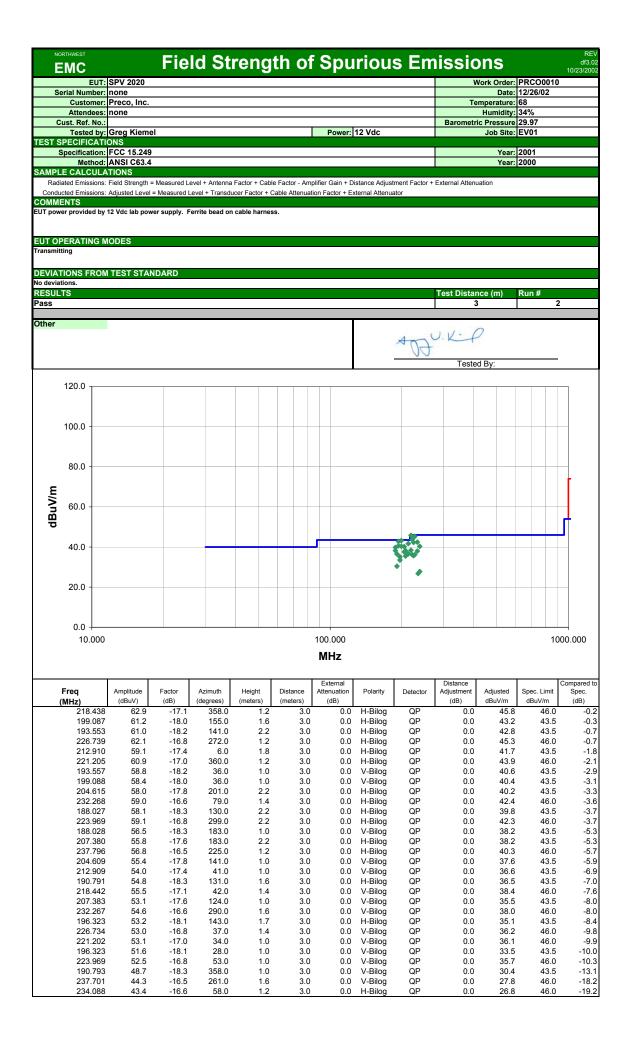
Unless otherwise noted on the data, all the measurements of harmonic emissions were made in Pulse Spectrum Mode. If a measurement was made in Line Spectrum Mode, it would have been made in the following manner:

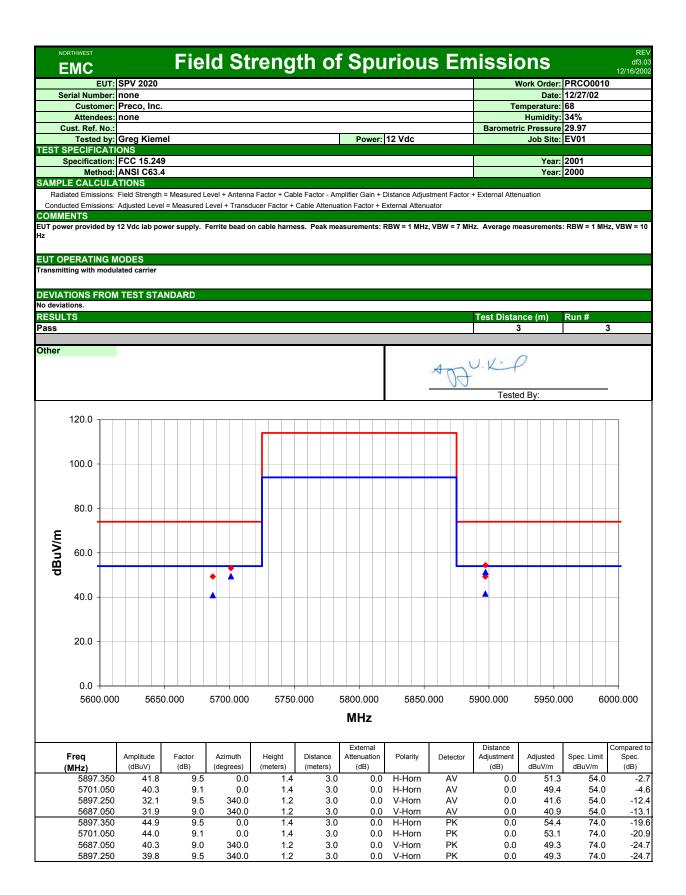
To determine the "true peak level" of harmonic emissions, the measurement procedure described by Andy Leimer of the FCC OET Laboratory (FCC Procedure for Pulsed Signals.txt, dated 11/16/99) was used. Per step (b), if a harmonic emission is viewed in line spectrum mode (HP Note 150-2), the average level of the harmonic emission equals the level of the line spectra at the center frequency of the emission. No pulse desensitization factor is added to this level. The resolution bandwidth should be chosen such that the individual line spectra are clearly resolved (RBW less than or equal to 0.3 * PRF).

The peak levels of the harmonic emissions are the average levels measured above, plus the pulse desensitization factor in dB (20*log(duty cycle)).

Spurious Emissions above 1 GHz

The peak level of spurious emissions were measured with a 1 MHz resolution bandwidth and a 3 MHz video bandwidth. No pulse desensitization factor was added to these levels.


The average level of spurious emissions were measured with a 1 MHz resolution bandwidth and a 10 Hz video bandwidth. No pulse desensitization factor was added to these levels


Spurious Emissions below 1 GHz

The quasi-peak level of spurious emissions were measured with a 120 kHz resolution bandwidth and a 300 kHz video bandwidth. No pulse desensitization factor was added to these levels.

Completed by:

J.K.P

				Fie	ld St	renç	jtł	ı of	Ha	arn	noni	c Ei	m				REV df3.03 12/16/2002
	EL erial Numb	_	SPV 2020											v		PRCO0010 12/27/02 &	
56		_	Preco, Inc.											Те	mperature:		01/06/03
	Attendee		none												Humidity:		
С	ust. Ref. N			-1						D	40.1/4-			Barometr	ic Pressure		
TEST S	PECIFICA		Greg Kiem	ei						Power:	12 Vdc				Job Site:	EVU1	
			FCC 15.24	9											Year:	2001	
			ANSI C63.4	4											Year:	2000	
	E CALCU			nna Fastar I G	Seble Feeter	Amplifier Cair	1 Dul	aa Deeensiti	Tation	Feeter	Duty Cycle (Correction	- a a ta				
				nna Factor + C			+ Pui	se Desensi	zauor	Factor -	Duly Cycle	Correction	acic	1			
Pulse De	sensitization	Fact	or = 20 * log (pulse width * k	* resolution b	andwidth), wh	ere k	= 1.5									
COMM		by f	2 Vdo lob po	waroupply	Forrito bood o	n oablo barn	000	Pasalution	Rond	width = 2		Pondwidt	h = '	7 MHz Lipios	o othorwise	noted on the c	lata the
				pectrum Mode			633.	Resolution	Dana	width = c	, winz, video	Danuwidi		WITZ. Office	is otherwise	noted on the t	iata, tile
	PERATINO																
Transmit	ting with pu	lse i	nodulated ca	rrier: pulse w	ridth = 14 nS,	pulse repetit	ion fre	equency = 2	2.78 M	IHz,							
DEVIA No devia		ОМ	TEST STA	NDARD													
RESUL														Test Dista	nce (m)	Run #	
Fail														1		4	ļ.
Other		_															
Other												AG	f	J.K.f	2		
														Teste	ed By:		
	100.0 T																
	00.0																
	90.0 -																
	80.0								٠								•
	00.0																
	70.0 -																
	10.0																
	60.0																
<u>ع</u>																	
2	50.0						_										-
dBuV/m	T																
0	40.0 +																-
	30.0 +																
	20.0 +																
	10.0																
	10.0 -																
	0.0																
	0.0 — 11600.	000)	13600.00	0	15600.0	n		1760	0.000		19600.0	00		21600.000		
	11000.	.000)	13000.00	0	15000.0	50					19000.0	00		21000.000		
									мн	lz							
										y Cycle				Dist			0
	Freq (MHz)		Amplitude (dBuV)	Factor (dB)	Azimuth (degrees)	Height (meters)		Pulse ensitization Factor	F	rection actor (dB)	Polarity	Detecto	or	Distance Adjustment (dB)	Adjusted dBuV/m	Spec. Limit dBuV/m	Compared to Spec. (dB)
	23200.0		47.3	10.7	45.0	1.0		24.0		0.0	H-Horn	PK		0.0	82.0		-1.5
	17373.0		38.5	15.2 15.2	10.0 345.0	1.0		28.1		0.0	H-Horn V-Horn	PK PK		0.0 0.0	81.8 81.5		-1.7
	17373.0 23200.0		38.2 46.7	15.2	345.0 45.0	1.0 1.1		28.1 24.0		0.0 0.0	V-Horn V-Horn	PK PK		0.0	81.5 81.4	83.5 83.5	-2.0 -2.1
	11600.0	00	47.2	7.9	0.0	1.0		24.0		0.0	H-Horn	PK		0.0	79.1	83.5	-4.4
L	11600.0	00	45.3	7.9	0.0	1.0		24.0		0.0	V-Horn	PK		0.0	77.2	83.5	-6.3
	23200.0 17373.0		47.3	10.7 15.2	45.0 10.0	1.0 1.0		24.0		28.1 0.0	H-Horn H-Horn	AV AV		0.0 0.0	53.9 53.7		-9.6 -9.8
	17373.0		38.5 38.2	15.2	345.0	1.0		0.0 0.0		0.0	H-Horn V-Horn	AV AV		0.0	53.7 53.4	63.5 63.5	-9.8 -10.1
	23200.0		46.7	10.7	45.0	1.1		24.0		28.1	V-Horn	AV		0.0	53.3		-10.2
	11600.0		47.2	7.9	0.0	1.0		24.0		28.1	H-Horn	AV		0.0	51.0	63.5	-12.5
	11600.0	00	45.3	7.9	0.0	1.0		24.0		28.1	V-Horn	AV		0.0	49.1	63.5	-14.4

NORTHWEST EMC	Main Lo	obe Bandwidt	h of the F	undamer	ntal	Rev BETA 01/30/01			
-	SPV 2020				Work Order:				
Serial Number:				12/27/02					
Customer:	,	Greg Kiemel	Temperature:						
Attendees:		Humidity:							
Customer Ref. No.:			Power:	12 Vdc%	Job Site:	EV01			
TEST SPECIFICATION									
Specification:		Year: Most Current	Method:	ANSI C63.4	Year:	1992			
SAMPLE CALCULATIO	ONS								
COMMENTS									
EUT OPERATING MOD									
Transmitting with puls									
DEVIATIONS FROM TE None	EST STANDARD								
REQUIREMENTS									
	undamental emission is contained	within the energiand hand of 5 71							
RESULTS		a within the specified band of 5.72	Bandwidth						
Pass			141.8 MHz						
Tested By:									
DESCRIPTION OF TES	Т								
		Channel I	Bandwidth						

Channel Bandwidth

	Mkr	∆ 141.8MHz				Tek				
77.0		1 77.OdBuV			50	3B/		Atten Odl	В	
72.0					:					
67.0										
62.Q										
57.Q						Non the second s				
52.0					. / i	\cdots				
47. <u>0</u>		n J. i. of Maydon and		the of the ball and the second			Jan Marine	harrow have a factor	horman is	anaraktur du ur u dat
42.Q		n (), hynyrddygydyrdaethaid	nantan a	<i>av</i>	₩ <u>·</u>		r vip			201111111111111111111111111111111111111
32.0										
27.0										
	5.4 ResBW	25 OGHz 3MHz	to	6.175 V	OGHz idBW 7MHz			SWP	20mS	
	LEVEL		SPAN		kr 5.872	OGHz				
I	KNOB 2		KNOB 1	кі	EYPAD	Te	ktronix	2784]

NORTHWEST	Dulas Demotitiens Executerents										
EMC		r uise Kepetit	ion i requency	01/30/01							
EUT:	SPV 2020			Work Order: PRCO0010							
Serial Number:	none			Date: 12/27/02							
Customer:	Preco, Inc. Temperature: 68 F										
Attendees:	none		Tested by: Greg Kiemel	Humidity: 38% RH							
Customer Ref. No.:	N/A		Power: 12 Vdc%	Job Site: EV01							
TEST SPECIFICATION	IS										
Specification:	47 CFR 15.249	Year: Most Current	Method: ANSI C63.4	Year: 1992							
SAMPLE CALCULATI	ONS										
COMMENTS											
EUT OPERATING MO	DES										
Transmitting with puls	se modulation										
DEVIATIONS FROM T	EST STANDARD										
None											
REQUIREMENTS											
The field strength of t	he fundamental is measured using	g a RBW greater than the pulse re	petition frequency								
RESULTS			PRF								
Pass			2.78 MHz								
SIGNATURE											
Tested By:	ADU.K.P										
DESCRIPTION OF TES	ST		· _								
		Pulse Repetit	ion Frequency								

	Mkr /	2.78МН	z			∆ 0.15ав						Tek
60.0		60.0dBuV					5dB/			Atten Odi	B	
55.0							:	(Y	
50.Q							:					
45.Q							:					
40.Q							:					
35.Q				 . .				 .				
30.Q												
25.Q						.1		\ 				
20.0											L MMMM	
15.0	indiana de la constante de la c	L N N I N . W	ML I	1¶1		11 1111	'I <u>I</u> '	, W.	lik i uk ite	NL , J		uli il k di - il
10.0												
	Freq	5.800 OOGB	Iz							Span 10MHz	:	
	ResBW 1	OOkHz			V:	idBW 100)	kHz			SWP	50mS	
	SPAN		LEVEL		M	kr 5.80	D3 14	GHz				
	KINOB 2		KNOB	1	KI	EYPAD		Te	ktronix	2784		