

Page 1 of 120

## EMC TEST REPORT

**Report No.** : EME-060774

Model No. : SSG 5

Issued Date: Jul. 3, 2006

**Applicant**: Juniper Networks Inc.

1194 North Mathilda Avenue, Sunnyvale, California

94089-1206 USA

Test By : Intertek Testing Services Taiwan Ltd.

No. 11, Lane 275, Ko-Nan 1 Street, Chia-Tung Li, Shiang-Shan District, Hsinchu City, Taiwan

This test report consists of 118 pages in total. It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Intertek Laboratory. The test result(s) in this report only applies to the tested sample(s).

**Project Engineer** 

Marx Yang

Reviewed By

Jerry Liu



Page 2 of 120

## **Table of Contents**

| Summary of Tests                                                           | 5  |
|----------------------------------------------------------------------------|----|
| 1. General information                                                     | 6  |
| 1.1 Identification of the EUT                                              | 6  |
| 1.2 Additional information about the EUT                                   | 6  |
| 1.3 Antenna description                                                    | 7  |
| 1.4 Peripherals equipment                                                  | 7  |
| 2. Test specifications                                                     | 8  |
| 2.1 Test standard                                                          | 8  |
| 2.2 Operation mode                                                         | 8  |
| 2.3 Test equipment                                                         | 9  |
| 3. Minimum 6dB Bandwidth test (FCC 15.247)                                 | 10 |
| 3.1 Operating environment                                                  | 10 |
| 3.2 Test setup & procedure                                                 | 10 |
| 3.3 Measured data of Minimum 6dB Bandwidth test results                    | 10 |
| 4. Maximum Output Power test (FCC 15.247)                                  | 18 |
| 4.1 Operating environment                                                  | 18 |
| 4.2 Test setup & procedure                                                 | 18 |
| 4.3 Measured data of Maximum Output Power test results                     | 18 |
| 5. RF Antenna Conducted Spurious test                                      | 20 |
| 5.1 Operating environment                                                  | 20 |
| 5.2 Test setup & procedure                                                 | 20 |
| 5.3 Measured data of the highest RF Antenna Conducted Spurious test result | 20 |
| 6. Radiated Emission test (FCC 15.247)                                     | 42 |
| 6.1 Operating environment                                                  | 42 |
| 6.2 Test setup & procedure                                                 | 42 |
| 6.3 Emission limits                                                        | 43 |
| 6.4 Radiated spurious emission test data                                   | 44 |
| 6.4.1 Measurement results: frequencies equal to or less than 1 GHz         | 44 |
| 6.4.2 Measurement results: frequency above 1GHz                            | 46 |
| 7. Power Spectrum Density test (FCC 15.247)                                | 49 |
| 7.1 Operating environment                                                  | 49 |
| 7.2 Test setup & procedure                                                 | 49 |



FCC ID.: OXVSSG5

Report No.: EME-060774
Page 3 of 120

| 7.3 Measured data of Power Spectrum Density test results            | 49  |
|---------------------------------------------------------------------|-----|
| 8. Emission on the band edge (FCC 15.247)                           | 57  |
| 8.1 Operating environment                                           |     |
| 8.2 Test setup & procedure                                          | 57  |
| 8.3 Test Result                                                     | 58  |
| 8.3.1 Conducted Method                                              | 58  |
| 8.3.2 Radiated Method                                               | 66  |
| 9. Peak Output Power test (FCC 15.407)                              | 68  |
| 9.1 Operating environment                                           | 68  |
| 9.2 Test setup & procedure                                          | 68  |
| 9.3 Limit                                                           | 68  |
| 9.4 Measured data of Maximum Output Power test results              | 68  |
| 10. Power Spectrum Density test (FCC 15.407)                        | 79  |
| 10.1 Operating environment                                          | 79  |
| 10.2 Test setup & procedure                                         | 79  |
| 10.3 Measured data of Power Spectrum Density test results           | 79  |
| 11. Peak excursion to average ratio test (FCC 15.407)               | 90  |
| 11.1 Operating environment                                          | 90  |
| 11.2 Test setup & procedure                                         | 90  |
| 11.3 Measured data of Peak excursion to average ratio test results  | 90  |
| 12. Radiated Emission test (FCC 15.205 & 15.209)                    | 101 |
| 12.1 Operating environment                                          | 101 |
| 12.2 Test setup & procedure                                         | 101 |
| 12.3 Emission limits                                                | 102 |
| 12.4 Radiated spurious emission test data                           | 103 |
| 12.4.1 Measurement results: frequencies equal to or less than 1 GHz | 103 |
| 12.4.2 Measurement results: frequency above 1GHz                    | 104 |
| 13. Emission on the band edge §FCC 15.205                           | 105 |
| 13.1 Operating environment                                          | 105 |
| 13.2 Test setup & procedure                                         | 105 |
| 13.3 Test Result                                                    | 106 |
| 13.3.1 Conducted Method                                             | 106 |
| 13.3.2 Radiated Method                                              | 110 |
| 14 Power Line Conducted Emission test &FCC 15 207                   | 111 |



FCC ID.: OXVSSG5

Report No.: EME-060774
Page 4 of 120

| 14.1 Operating environment                   | 111 |
|----------------------------------------------|-----|
| 14.2 Test setup & procedure                  | 111 |
| 14.3 Emission limit                          | 112 |
| 14.4 Uncertainty of Conducted Emission       | 112 |
| 14.5 Power Line Conducted Emission test data | 113 |



Page 5 of 120

## **Summary of Tests**

# Secure Services Gateway 5 -Model: SSG 5 FCC ID: OXVSSG5

## 1. 802.11b+g

| Test                                  | Reference      | Results |
|---------------------------------------|----------------|---------|
| Minimum 6dB Bandwidth test            | 15.247(a)(2)   | Pass    |
| Maximum Output Power test             | 15.247(b)      | Pass    |
| Radiated Spurious Emission test       | 15.205, 15.209 | Pass    |
| Power Spectrum Density test           | 15.247(e)      | Pass    |
| Emission on the Band Edge test        | 15.247(d)      | Pass    |
| AC Power Line Conducted Emission test | 15.207         | Pass    |

## 2. 802.11a

| Test                                        | Reference                       | Results |
|---------------------------------------------|---------------------------------|---------|
| Peak output power test                      | 15.407 (a)(1)/(2)/(3)           | Pass    |
| Power Spectrum Density test                 | 15.407 (a)(1)/(2)/(3)           | Pass    |
| Peak excursion to average ratio test        | 15.407(a)(6)                    | Pass    |
| Radiated spurious emission test             | 15.407(b)(1)/(2)/(3),<br>15.209 | Pass    |
| RF antenna conducted spurious emission test | 15.407(b)(1)/(2)/(3)            | Pass    |
| AC line conducted emission test             | 15.407(b)(6)<br>15.207          | Pass    |



Page 6 of 120

#### 1. General information

#### 1.1 Identification of the EUT

Applicant : Juniper Networks Inc.

Product : Secure Services Gateway 5

Model No. : SSG 5

FCC ID. : OXVSSG5

Frequency Range : 1. 2412 MHz ~ 2462 MHz

2. 5180 MHz ~ 5320 MHz

Channel Number : 1. 11Channels for 2412 MHz ~ 2462 MHz (802.11 a+b+g) 2. 8Channels for 5180 MHz ~ 5320 MHz Channel Number : 1. 1Channel for 2412 MHz ~ 2462 MHz

(802.11 a+b+g turbo mode) 2. 3Channels for 5180 MHz ~ 5320 MHz

Frequency of Each Channel : 1. 2412 MHz + 5k MHz, k=0~10 (802.11 a+b+g) 2. 5180 MHz + 20k MHz, k=0~7

Frequency of Each Channel: 1. 2437 MHz

(Turbo mode) 2. 5210 MHz, 5250MHz, 5290MHz

Type of Modulation : DSSS, OFDM

Rated Power : 1. Input: 100-240Vac, 50-60Hz, 1.0A; Output: 12V, 3.0A

with adapter (Model: VAN40B-12B)

2. Input: 100-240Vac, 50/60Hz, 1.2A; Output: 12V, 3.33A

with adapter (Model: NU40-2120333-I3)

Power Cord :  $2C \times 0.75 \text{mm}^2 \times 1.8 \text{meter unshielded cable}$ 

Data Cable : 1. RJ-45 UTP Cat.5 1.8meter x 7

2. RJ-11 unshielded cable 1.8meter x 13. Console Shielded cable 1.2meter x 1

Sample Received : May 15, 2006

Test Date(s) : May 15, 2006 ~ Jun. 10, 2006

FCC Part 15 B report has been issued for this EUT.

#### 1.2 Additional information about the EUT

The EUT is a Secure Services Gateway 5, and was defined as information technology equipment.

The EUT has two kinds of modules, one is Ethernet, and another is V.92.

For more detail features, please refer to User's manual as file name "Installation guide.pdf".



Page 7 of 120

#### 1.3 Antenna description

#### Antenna 1

The antenna is affixed to the EUT using a unique connector, which allows for replacement of a broken antenna, but DOES NOT use a standard antenna jack or electrical connector.

Antenna No. : RFA-25-5-T39-05

Antenna Gain : 1. 1.0dBi (2400MHz~2500MHz)

2. 3.0dBi (4900MHz~6000MHz)

Antenna Type : Omini-directional antenna

Connector Type: R SMA PLUG

#### Antenna 2

The antenna is affixed to the EUT using a unique connector, which allows for replacement of a broken antenna, but DOES NOT use a standard antenna jack or electrical connector.

Antenna No. : RFA-25-3-T38-03

Antenna Gain : 1. 6.0dBi (2400MHz~2500MHz)

2. 6.0dBi (4900MHz~6000MHz)

Antenna Type : Directional antenna Connector Type : RP SMA PLUG

#### Antenna 3

The antenna is affixed to the EUT using a unique connector, which allows for replacement of a broken antenna, but DOES NOT use a standard antenna jack or electrical connector.

Antenna No. : 120300012200J

Antenna Gain : 1. 1.0dBi (2400MHz)

2. 3.0dBi (5000MHz)

Antenna Type : Diople antenna Connector Type : RP SMA PLUG

#### 1.4 Peripherals equipment

| Peripherals | Manufacturer | Product No.  | Serial No.              |
|-------------|--------------|--------------|-------------------------|
| Notebook PC | DELL         | PP01L        | CN-03P83-48643-33O-3930 |
| Notebook PC | HP           | OmniBook XE3 | TW20705468              |
| Notebook PC | IBM          | 2887         | 99XML12                 |
| USB HD      | Transend     | TS256MJ2B    | N/A                     |



Page 8 of 120

#### 2. Test specifications

#### 2.1 Test standard

The EUT was performed according to the procedures in FCC Part 15 Subpart C Section § 15.205、§15.207、§15.209、§15.247 and ANSI C63.4/2003.

The test of radiated measurements according to FCC Part15 Section 15.33(a) had been conducted and the field strength of this frequency band were all meet limit requirement, thus we evaluate the EUT pass the specified test.

The EUT was performed according to the procedures in FCC Part 15 Subpart E Section § 15.207、§15.209 、§15.407 and ANSI C63.4/2001.

The AC power conducted emissions was invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz. (15.207 paragraph)

Radiated emissions were invested cover the frequency range from 30MHz to 1000MHz using a receiver RBW of 120kHz record QP reading, and the frequency over 1GHz using a spectrum analyzer RBW of 1MHz and 10Hz VBW record Average reading. (15.209 paragraph), the Peak reading recorded also on the report.

The test of radiated measurements according to FCC Part15 Section 15.33(a) had been conducted and the field strength of this frequency band were all meet limit requirement, thus we evaluate the EUT pass the specified test.

The EUT setup configurations please refer to the photo of test configuration in item.

#### 2.2 Operation mode

The EUT was supplied with 120Vac, 60Hz and it was running in operating mode.

Verifying three antennas (Antenna 1, Antenna 2 and Antenna 3). The worst antenna is antenna 2. The final tests were executed under these conditions and recorded in this report individually.

Verifying two adapters (Model: VAN40B-12B, NU40-212033-I3). The worst adapter is VAN40B-12B. The final tests were executed under these conditions and recorded in this report individually.

The EUT was transmitted continuously during the test.

With individual verifying, the maximum output power was found at 1Mbps data rate for 802.11b mode, 6Mbps data rate for 802.11g mode and 6Mbps data rate for 802.11a mode. The final tests were executed under these conditions and recorded in this report individually.



Page 9 of 120

## 2.3 Test equipment

| Equipment                            | Brand           | Frequency range | Model No.           | Intertek ID<br>No. | Next Cal.<br>Date |
|--------------------------------------|-----------------|-----------------|---------------------|--------------------|-------------------|
| EMI Test Receiver                    | Rohde & Schwarz | 9kHz~2.75GHz    | ESCS 30             | EC303              | 04/17/2007        |
| EMI Test Receiver                    | Rohde & Schwarz | 20Hz~26.5GHz    | ESMI                | EC317              | 08/07/2006        |
| Spectrum Analyzer                    | Rohde & Schwarz | 9kHz~30GHz      | FSP 30              | EC353              | 07/24/2006        |
| Spectrum Analyzer                    | Rohde & Schwarz | 20Hz~40GHz      | FSEK 30             | EC365              | 11/01/2006        |
| Horn Antenna                         | SCHWARZBECK     | 1GHz~18GHz      | BBHA 9120 D         | EC371              | 12/22/2007        |
| Horn Antenna                         | SCHWARZBECK     | 14GHz~40GHz     | BBHA 9170           | EC351              | 07/08/2007        |
| Bilog Antenna                        | SCHWARZBECK     | 25MHz~2GHz      | VULB 9168           | EC347              | 12/23/2007        |
| Pre-Amplifier                        | MITEQ           | 100MHz~26.5GHz  | 919981              | EC373              | 02/11/2007        |
| Wideband Peak<br>Power Meter/ Sensor | Anritsu         | 100MHz~18GHz    | ML2497A/<br>MA2491A | EC396              | 11/10/2006        |
| Controller                           | HDGmbH          | N/A             | CM 100              | EP346              | N/A               |
| Antenna Tower                        | HDGmbH          | N/A             | MA 240              | EP347              | N/A               |
| LISN                                 | Rohde & Schwarz | 9KHz~30MHz      | ESH3-Z5             | EC344              | 01/13/2007        |

Note: 1. The above equipments are within the valid calibration period.

2. The test antennas (receiving antenna) are calibration per 3 years.



Page 10 of 120

#### 3. Minimum 6dB Bandwidth test (FCC 15.247)

#### 3.1 Operating environment

Temperature: 25

Relative Humidity: 60 % Atmospheric Pressure: 1023 hPa

#### 3.2 Test setup & procedure

The minimum 6dB bandwidth per FCC §15.247(a)(2) was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at 100kHz, the video bandwidth set at 100kHz, and the SPAN>>RBW. The test was performed at 3 channels (lowest, middle and highest channel). The minimum 6-dB modulation bandwidth is in the following Table.

#### 3.3 Measured data of Minimum 6dB Bandwidth test results

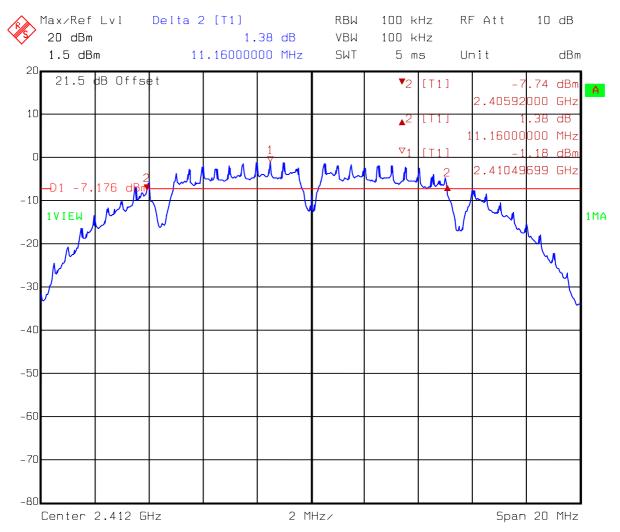
#### Test Mode: 802.11b(DSSS Modulation) operating mode

| Channel      | Frequency (MHz) | Bandwidth (MHz) | Limit    |
|--------------|-----------------|-----------------|----------|
| 1 (lowest)   | 2412            | 11.16           | > 500kHz |
| 6 (middle)   | 2437            | 11.16           | > 500kHz |
| 11 (highest) | 2462            | 12.12           | > 500kHz |

#### Test Mode: 802.11g(OFDM Modulation) operating mode

| Channel      | Frequency (MHz) | Bandwidth (MHz) | Limit    |
|--------------|-----------------|-----------------|----------|
| 1 (lowest)   | 2412            | 16.44           | > 500kHz |
| 6 (middle)   | 2437            | 16.44           | > 500kHz |
| 11 (highest) | 2462            | 16.44           | > 500kHz |

#### Test Mode: 802.11g(OFDM Modulation) turbo mode

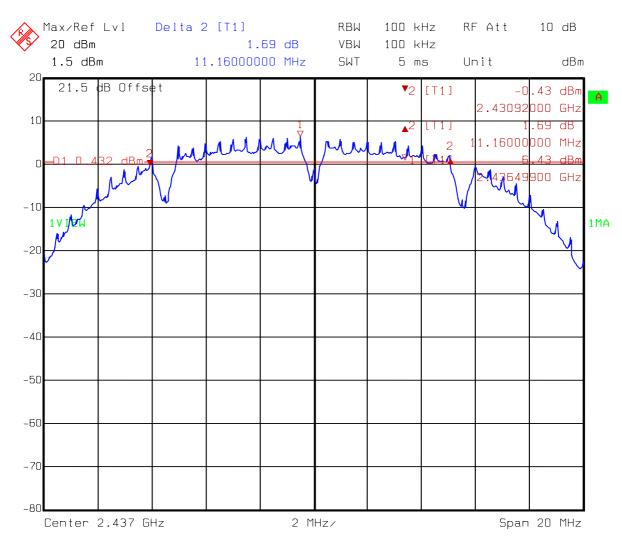

| Channel    | Frequency (MHz) | Bandwidth (MHz) | Limit    |
|------------|-----------------|-----------------|----------|
| 6 (middle) | 2437            | 31.52           | > 500kHz |

Please see the plot below.



Page 11 of 120

#### Test Mode: 802.11b(DSSS Modulation) operating mode

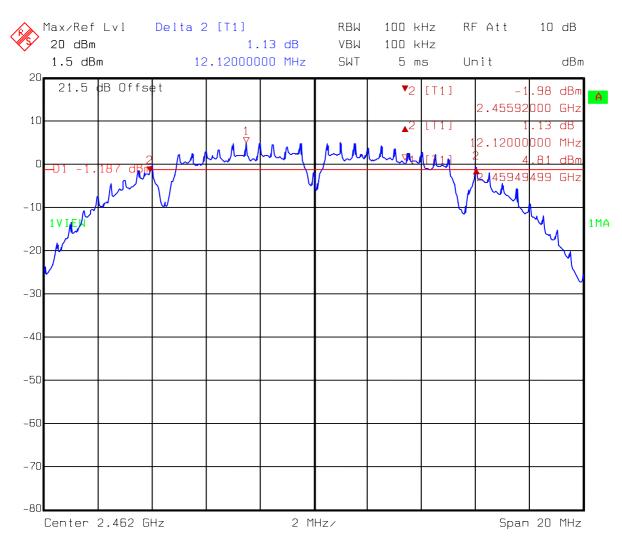



Title: 6dB Bandwidth

Comment A: Channel 01 at 802.11b mode Date: 28.MAY 2006 17:32:15



Page 12 of 120



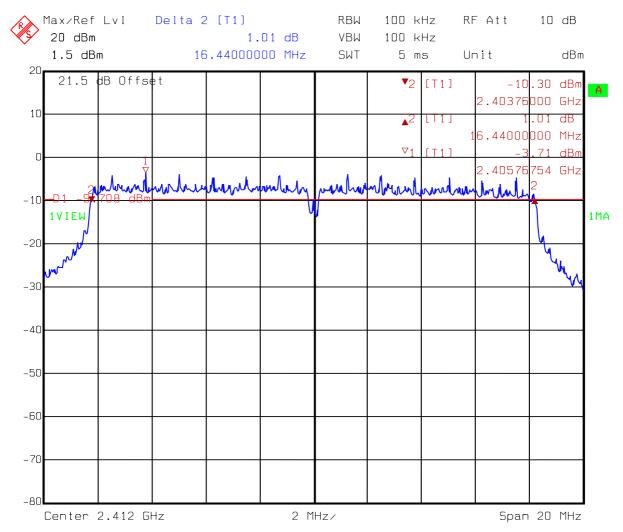

Title: 6dB Bandwidth

Comment A: Channel 06 at 802.11b mode Date: 28.MAY 2006 17:34:29



Page 13 of 120



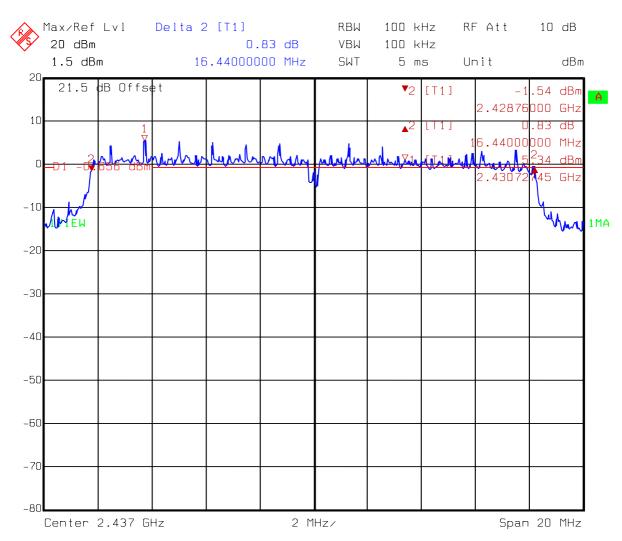

Title: 6dB Bandwidth

Comment A: Channel 11 at 802.11b mode Date: 28.MAY 2006 17:36:09



Page 14 of 120

#### Test Mode: 802.11g(OFDM Modulation) operating mode

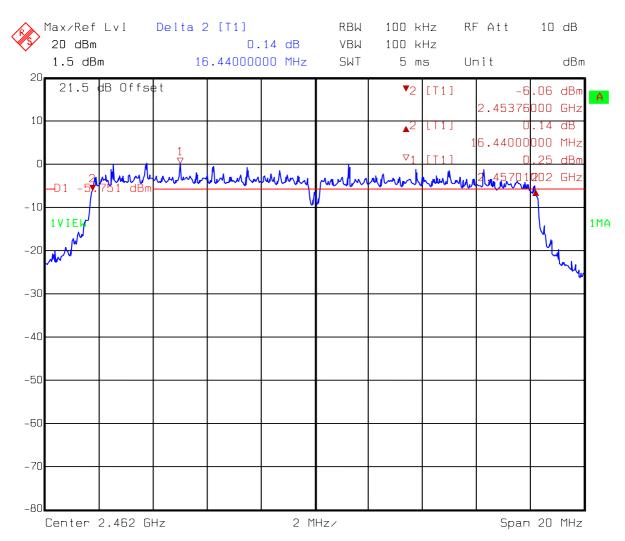



Title: 6dB Bandwidth

Comment A: Channel 01 at 802.11g mode Date: 28.MAY 2006 17:38:24



Page 15 of 120



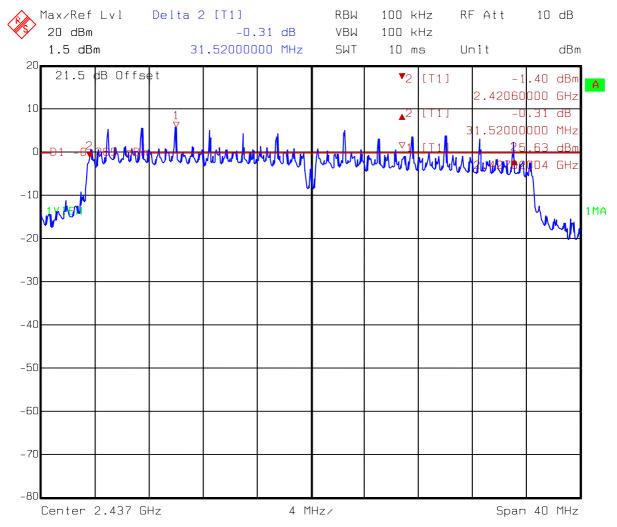

Title: 6dB Bandwidth

Comment A: Channel 06 at 802.11g mode Date: 28.MAY 2006 17:40:19



Page 16 of 120




Title: 6dB Bandwidth

Comment A: Channel 11 at 802.11g mode Date: 28.MAY 2006 17:43:38



Page 17 of 120

#### Test Mode: 802.11g(OFDM Modulation) turbo mode



Title: 6dB Bandwidth

Comment A: Channel 06 at 802.11g mode (Turbo)

Date: 28.MAY 2006 17:41:44



Page 18 of 120

### 4. Maximum Output Power test (FCC 15.247)

#### **4.1 Operating environment**

Temperature: 25

Relative Humidity: 60 % Atmospheric Pressure: 1023 hPa

#### 4.2 Test setup & procedure

The power output per FCC §15.247(b) was measured on the EUT using a 50 ohm SMA cable connected to peak power meter via power sensor. Power was read directly and cable loss correction (2.5 dB) was added to the reading to obtain power at the EUT antenna terminals. The test was performed at 3 channels (lowest, middle and highest channel).

#### 4.3 Measured data of Maximum Output Power test results

#### Test Mode: 802.11b(DSSS Modulation) operating mode

| Channel      | Freq. | C.L. | Reading |       | Peak Output<br>wer | Limit |
|--------------|-------|------|---------|-------|--------------------|-------|
|              | (MHz) | (dB) | (dBm)   | (dBm) | (mW)               | (dBm) |
| 1 (lowest)   | 2412  | 1.5  | 14.9    | 16.4  | 43.65              | 30    |
| 6 (middle)   | 2437  | 1.5  | 20.8    | 22.3  | 169.82             | 30    |
| 11 (highest) | 2462  | 1.5  | 20.8    | 22.3  | 169.82             | 30    |

Remark:

Conducted Peak Output Power = Reading + C.L.

#### Test Mode: 802.11g(OFDM Modulation) operating mode

| Channel      | Freq. | C.L. | Reading |       | Peak Output<br>wer | Limit |
|--------------|-------|------|---------|-------|--------------------|-------|
|              | (MHz) | (dB) | (dBm)   | (dBm) | (mW)               | (dBm) |
| 1 (lowest)   | 2412  | 1.5  | 21.1    | 22.6  | 181.97             | 30    |
| 6 (middle)   | 2437  | 1.5  | 21.5    | 23.0  | 199.53             | 30    |
| 11 (highest) | 2462  | 1.5  | 23.1    | 24.6  | 204.17             | 30    |

Remark:

Conducted Peak Output Power = Reading + C.L.



Page 19 of 120

## Test Mode: 802.11g(OFDM Modulation) operating mode

| Channel    | Freq. (MHz) | C.L. (dB) | Reading (dBm) | Conducted Peak Output<br>Power |        | Limit |
|------------|-------------|-----------|---------------|--------------------------------|--------|-------|
|            |             |           |               | (dBm)                          | (mW)   | (dBm) |
| 6 (middle) | 2437        | 1.5       | 21.5          | 23.0                           | 199.53 | 30    |

Remark:

Conducted Peak Output Power = Reading + C.L.



Page 20 of 120

#### 5. RF Antenna Conducted Spurious test

#### **5.1 Operating environment**

Temperature: 25

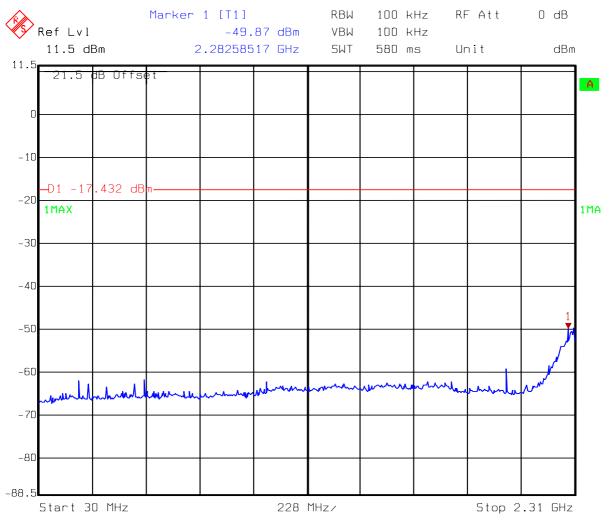
Relative Humidity: 58 %

#### 5.2 Test setup & procedure

The measurements were performed from 30MHz to 25GHz RF antenna conducted per FCC 15.247 (c) was measured from the EUT antenna port using a 50ohm spectrum analyzer with the resolution bandwidth set at 100 kHz, and the video bandwidth set at 100 kHz.

Harmonics and spurious noise must be at least 20dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The table below is the results from the highest emission for each channel within the authorized band. This table was used to determine the spurious limits for each channel.

#### 5.3 Measured data of the highest RF Antenna Conducted Spurious test result

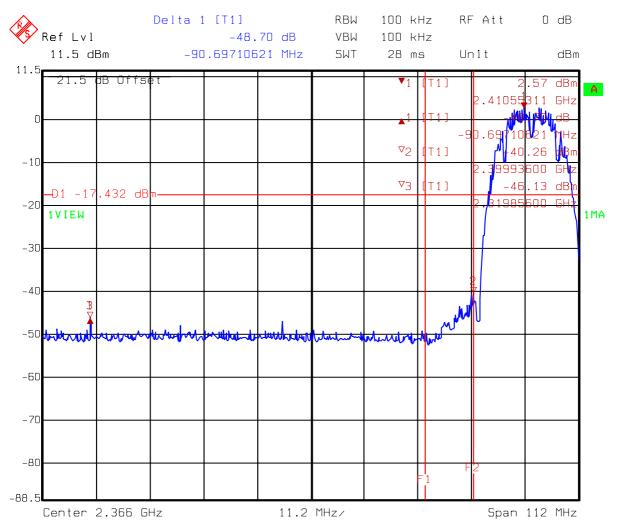

The test results please see the plot below.



Page 21 of 120

## Test Mode: 802.11b (DSSS Modulation) operating mode

#### **Channel 1**




Date: 06.JUL.2006 09:34:01



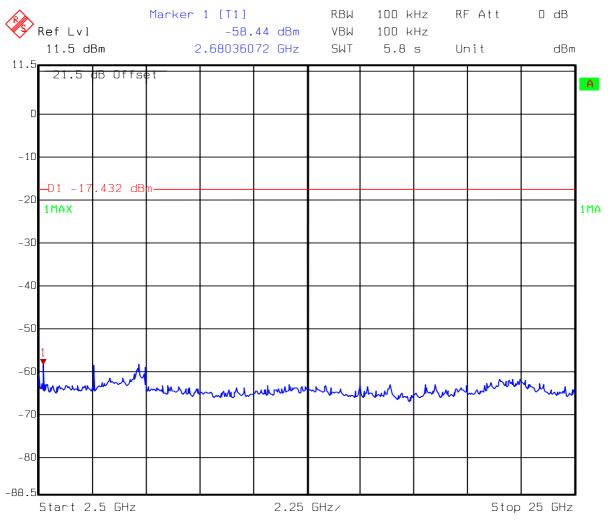
Page 22 of 120

#### **Channel 1**



Title: Band Edge

Comment A: Channel O1 at 802.11b mode

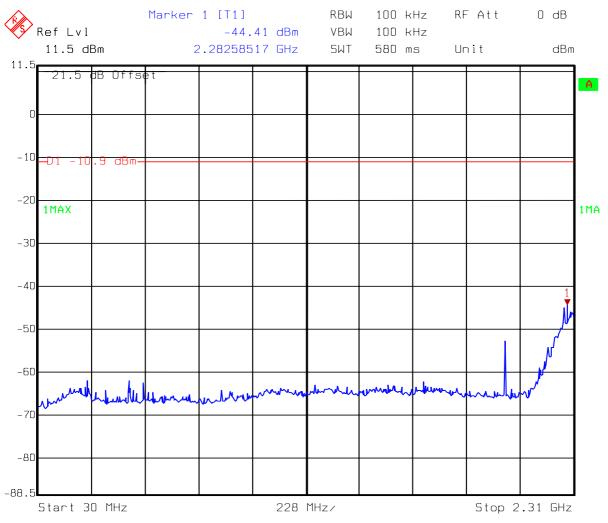

F1=2390MHz F2=2400MHz (Peak Detect) (Dercetional Ant)

Date: 11.MAY 2006 22:02:49



Page 23 of 120

#### **Channel 1**

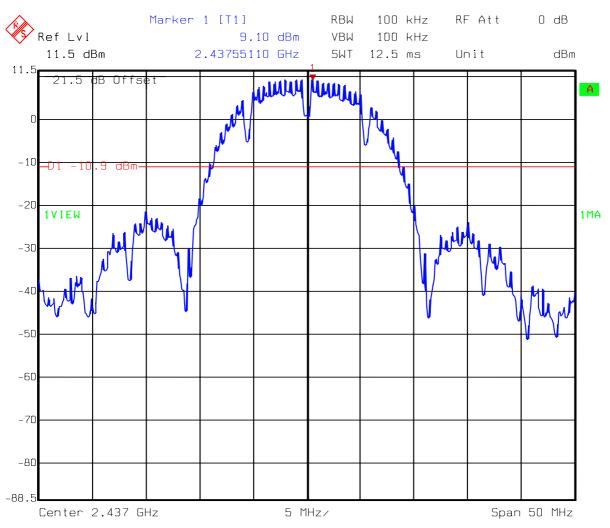



Date: 06.JUL.2006 09:36:04



Page 24 of 120

#### **Channel 6**

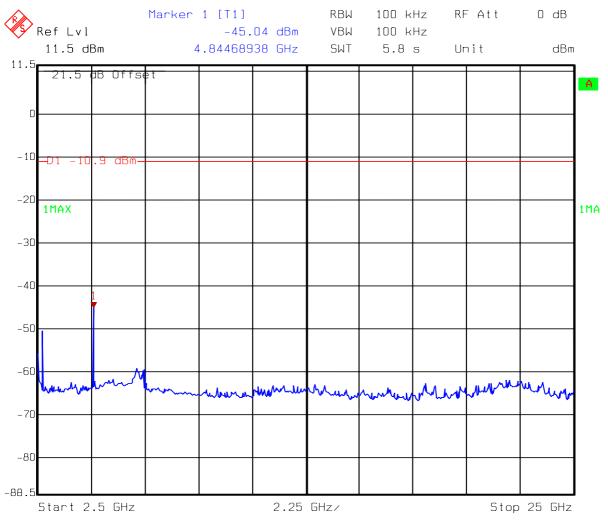



Date: 06.JUL.2006 09:51:04



Page 25 of 120

#### **Channel 6**

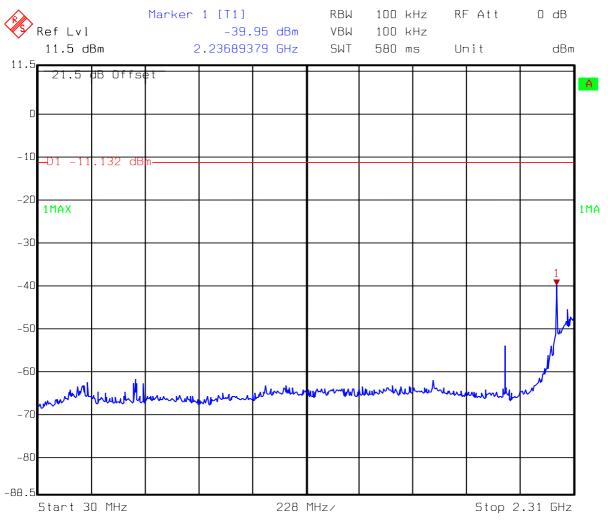



Date: 06.JUL.2006 09:49:52



Page 26 of 120

#### **Channel 6**

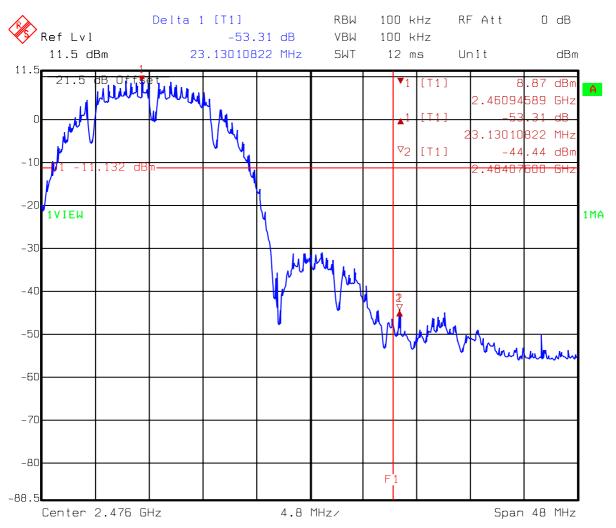



Date: 06.JUL.2006 09:51:41



Page 27 of 120

#### **Channel 11**




Date: 06.JUL.2006 09:40:48



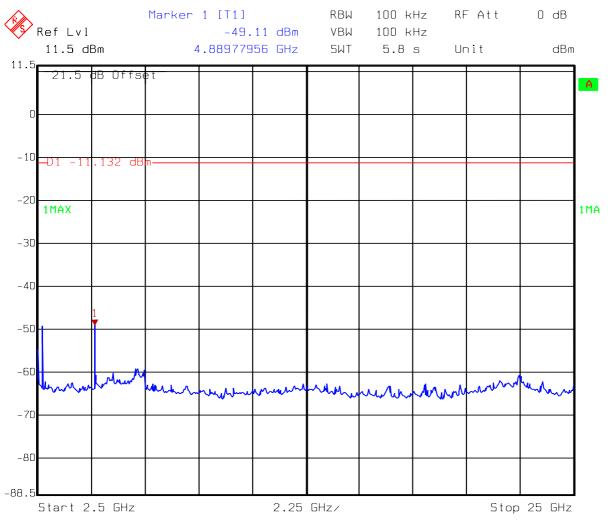
Page 28 of 120

#### **Channel 11**



Title: Band Edge

Comment A: Channel 11 at 802.11b mode


F1=2483.5MHz (Peak Detect) (Dercetional Ant)

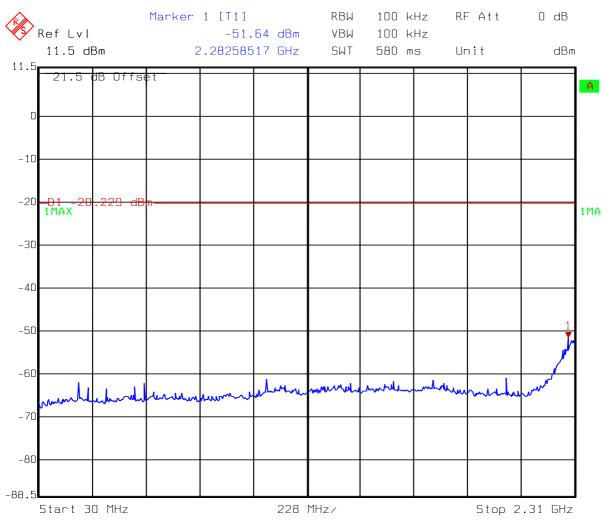
Date: 11.MAY 2006 21:38:04



Page 29 of 120

#### **Channel 11**



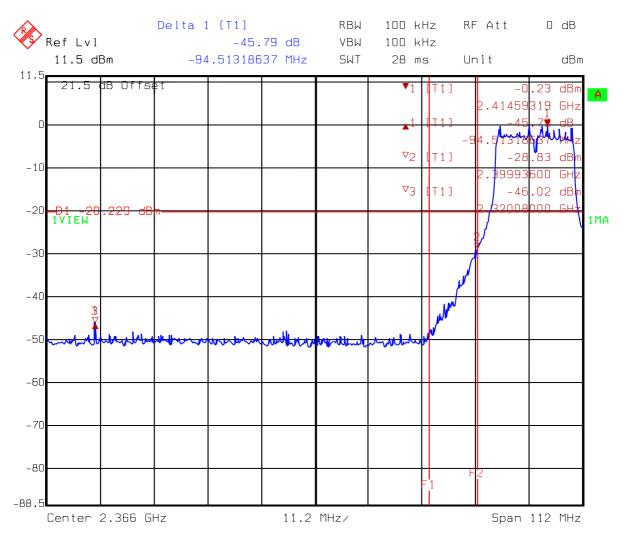

Date: 06.JUL.2006 09:40:11



Page 30 of 120

#### Test Mode: 802.11g (OFDM Modulation) operating mode

#### **Channel 1**




Date: 06.JUL.2006 10:08:46



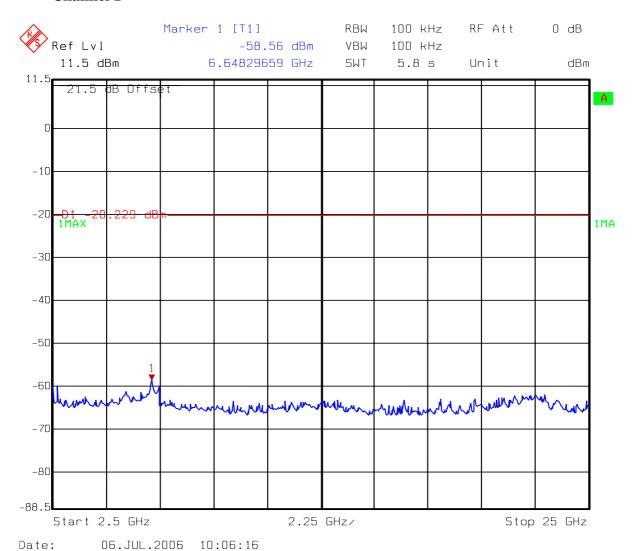
Page 31 of 120

#### **Channel 1**



Title: Band Edge

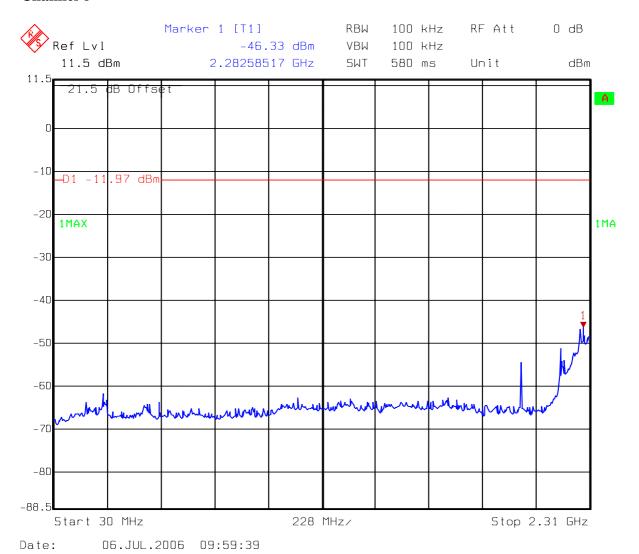
Comment A: Channel 01 at 802.11g mode


F1=2390MHz F2=2400MHz (Peak Detect) (Dercetional Ant)

Date: 11.MAY 2006 23:11:34



Page 32 of 120


#### **Channel 1**

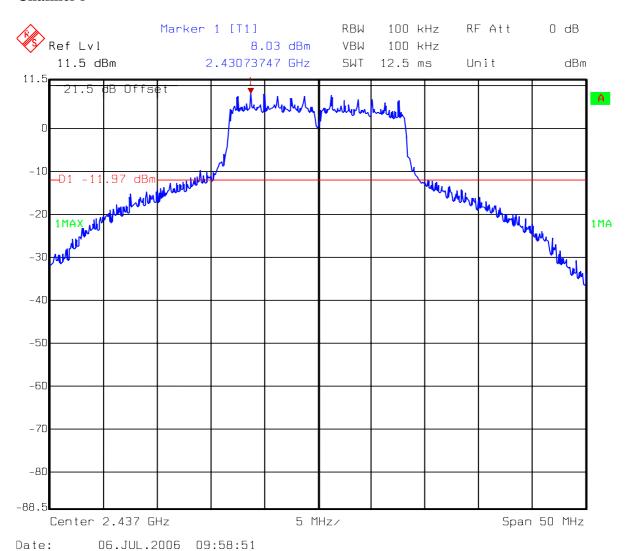




Page 33 of 120

#### **Channel 6**





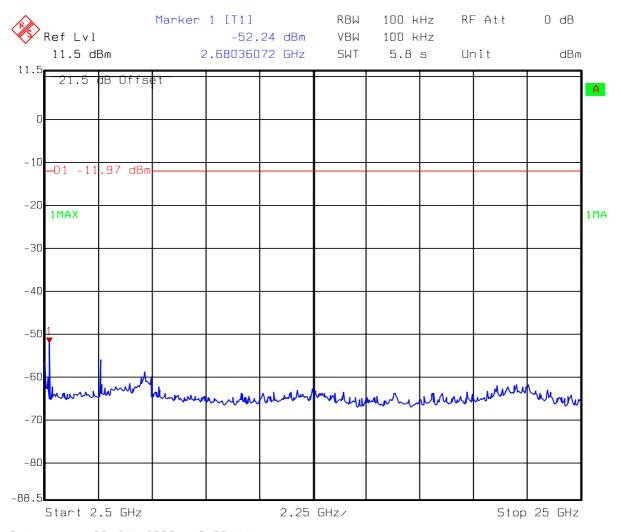

FCC ID.: OXVSSG5

Report No.: EME-060774

Page 34 of 120

#### **Channel 6**






FCC ID.: OXVSSG5

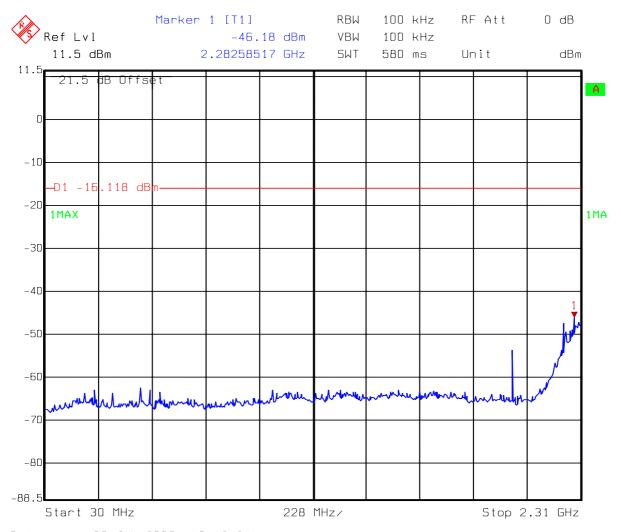
Report No.: EME-060774

Page 35 of 120

#### **Channel 6**



Date: 06.JUL.2006 10:00:14

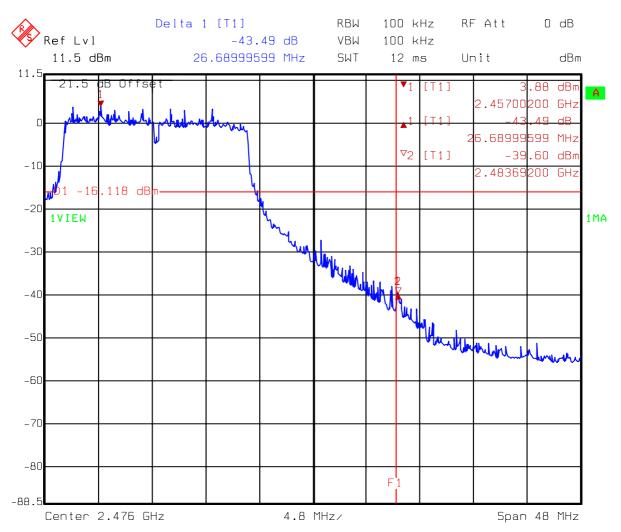



FCC ID.: OXVSSG5

Report No.: EME-060774

Page 36 of 120

#### **Channel 11**




Date: 06.JUL.2006 10:12:24



Page 37 of 120

#### **Channel 11**

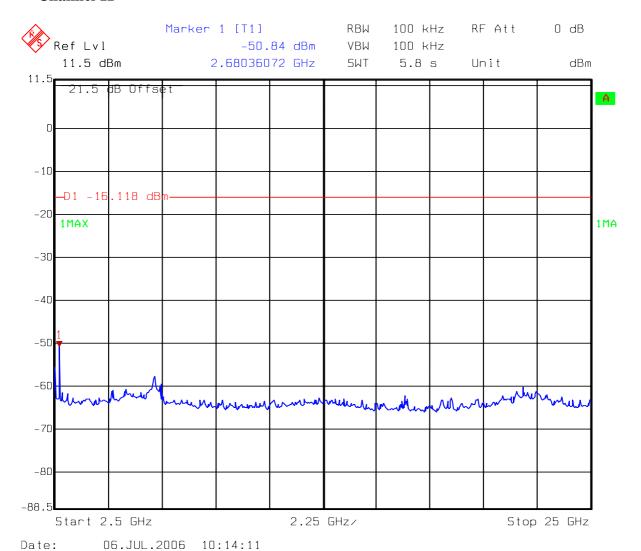


Title: Band Edge

Comment A: Channel 11 at 802.11g mode

F1=2483.5MHz (Peak Detect) (Dercetional Ant) 11.MAY 2006 21:34:14

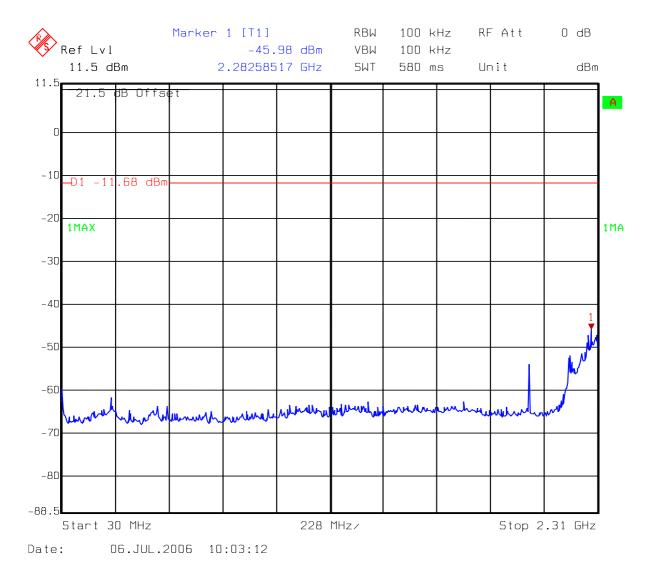
Date:




FCC ID.: OXVSSG5

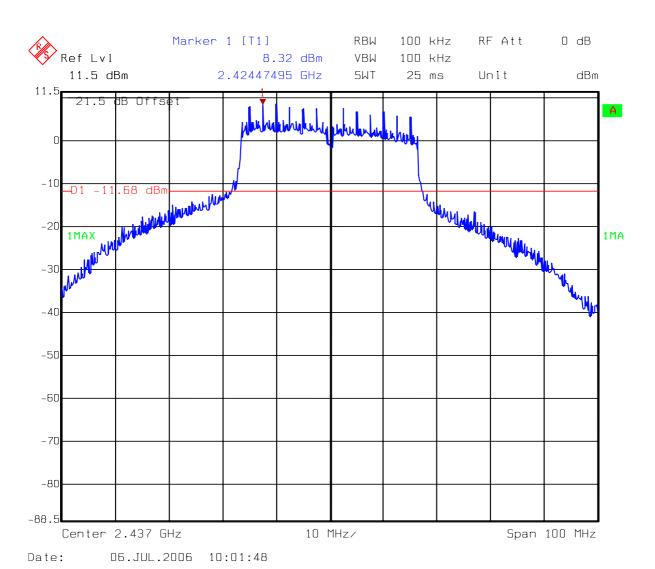
Report No.: EME-060774

Page 38 of 120


### **Channel 11**

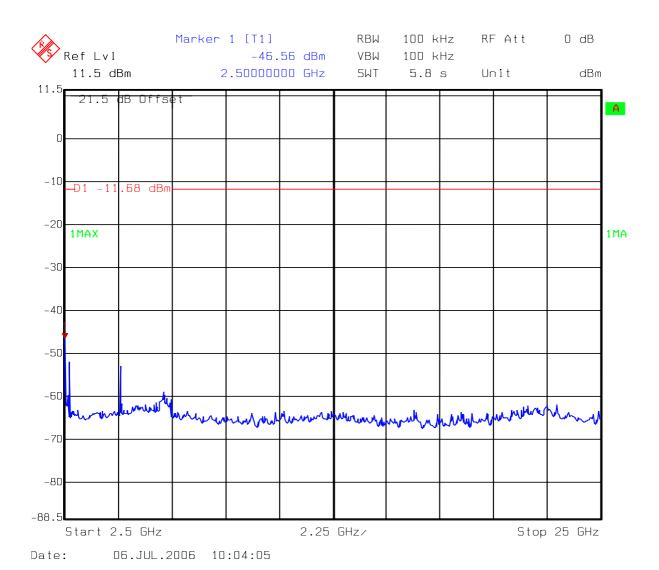





Page 39 of 120

## Test Mode: 802.11g (OFDM Modulation) turbo mode






Page 40 of 120



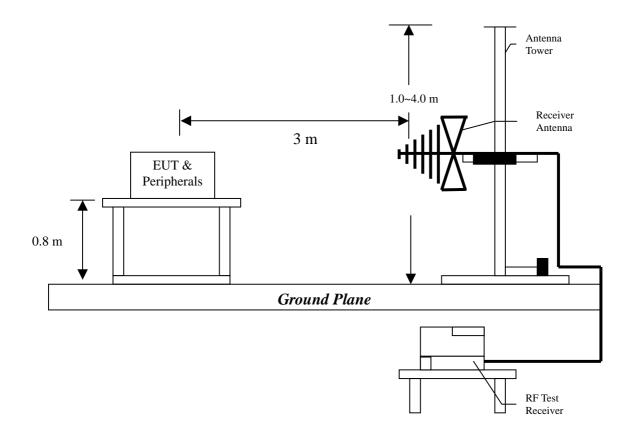


Page 41 of 120





Page 42 of 120


### 6. Radiated Emission test (FCC 15.247)

### **6.1 Operating environment**

Temperature: 23
Relative Humidity: 58 %
Atmospheric Pressure: 1023 hPa

### 6.2 Test setup & procedure

The Diagram below shows the test setup, which is utilized to make these measurements.



Radiated emissions were invested cover the frequency range from 30MHz to 1000MHz using a receiver RBW of 120kHz record QP reading, and the frequency over 1GHz using a spectrum analyzer RBW of 1MHz and 10Hz VBW record Average reading. (15.209 paragraph), the Peak reading (1MHz RBW/VBW) recorded also on the report.

The EUT for testing is arranged on a wooden turntable. If some peripherals apply to the EUT, the peripherals will be connected to EUT and the whole system. During the test, all cables were arranged to produce worst-case emissions. The signal is maximized through rotation. The height of antenna and polarization is changing constantly for exploring for maximum signal level. The height of antenna can be up to 4 meters and down to 1 meter.



Page 43 of 120

The measurement for radiated emission will be done at the distance of three meters unless the signal level is too low to measure at that distance. In the case of the reading under noise floor, a pre-amplifier is used and/or the test is conducted at a closer distance. And then all readings are extrapolated back to the equivalent 3 meter reading using inverse scaling with distance.

The EUT test configuration, please refer to the "Spurious set-up photo.pdf".

#### **6.3** Emission limits

The spurious Emission shall test through the 10th harmonic. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

| Frequency | Limits            |
|-----------|-------------------|
| (MHz)     | $(dB \mu V/m@3m)$ |
| 30-88     | 40                |
| 88-216    | 43.5              |
| 216-960   | 46                |
| Above 960 | 54                |

#### Remark:

- 1. In the above table, the tighter limit applies at the band edges.
- 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

Uncertainty was calculated in accordance with NAMAS NIS 81. Expanded uncertainty (k=2) of radiated emission measurement is 4.98 dB.



Page 44 of 120

## 6.4 Radiated spurious emission test data

# 6.4.1 Measurement results: frequencies equal to or less than 1 GHz

The test was performed on EUT under 802.11b continuously transmitting mode. Channel 1, 6, 11 were verified. The worst case occurred at 802.11b Tx channel 1.

EUT : SSG 5

Worst Case : 802.11b Tx at channel 1

| Antenna  | Freq.   | Receiver | Corr.  | Reading | Corrected | Limit    | Margin |
|----------|---------|----------|--------|---------|-----------|----------|--------|
| Polariz. |         |          | Factor |         | Level     | @ 3 m    |        |
| (V/H)    | (MHz)   | Detector | (dB/m) | (dBuV)  | (dBuV/m)  | (dBuV/m) | (dB)   |
| V        | 94.990  | QP       | 7.38   | 19.10   | 26.48     | 43.50    | -17.03 |
| V        | 298.690 | QP       | 13.95  | 10.20   | 24.15     | 46.00    | -21.85 |
| V        | 365.620 | QP       | 15.06  | 9.81    | 24.87     | 46.00    | -21.13 |
| V        | 419.940 | QP       | 16.47  | 7.93    | 24.40     | 46.00    | -21.60 |
| V        | 549.920 | QP       | 19.46  | 6.14    | 25.60     | 46.00    | -20.40 |
| V        | 715.790 | QP       | 22.29  | 4.21    | 26.50     | 46.00    | -19.51 |
| Н        | 132.820 | QP       | 12.32  | 11.13   | 23.45     | 43.50    | -20.05 |
| Н        | 242.430 | QP       | 12.36  | 9.49    | 21.85     | 46.00    | -24.15 |
| Н        | 299.660 | QP       | 14.17  | 12.97   | 27.14     | 46.00    | -18.87 |
| Н        | 331.670 | QP       | 14.40  | 12.29   | 26.69     | 46.00    | -19.32 |
| Н        | 365.620 | QP       | 15.48  | 18.48   | 33.96     | 46.00    | -12.05 |
| Н        | 531.490 | QP       | 19.65  | 6.20    | 25.85     | 46.00    | -20.15 |

#### Remark:

- 1. Corr. Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Corr. Factor



Page 45 of 120

The test was performed on EUT under 802.11g continuously transmitting mode. Channel 1, 6, 11 were verified. The worst case occurred at 802.11g Tx channel 6.

EUT : SSG 5

Worst Case : 802.11g Tx at channel 6

| Antenna  | Freq.   | Receiver | Corr.  | Reading | Corrected | Limit    | Margin |
|----------|---------|----------|--------|---------|-----------|----------|--------|
| Polariz. | _       |          | Factor |         | Level     | @ 3 m    |        |
| (V/H)    | (MHz)   | Detector | (dB/m) | (dBuV)  | (dBuV/m)  | (dBuV/m) | (dB)   |
| V        | 39.700  | QP       | 12.62  | 12.56   | 25.18     | 40.00    | -14.82 |
| V        | 94.990  | QP       | 7.38   | 19.10   | 26.48     | 43.50    | -17.03 |
| V        | 298.690 | QP       | 13.95  | 10.20   | 24.15     | 46.00    | -21.85 |
| V        | 365.620 | QP       | 15.06  | 9.81    | 24.87     | 46.00    | -21.13 |
| V        | 419.940 | QP       | 16.47  | 7.93    | 24.40     | 46.00    | -21.60 |
| V        | 531.490 | QP       | 19.46  | 7.64    | 27.10     | 46.00    | -18.90 |
| Н        | 132.820 | QP       | 12.32  | 11.13   | 23.45     | 43.50    | -20.05 |
| Н        | 232.730 | QP       | 11.74  | 11.10   | 22.84     | 46.00    | -23.16 |
| Н        | 299.660 | QP       | 14.17  | 12.97   | 27.14     | 46.00    | -18.87 |
| Н        | 331.670 | QP       | 14.40  | 12.29   | 26.69     | 46.00    | -19.32 |
| Н        | 365.620 | QP       | 15.48  | 18.48   | 33.96     | 46.00    | -12.05 |
| Н        | 671.170 | QP       | 21.52  | 5.02    | 26.54     | 46.00    | -19.47 |

### Remark:

- 1. Corr. Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Corr. Factor



Page 46 of 120

## 6.4.2 Measurement results: frequency above 1GHz

The test was performed on EUT under 802.11b continuously transmitting mode channel 1, 6, 11 were verified. The worst case occurred at 802.11b Tx channel 6.

EUT : SSG 5

Worst Case : 802.11b Tx at channel 6

| Frequency | Spectrum | Antenna  | Preamp. | Correction | Reading | Corrected | Limit    | Margin |
|-----------|----------|----------|---------|------------|---------|-----------|----------|--------|
|           | Analyzer | Polariz. | Gain    | Factor     |         | Level     | @ 3 m    |        |
| (MHz)     | Detector | (H/V)    | (dB)    | (dB/m)     | (dBuV)  | (dBuV/m)  | (dBuV/m) | (dB)   |
| 7290.00   | PK       | V        | 36.18   | 43.97      | 45.89   | 53.68     | 74       | -20.32 |
| 7290.00   | AV       | V        | 36.18   | 43.97      | 38.46   | 46.25     | 54       | -7.75  |

#### Remark:

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

#### Noise floor level is:

For PK:

1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

For AV:

1GHz-3GHz: 10dBuV 3GHz-14GHz: 16dBuV 14GHz-26.5GHz: 28dBuV



Page 47 of 120

The test was performed on EUT under 802.11g continuously transmitting mode channel 1, 6, 11 were verified. The worst case occurred at 802.11g Tx channel 6.

EUT : SSG 5

Worst Case : 802.11g Tx at channel 6

| Frequency | Spectrum | Antenna  | Preamp. | Correction | Reading | Corrected | Limit    | Margin |
|-----------|----------|----------|---------|------------|---------|-----------|----------|--------|
|           | Analyzer | Polariz. | Gain    | Factor     |         | Level     | @ 3 m    |        |
| (MHz)     | Detector | (H/V)    | (dB)    | (dB/m)     | (dBuV)  | (dBuV/m)  | (dBuV/m) | (dB)   |
| 7290.00   | PK       | V        | 36.18   | 43.97      | 56.88   | 64.67     | 74       | -9.33  |
| 7290.00   | AV       | V        | 36.18   | 43.97      | 40.06   | 47.85     | 54       | -6.15  |

# Remark:

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

## Noise floor level is:

For PK:

1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

For AV:

1GHz-3GHz: 10dBuV 3GHz-14GHz: 16dBuV 14GHz-26.5GHz: 28dBuV



Page 48 of 120

EUT : SSG 5

Test Condition : 802.11g Tx at channel 6 (Turbo mode)

| Frequency | Spectrum | Antenna  | Preamp. | Correction | Reading | Corrected | Limit    | Margin |
|-----------|----------|----------|---------|------------|---------|-----------|----------|--------|
|           | Analyzer | Polariz. | Gain    | Factor     |         | Level     | @ 3 m    |        |
| (MHz)     | Detector | (H/V)    | (dB)    | (dB/m)     | (dBuV)  | (dBuV/m)  | (dBuV/m) | (dB)   |
| 7290.00   | PK       | V        | 36.18   | 43.97      | 52.92   | 60.71     | 74       | -13.29 |
| 7290.00   | AV       | V        | 36.18   | 43.97      | 38.2    | 45.99     | 54       | -8.01  |

### Remark:

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

#### Noise floor level is:

For PK:

1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

For AV:

1GHz-3GHz: 10dBuV 3GHz-14GHz: 16dBuV 14GHz-26.5GHz: 28dBuV



Page 49 of 120

## 7. Power Spectrum Density test (FCC 15.247)

### 7.1 Operating environment

Temperature: 23

Relative Humidity: 50 % Atmospheric Pressure 1023 hPa

### 7.2 Test setup & procedure

The power spectrum density per FCC §15.247(e) was measured from the antenna port of the EUT using a 50ohm spectrum analyzer with the resolution bandwidth set at 3kHz, the video bandwidth set at 10kHz, a span of 300kHz, and the sweep time set at 100 seconds. Power Density was read directly correction was added to the reading to obtain power at the EUT antenna terminals. The test was performed at 3 channels (lowest, middle and highest channel). The Power Spectral Density measured result is in the following table.

## 7.3 Measured data of Power Spectrum Density test results

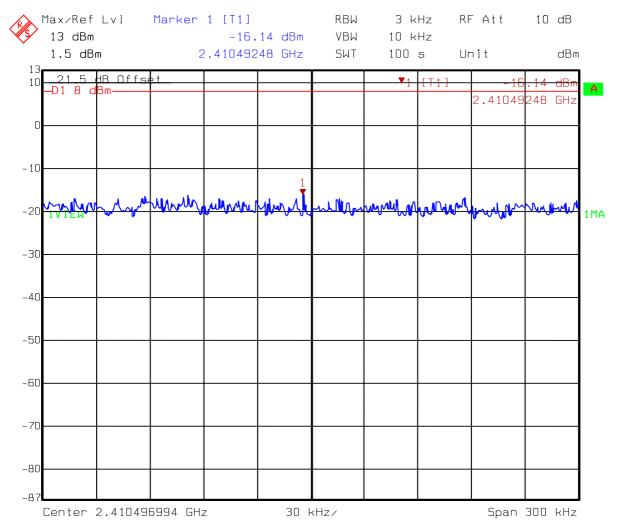
# Test Mode: 802.11b(DSSS Modulation) operating mode

| Channel      | Frequency (MHz) | Power spectrum density (dBm) | Limit<br>(dBm) |
|--------------|-----------------|------------------------------|----------------|
| 1 (lowest)   | 2412            | -16.14                       | 8              |
| 6 (middle)   | 2437            | -8.17                        | 8              |
| 11 (highest) | 2462            | -8.24                        | 8              |

### Test Mode: 802.11g(OFDM Modulation) operating mode

| Channal      | Frequency | Power spectrum density | Limit |
|--------------|-----------|------------------------|-------|
| Channel      | (MHz)     | (dBm)                  | (dBm) |
| 1 (lowest)   | 2412      | -17.07                 | 8     |
| 6 (middle)   | 2437      | -8.11                  | 8     |
| 11 (highest) | 2462      | -13.32                 | 8     |

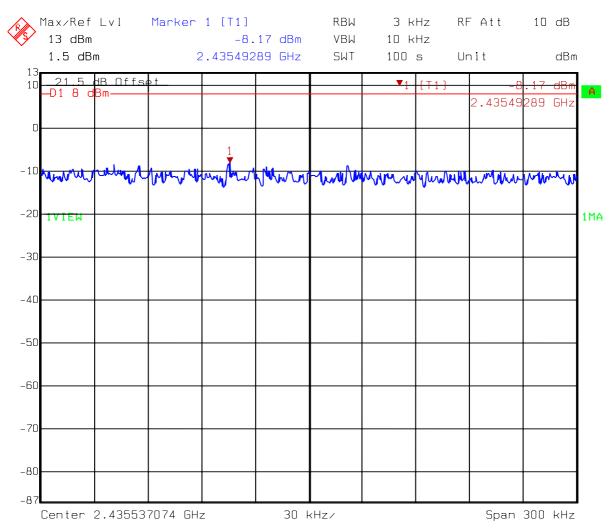
### Test Mode: 802.11g(OFDM Modulation) turbo mode


| Channel    | Frequency (MHz) | Power spectrum density (dBm) | Limit<br>(dBm) |
|------------|-----------------|------------------------------|----------------|
| 6 (middle) | 2437            | -11.06                       | 8              |

Please see the plot below.



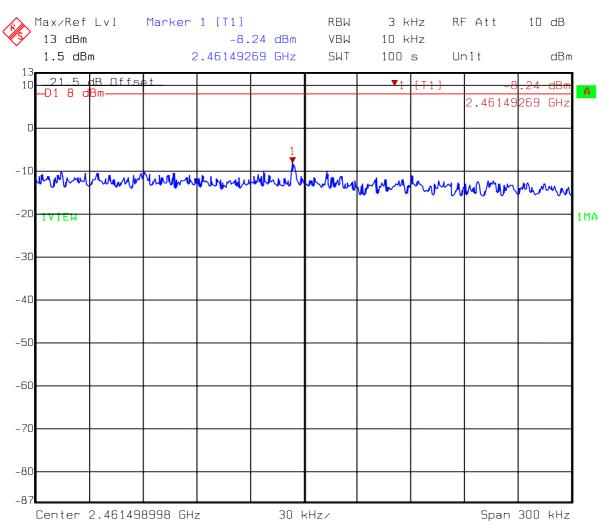
Page 50 of 120


# Test Mode: 802.11b(DSSS Modulation) operating mode



Title: Power Spectrum Density
Comment A: Channel O1 at 802.11b mode
Date: 28.MAY 2006 17:32:33



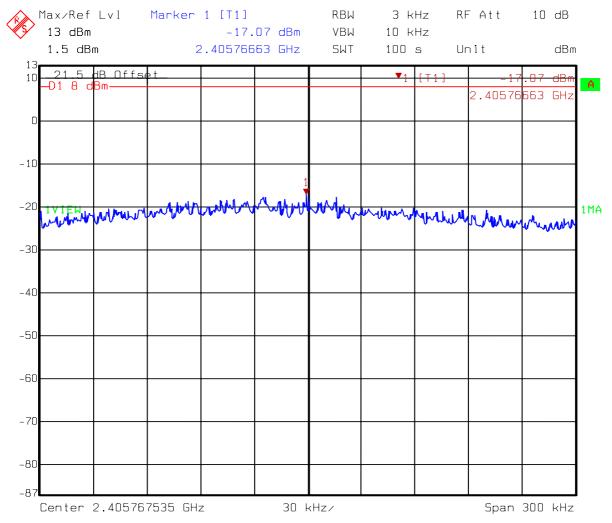

Page 51 of 120



Title: Power Spectrum Density
Comment A: Channel O6 at 802.11b mode
Date: 28.MAY 2006 17:34:47



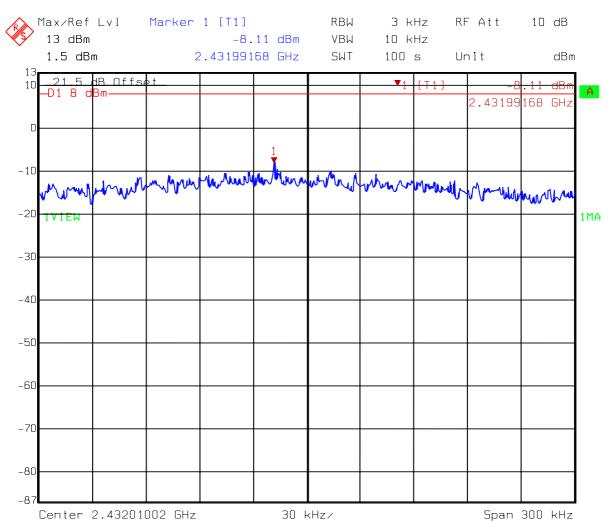
Page 52 of 120




Title: Power Spectrum Density
Comment A: Channel 11 at 802.11b mode
Date: 28.MAY 2006 17:36:27



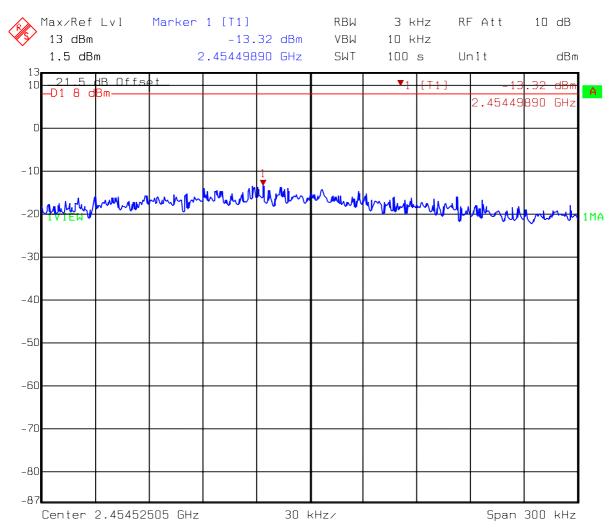
Page 53 of 120


# Test Mode: 802.11g(OFDM Modulation) operating mode



Title: Power Spectrum Density
Comment A: Channel 01 at 802.11g mode
Date: 28.MAY 2006 17:38:42



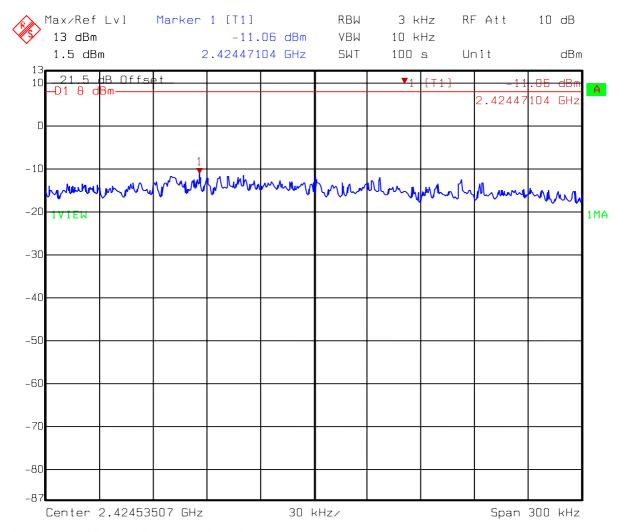

Page 54 of 120



Title: Power Spectrum Density Comment A: Channel O6 at 802.11g mode Date: 28.MAY 2006 17:40:37



Page 55 of 120




Title: Power Spectrum Density Comment A: Channel 11 at 802.11g mode Date: 28.MAY 2006 17:43:56



Page 56 of 120

## Test Mode: 802.11g(OFDM Modulation) turbo mode



Title: Power Spectrum Density

Comment A: Channel O6 at 802.11g mode (Turbo)

Date: 28.MAY 2006 17:42:02



Page 57 of 120

## 8. Emission on the band edge (FCC 15.247)

In any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

## **8.1 Operating environment**

Temperature: 25

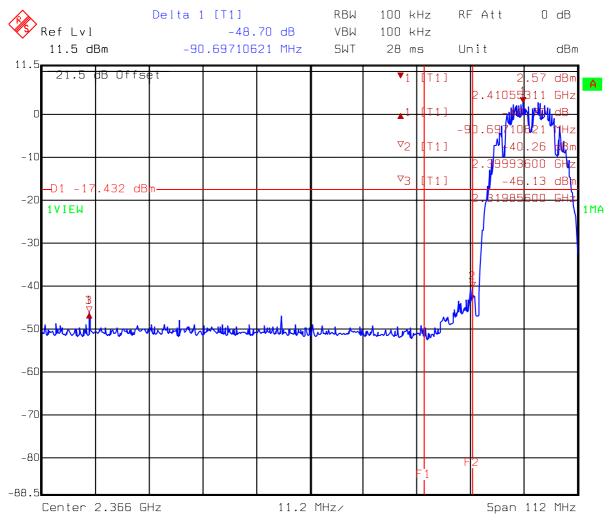
Relative Humidity: 50 % Atmospheric Pressure 1023 hPa

## 8.2 Test setup & procedure

The output of EUT was connected to spectrum analyzer via a 50ohm cable.

The setting of spectrum analyzer is:

Peak: RBW = 100kHz; VBW = 100kHz Average: RBW = 1MHz; VBW = 10Hz




Page 58 of 120

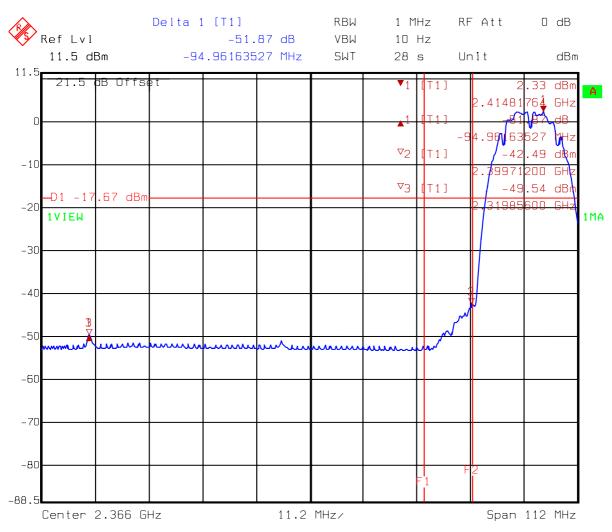
#### 8.3 Test Result

### 8.3.1 Conducted Method

## Test Mode: 802.11b(DSSS Modulation) operating mode



Title: Band Edge


Comment A: Channel 01 at 802.11b mode

F1=2390MHz F2=2400MHz (Peak Detect) (Dercetional Ant)

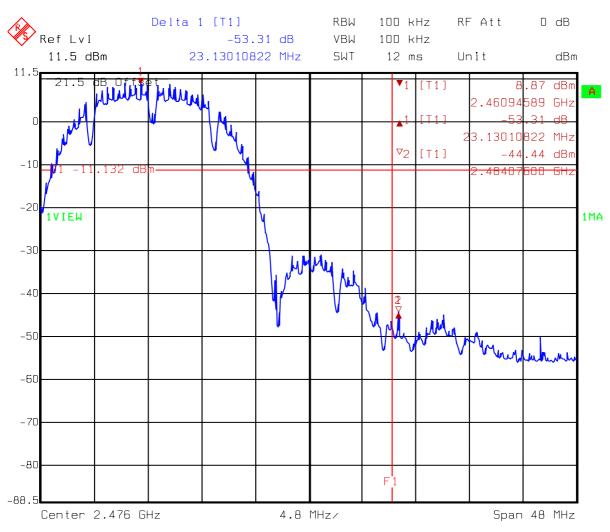
Date: 11.MAY 2006 22:02:49



Page 59 of 120



Title: Band Edge


Comment A: Channel 01 at 802.11b mode

F1=2390 MHz F2=2400 MHz (Average Detect) (Dercetional Ant)

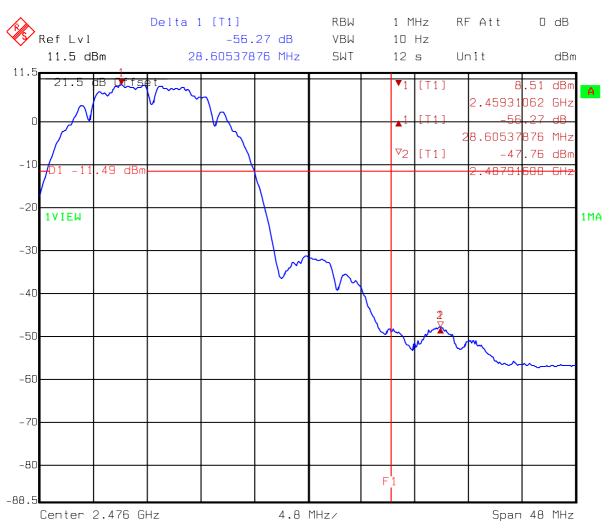
Date: 11.MAY 2006 22:04:49



Page 60 of 120



Title: Band Edge


Comment A: Channel 11 at 802.11b mode

F1=2483.5MHz (Peak Detect) (Dercetional Ant)

Date: 11.MAY 2006 21:38:04

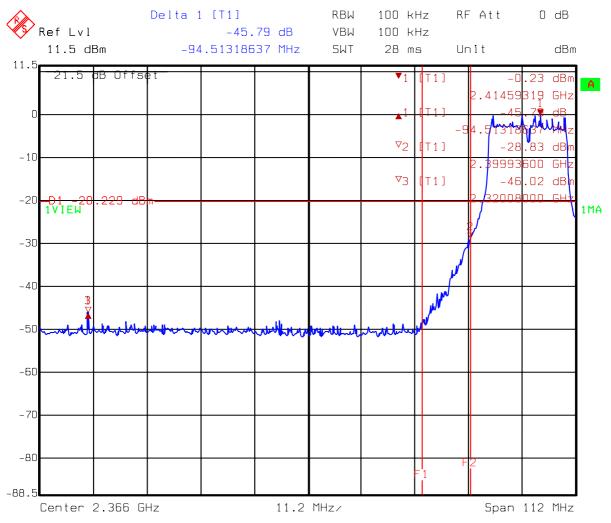


Page 61 of 120



Title: Band Edge

Comment A: Channel 11 at 802.11b mode


F1=2483.5MHz (Average Detect) (Dercetional Ant)

Date: 11.MAY 2006 21:39:02

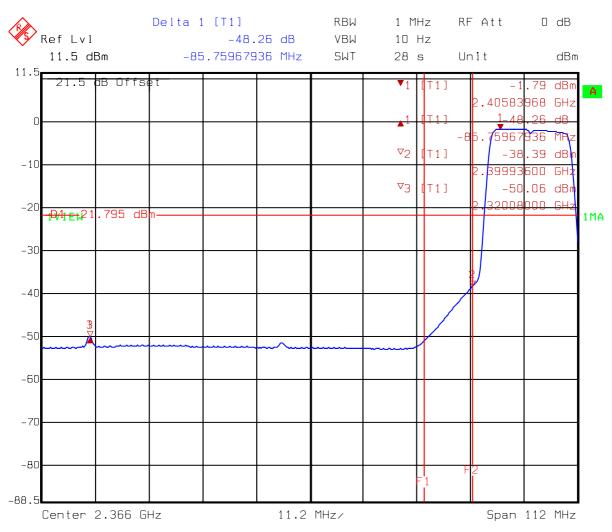


Page 62 of 120

# Test Mode: 802.11g(OFDM Modulation) operating mode



Title: Band Edge


Comment A: Channel 01 at 802.11g mode

F1=2390MHz F2=2400MHz (Peak Detect) (Dercetional Ant)

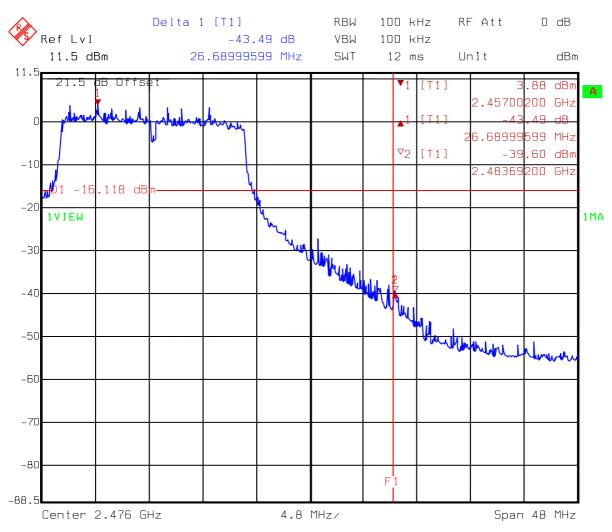
Date: 11.MAY 2006 23:11:34



Page 63 of 120



Title: Band Edge


Comment A: Channel 01 at 802.11g mode

F1=2390MHz F2=2400MHz (Average Detect) (Dercetional Ant)

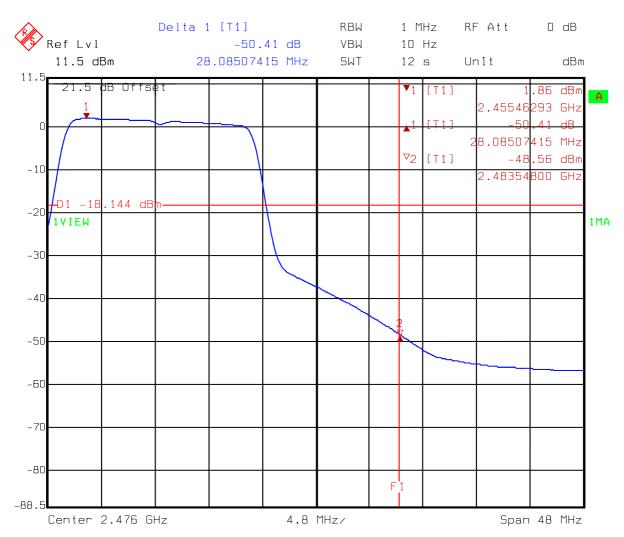
Date: 11.MAY 2006 23:13:34



Page 64 of 120



Title: Band Edge


Comment A: Channel 11 at 802.11g mode

F1=2483.5MHz (Peak Detect) (Dercetional Ant)

Date: 11.MAY 2006 21:34:14



Page 65 of 120



Title: Band Edge

Comment A: Channel 11 at 802.11g mode

F1=2483.5MHz (Average Detect) (Dercetional Ant)

Date: 11.MAY 2006 21:35:02



FCC ID.: OXVSSG5

Report No.: EME-060774

Page 66 of 120

## 8.3.2 Radiated Method

# Test Mode: 802.11b(DSSS Modulation) operating mode

|              |          | Radiated<br>Method                                          | Conducted<br>Method                                                       | The Max.                                             |                            |                |
|--------------|----------|-------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------|----------------------------|----------------|
| Channel      | Detector | Max. Field<br>Strength of<br>Fundamental<br>@3m<br>(dBuV/m) | Between Carrier Max. Power and Local Max. Emission in Restrict Band (dBc) | Field<br>Strength in<br>Restrict<br>Band<br>(dBuV/m) | Limit<br>@ 3 m<br>(dBuV/m) | Margin<br>(dB) |
|              |          | A                                                           | В                                                                         | C                                                    | D                          | Е              |
| 1 (lowest)   | PK       | 107.45                                                      | 48.7                                                                      | 58.75                                                | 74                         | -15.25         |
| 1 (lowest)   | AV       | 103.18                                                      | 51.87                                                                     | 51.31                                                | 54                         | -2.69          |
| 11 (highest) | PK       | 112.05                                                      | 53.31                                                                     | 58.74                                                | 74                         | -15.26         |
| 11 (mgnest)  | AV       | 107.64                                                      | 56.27                                                                     | 51.37                                                | 54                         | -2.63          |

Remark: 1. C = A - B

2. E = C - D



FCC ID.: OXVSSG5

Report No.: EME-060774

Page 67 of 120

# Test Mode: 802.11g(OFDM Modulation) operating mode

|              |          | Radiated<br>Method                                          | Conducted<br>Method                                                       | The Max.                                             |                            |                |
|--------------|----------|-------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------|----------------------------|----------------|
| Channel      | Detector | Max. Field<br>Strength of<br>Fundamental<br>@3m<br>(dBuV/m) | Between Carrier Max. Power and Local Max. Emission in Restrict Band (dBc) | Field<br>Strength in<br>Restrict<br>Band<br>(dBuV/m) | Limit<br>@ 3 m<br>(dBuV/m) | Margin<br>(dB) |
|              |          | A                                                           | В                                                                         | С                                                    | D                          | Е              |
| 1 (lowest)   | PK       | 109.82                                                      | 45.79                                                                     | 64.03                                                | 74                         | -9.97          |
| 1 (lowest)   | AV       | 99.59                                                       | 48.26                                                                     | 51.33                                                | 54                         | -2.67          |
| 11 (highest) | PK       | 111.72                                                      | 43.49                                                                     | 68.23                                                | 74                         | -5.77          |
| 11 (highest) | AV       | 101.98                                                      | 50.41                                                                     | 51.57                                                | 54                         | -2.43          |

Remark: 1. C = A - B

2. E = C - D



Page 68 of 120

# 9. Peak Output Power test (FCC 15.407)

# 9.1 Operating environment

Temperature: 25

Relative Humidity: 50 % Atmospheric Pressure: 1023 hPa

## 9.2 Test setup & procedure

The power output per FCC §15.407(a) was measured on the EUT using a 50 ohm SMA cable connected to power meter via power sensor. Power was read directly and cable loss correction (7.0dB) was added to the reading to obtain power at the EUT antenna terminals.

#### **9.3 Limit**

| Operating Frequency (MHz) | Output power limit                |
|---------------------------|-----------------------------------|
| 5150~5250                 | < 50mW (17dBm) or 4dBm+10 log B   |
| 5250~5350, 5470~5725      | < 250mW (24dBm) or 11dBm+10 log B |
| 5725~5825                 | < 1W (30dBm) or 17dBm+10 log B    |

Remark: where B is the -26 dB emission bandwidth in MHz.

# 9.4 Measured data of Maximum Output Power test results

## For Frequency band (5180MHz ~ 5240MHz) Normal mode

| Channel | Freq. (MHz) | C.L.<br>(dB) | Reading (dBm) | Conducted Peak Output<br>Power |       | Limit |
|---------|-------------|--------------|---------------|--------------------------------|-------|-------|
|         |             |              |               | (dBm)                          | (mW)  | (dBm) |
| 36      | 5180        | 2.3          | 10.13         | 12.43                          | 17.50 | 17    |
| 44      | 5220        | 2.3          | 9.35          | 11.65                          | 14.62 | 17    |
| 48      | 5240        | 2.3          | 10.02         | 12.32                          | 17.06 | 17    |

Remark:

Conducted Peak Output Power = Reading + C.L.



Page 69 of 120

# For Frequency band (5260MHz ~ 5320MHz) Normal mode

| Channel | Freq. (MHz) | C.L. (dB) | Reading (dBm) | Conducted Peak Output<br>Power |       | Limit |
|---------|-------------|-----------|---------------|--------------------------------|-------|-------|
|         |             |           |               | (dBm)                          | (mW)  | (dBm) |
| 52      | 5260        | 2.3       | 8.23          | 10.53                          | 11.30 | 24    |
| 56      | 5280        | 2.3       | 12.91         | 15.21                          | 33.19 | 24    |
| 64      | 5320        | 2.3       | 11.52         | 13.82                          | 24.10 | 24    |

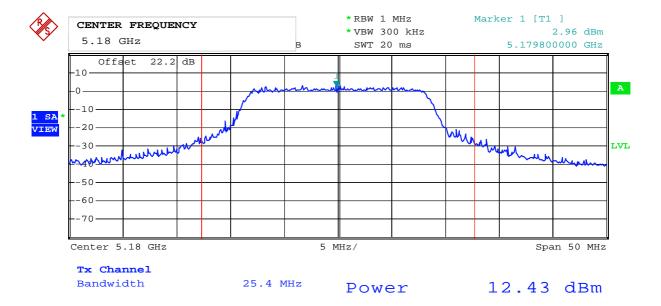
Remark:

Conducted Peak Output Power = Reading + C.L.

# For Frequency band (5180MHz ~ 5240MHz, 5260MHz ~ 5320MHz) turbo mode

| Channel | Freq. (MHz) | C.L. (dB) | Reading (dBm) | Conducted Peak Output<br>Power |       | Limit |
|---------|-------------|-----------|---------------|--------------------------------|-------|-------|
|         |             |           |               | (dBm)                          | (mW)  | (dBm) |
| 42      | 5260        | 2.3       | 11.81         | 14.11                          | 25.76 | 17    |
| 50      | 5280        | 2.3       | 11.85         | 14.15                          | 26.00 | 17    |
| 58      | 5290        | 2.3       | 10.85         | 13.15                          | 20.65 | 24    |

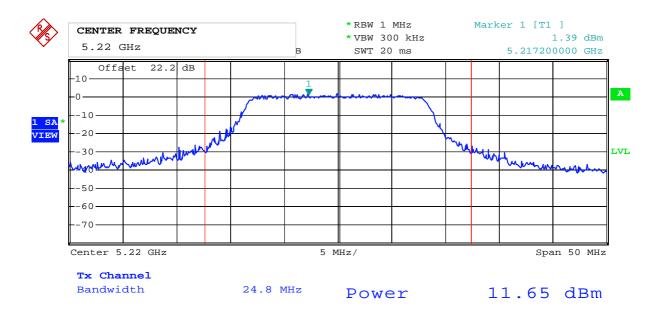
Remark:


Conducted Peak Output Power = Reading + C.L.

Please see the plot below.

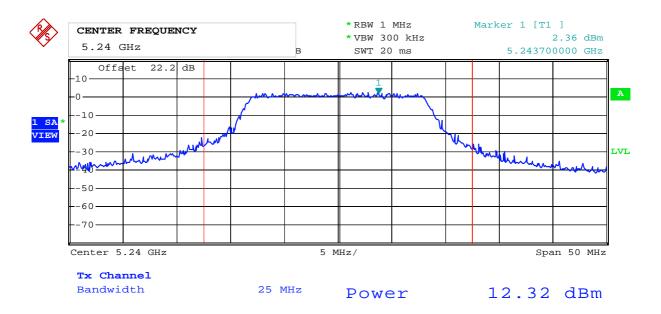


Page 70 of 120


# For Frequency band (5150MHz ~ 5250MHz)



Comment: 2nd comment ...

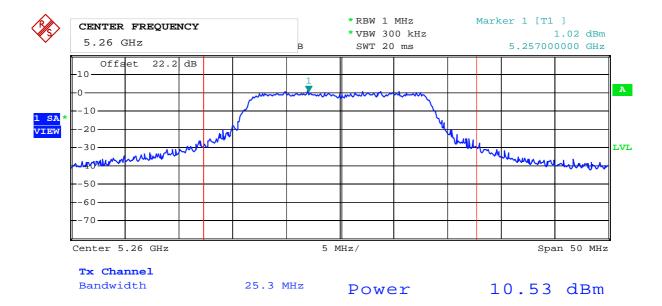

Date: 22.MAY.2006 16:14:07

Page 71 of 120



Comment: 2nd comment ...
Date: 22.MAY.2006 16:19:23

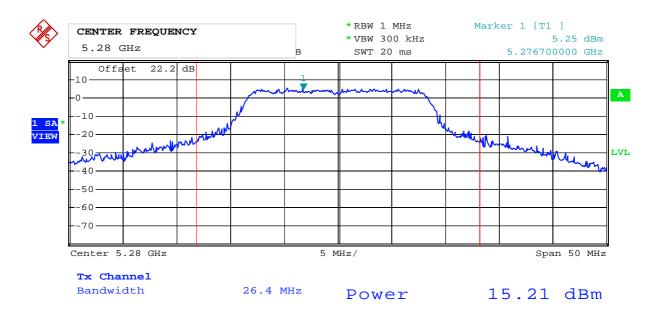
Page 72 of 120




Comment: 2nd comment ...
Date: 22.MAY.2006 16:47:50



Page 73 of 120


### For Frequency band (5250MHz ~ 5350MHz)



Comment: 2nd comment ...


Date: 22.MAY.2006 16:54:01

Page 74 of 120



Comment: 2nd comment ...
Date: 22.MAY.2006 17:00:05

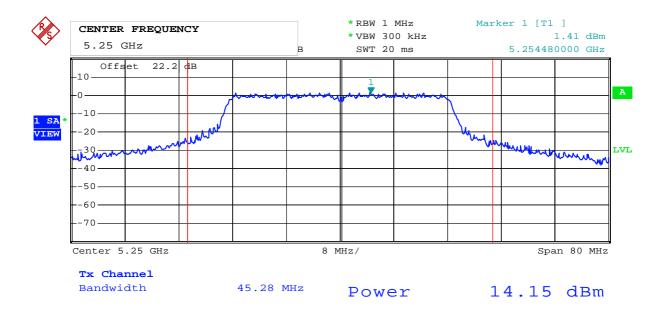
Page 75 of 120



Comment: 2nd comment ...
Date: 22.MAY.2006 17:06:49



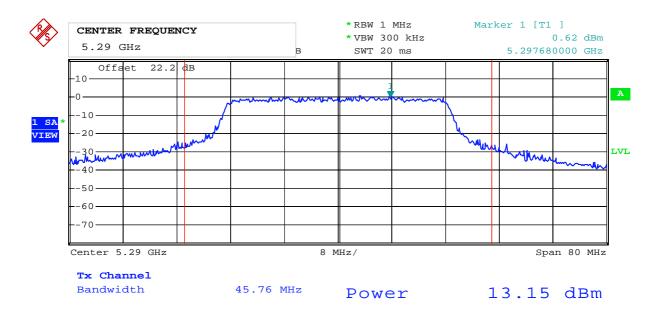
Page 76 of 120


#### Turbo mode



Comment: 2nd comment ...

Date: 22.MAY.2006 18:03:11


Page 77 of 120



Comment: 2nd comment ...

Date: 22.MAY.2006 18:07:29

Page 78 of 120



Comment: 2nd comment ...
Date: 22.MAY.2006 18:11:49



Page 79 of 120

## 10. Power Spectrum Density test (FCC 15.407)

#### **10.1 Operating environment**

Temperature: 25

Relative Humidity: 50 % Atmospheric Pressure: 1023 hPa

### 10.2 Test setup & procedure

The power spectrum density per FCC §15.407(a) was measured from the antenna port of the EUT using a 50ohm spectrum analyzer with the resolution bandwidth set at 1MHz, the video bandwidth set at 3MHz. Power spectrum density was read directly and cable loss (7.0dB)/external attenuator (20dB) correction was added to the reading to obtain power at the EUT antenna terminals.

#### Limit

| Operating Frequency (MHz) | Power density limit |
|---------------------------|---------------------|
| 5150~5250                 | < 4dBm/MHz          |
| 5250~5350, 5470~5725      | < 11dBm/MHz         |
| 5725~5825                 | < 17dBm/MHz         |

### 10.3 Measured data of Power Spectrum Density test results

#### For Frequency band (5180MHz ~ 5240MHz) Normal mode

| Channel | Frequency Measured level (MHz) (dBm) |       | Limit<br>(dBm) |
|---------|--------------------------------------|-------|----------------|
| 36      | 5180                                 | -4.37 | 4              |
| 40      | 5200                                 | -5.35 | 4              |
| 48      | 5240                                 | -4.74 | 4              |

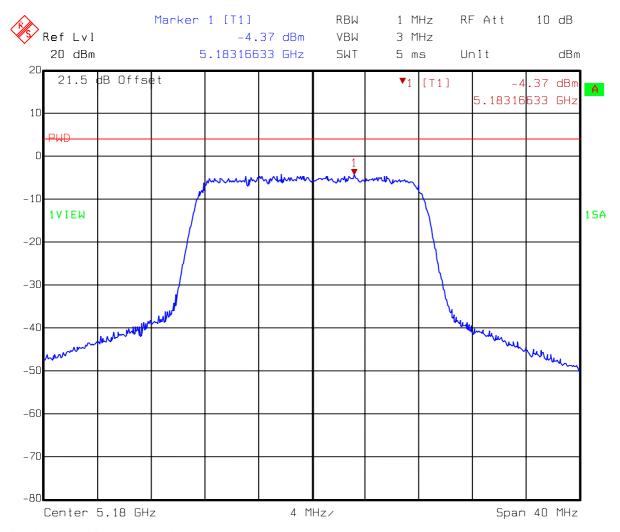


Page 80 of 120

# For Frequency band (5260MHz ~ 5320MHz) Normal mode

| Channel | Frequency (MHz) | Measured level (dBm) | Limit<br>(dBm) |  |
|---------|-----------------|----------------------|----------------|--|
| 52      | 5260            | -5.41                | 11             |  |
| 60      | 5300            | -1.53                | 11             |  |
| 64      | 5320            | -3.96                | 11             |  |

# For Frequency band ((5180MHz $\sim$ 5240MHz, 5260MHz $\sim$ 5320MHz) turbo mode


| Channel | Frequency (MHz) | Measured level (dBm) | Limit<br>(dBm) |  |
|---------|-----------------|----------------------|----------------|--|
| 42      | 5210            | -5.81                | 4              |  |
| 50      | 5250            | -5.86                | 11             |  |
| 58      | 5290            | -7.22                | 11             |  |

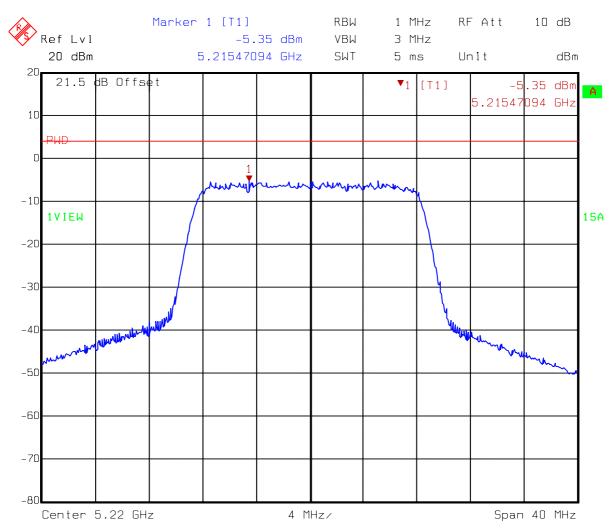
Please see the plot below.



Page 81 of 120

### For Frequency band (5180MHz ~ 5240MHz)




Title: Power Density

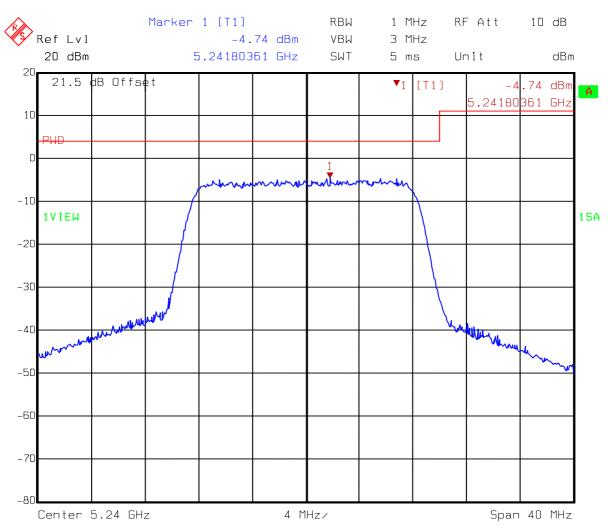
Comment A: 5180MHz at 802.11a mode

Date: 29.MAY 2006 15:12:07



Page 82 of 120




Title: Power Density

Comment A: 5220MHz at 802.11a mode

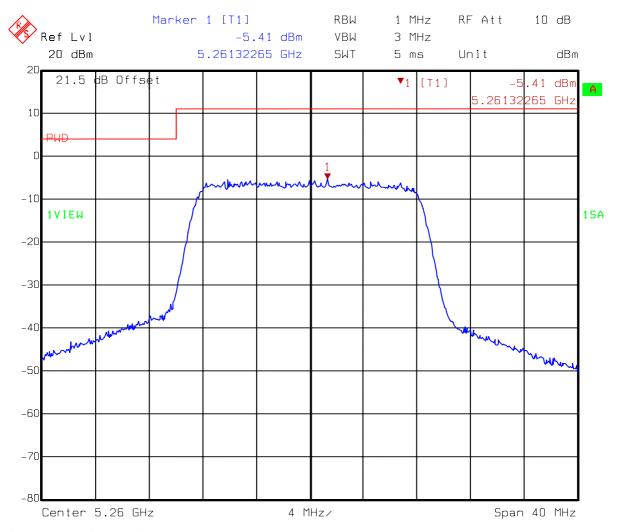
Date: 29.MAY 2006 15:13:32



Page 83 of 120



Title: Power Density


Comment A: 5240MHz at 802.11a mode

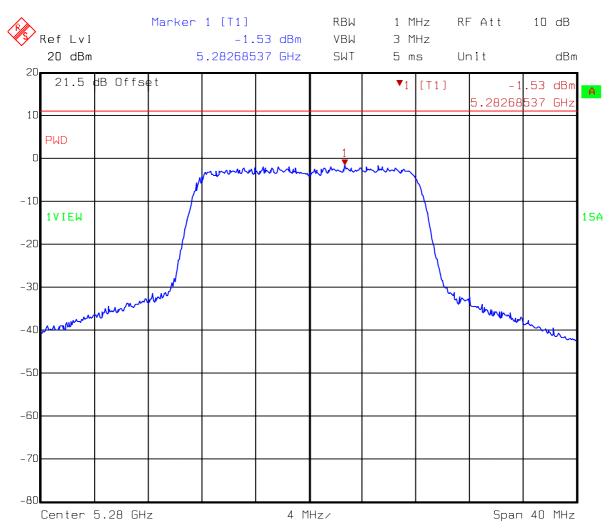
Date: 29.MAY 2006 15:15:06



Page 84 of 120

# For Frequency band (5260MHz ~ 5320MHz)




Title: Power Density

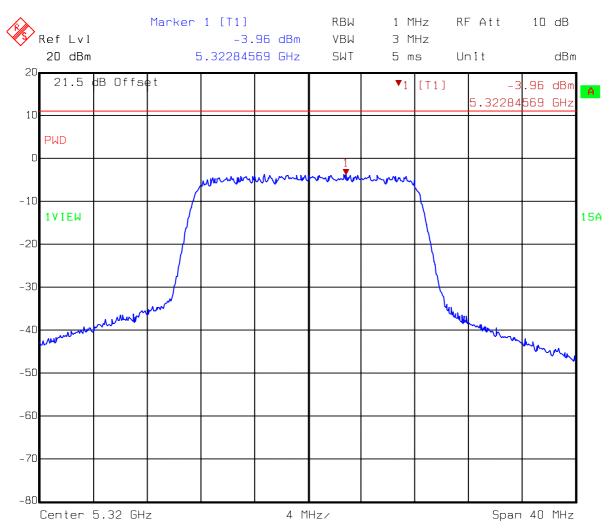
Comment A: 5260MHz at 802.11a mode

Date: 29.MAY 2006 15:17:02



Page 85 of 120




Title: Power Density

Comment A: 5280MHz at 802.11a mode

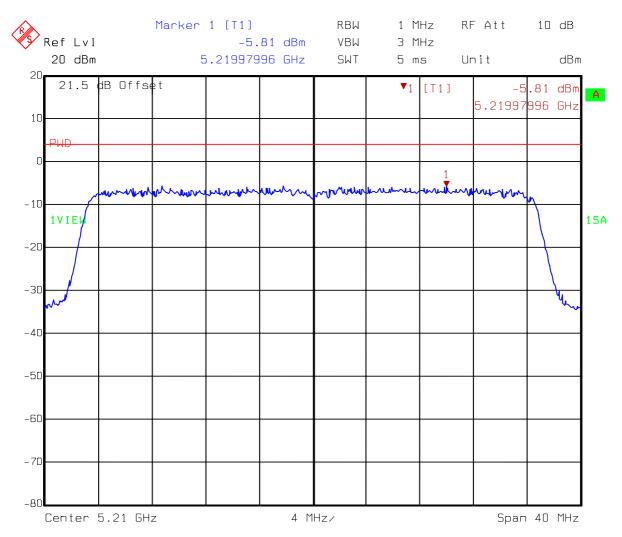
Date: 29.MAY 2006 15:18:46



Page 86 of 120



Title: Power Density


Comment A: 5320MHz at 802.11a mode

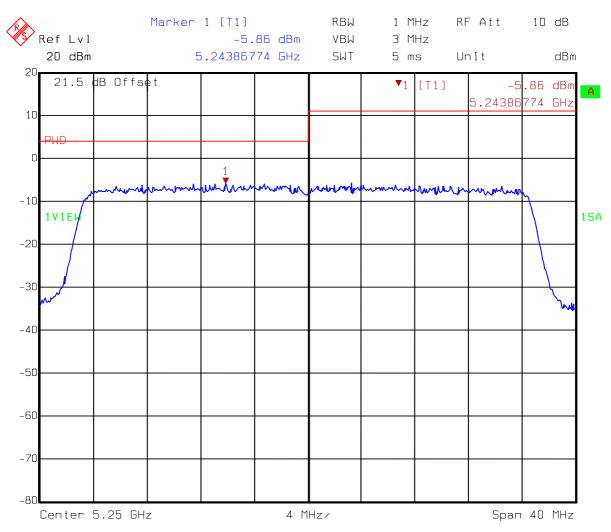
Date: 29.MAY 2006 15:20:38



Page 87 of 120

#### Turbo mode




Title: Power Density

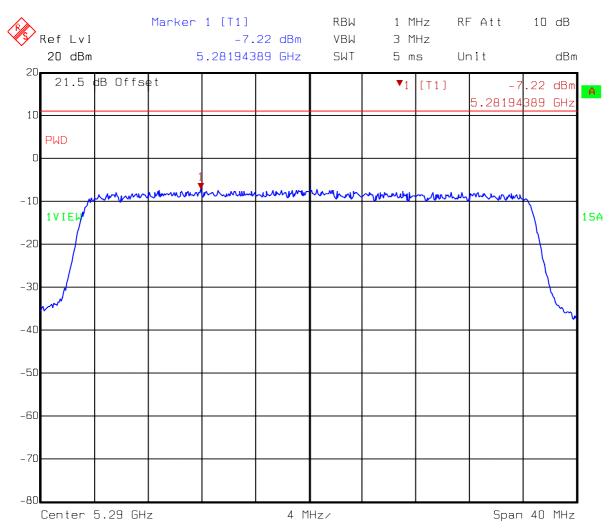
Comment A: 5210MHz at 802.11a mode (Turbo Mode)

Date: 29.MAY 2006 15:35:03



Page 88 of 120




Title: Power Density

Comment A: 5250MHz at 802.11a mode (Turbo Mode)

Date: 29.MAY 2006 15:36:41



Page 89 of 120



Title: Power Density

Comment A: 5290MHz at 802.11a mode (Turbo Mode)

Date: 29.MAY 2006 15:38:11



Page 90 of 120

### 11. Peak excursion to average ratio test (FCC 15.407)

#### 11.1 Operating environment

Temperature: 25

Relative Humidity: 50 % Atmospheric Pressure: 1023 hPa

# 11.2 Test setup & procedure

The power spectrum density per FCC §15.407(a)(6) was measured from the antenna port of the EUT. Using a 50ohm spectrum analyzer with the RBW=VBW=10MHz for peak measurement and RBW=1MHz, VBW=30kHz for average measurement. Peak excursion to average ratio was read directly.

#### Limit

| Operating Frequency (MHz) | Peak excursion to average ratio limit |
|---------------------------|---------------------------------------|
| 5150~5250                 | <13dB                                 |
| 5250~5350, 5470~5725      | <13dB                                 |
| 5725~5825                 | <13dB                                 |

#### 11.3 Measured data of Peak excursion to average ratio test results

### For Frequency band (5180MHz ~ 5240MHz) Normal mode

| Channel | Frequency (MHz) | Measured<br>peak excursion<br>(dB) | Limit (dB) |  |
|---------|-----------------|------------------------------------|------------|--|
| 36      | 5180            | 9.62                               | 13         |  |
| 40      | 5200            | 9.43                               | 13         |  |
| 48      | 5240            | 9.63                               | 13         |  |

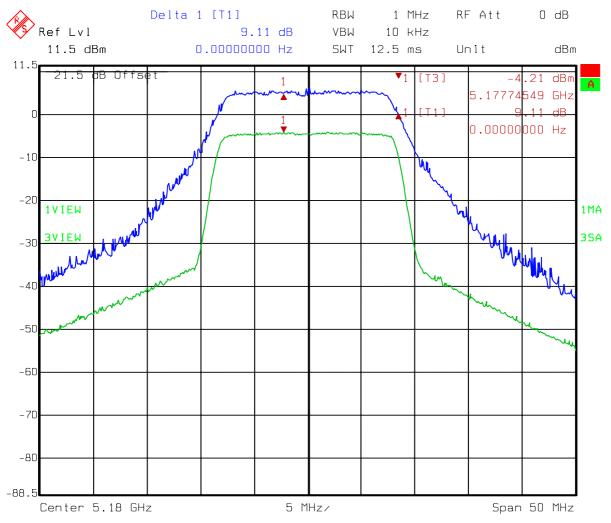
# For Frequency band (5260MHz ~ 5320MHz) Normal mode

| Channel | Frequency (MHz) | Measured<br>peak excursion<br>(dB) | Limit<br>(dB) |  |
|---------|-----------------|------------------------------------|---------------|--|
| 52      | 5260            | 9.28                               | 13            |  |
| 60      | 5300            | 9.38                               | 13            |  |
| 64      | 5320            | 9.49                               | 13            |  |



Page 91 of 120

# For Frequency band ((5180MHz $\sim$ 5240MHz, 5260MHz $\sim$ 5320MHz) Turbo mode

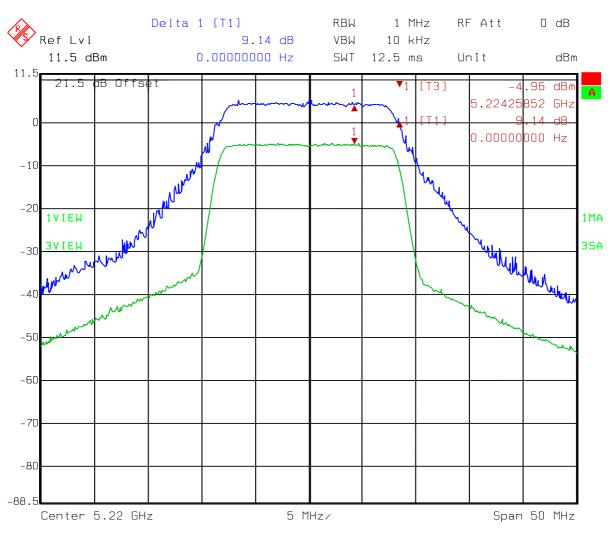

| Channel | Frequency<br>(MHz) | Measured<br>peak excursion<br>(dB) | Limit (dB) |  |
|---------|--------------------|------------------------------------|------------|--|
| 42      | 5210               | 8.12                               | 13         |  |
| 50      | 5250               | 9.14                               | 13         |  |
| 58      | 5290               | 6.44                               | 13         |  |

Please see the plot below.



Page 92 of 120

### For Frequency band (5180MHz ~ 5240MHz)

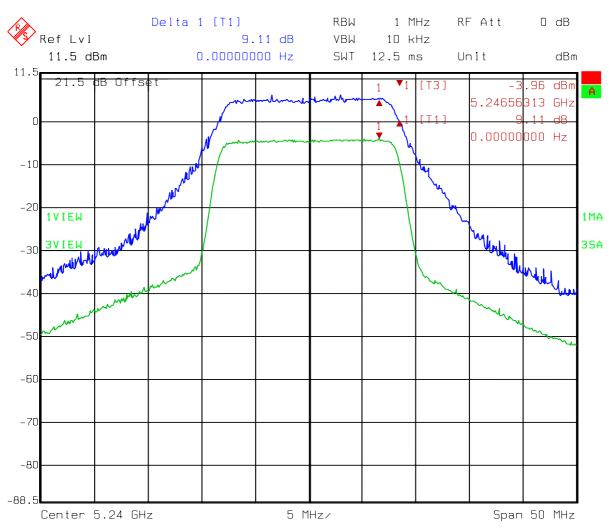



Title: Peak to Excursion Avg. rate
Comment A: 5180MHz at 802.11a mode

Date: 29.MAY 2006 15:12:38



Page 93 of 120



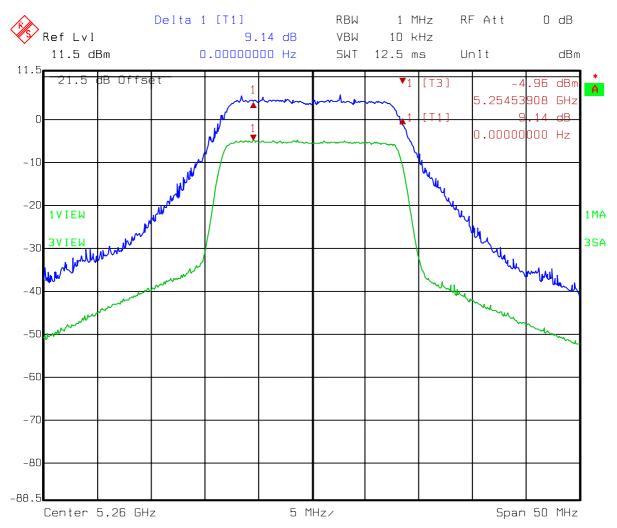

Title: Peak to Excursion Avg. rate
Comment A: 5220MHz at 802.11a mode

Date: 29.MAY 2006 15:14:03



Page 94 of 120



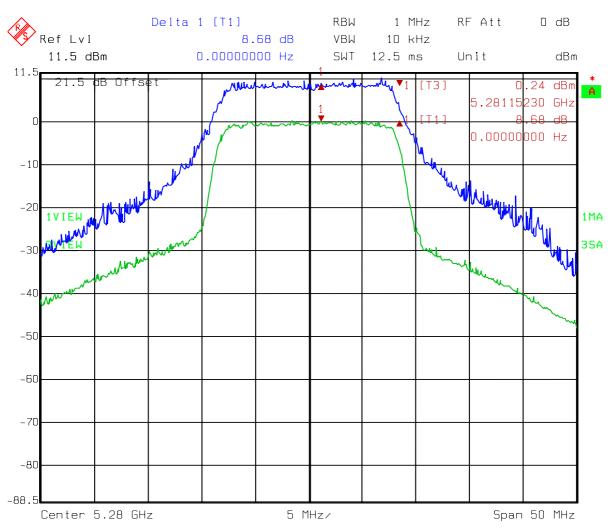

Title: Peak to Excursion Avg. rate
Comment A: 5240MHz at 802.11a mode

Date: 29.MAY 2006 15:15:36



Page 95 of 120

# For Frequency band (5260MHz ~ 5320MHz)

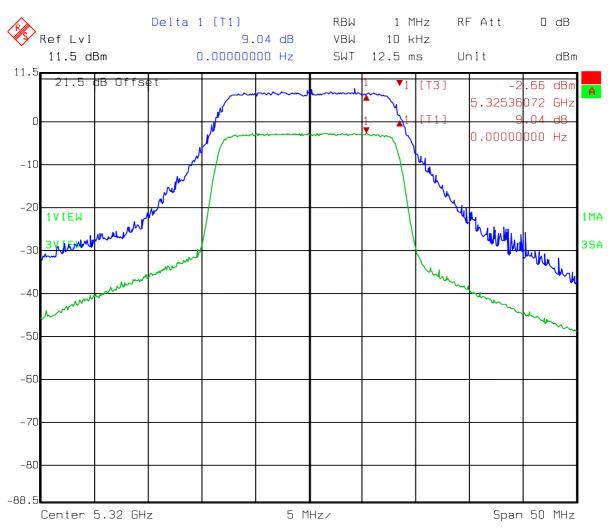



Title: Peak to Excursion Avg. rate
Comment A: 5260MHz at 802.11a mode

Date: 29.MAY 2006 15:17:32



Page 96 of 120



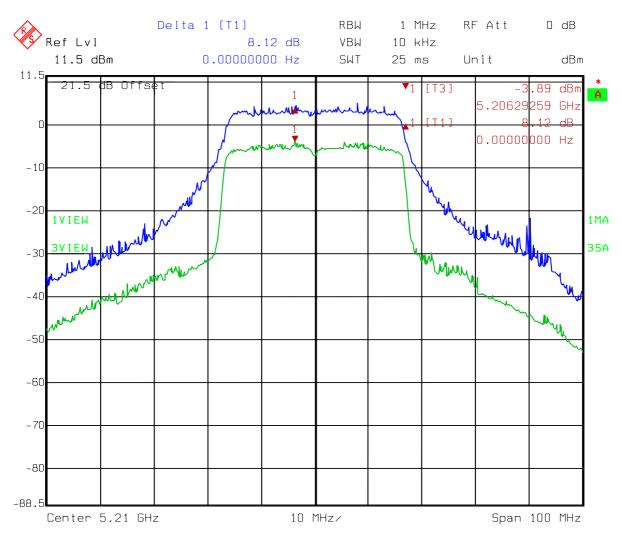

Title: Peak to Excursion Avg. rate
Comment A: 5280MHz at 802.11a mode

Date: 29.MAY 2006 15:19:17



Page 97 of 120




Title: Peak to Excursion Avg. rate
Comment A: 5320MHz at 802.11a mode

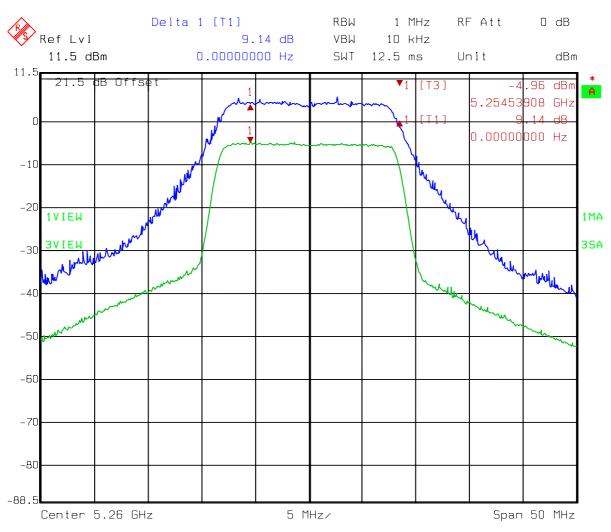
Date: 29.MAY 2006 15:21:09



Page 98 of 120

#### Turbo mode



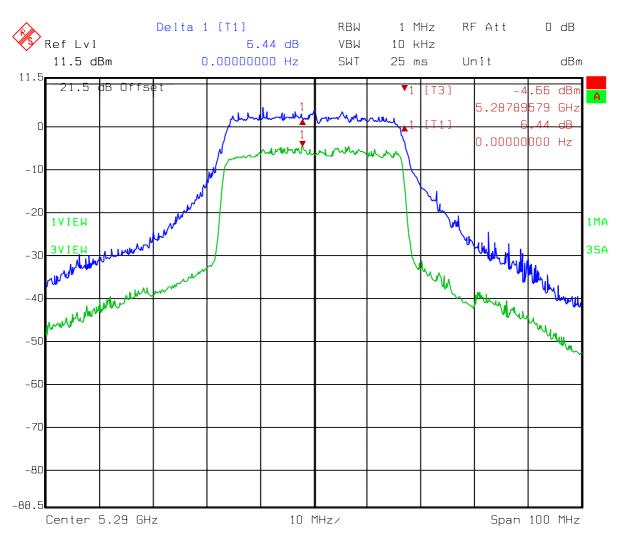

Title: Peak to Excursion Avg. rate

Comment A: 5210MHz at 802.11a mode (Turbo Mode)

Date: 29.MAY 2006 15:35:34



Page 99 of 120




Title: Peak to Excursion Avg. rate
Comment A: 5260MHz at 802.11a mode

Date: 29.MAY 2006 15:17:32



FCC ID.: OXVSSG5 Report No.: EME-060774 Page 100 of 120

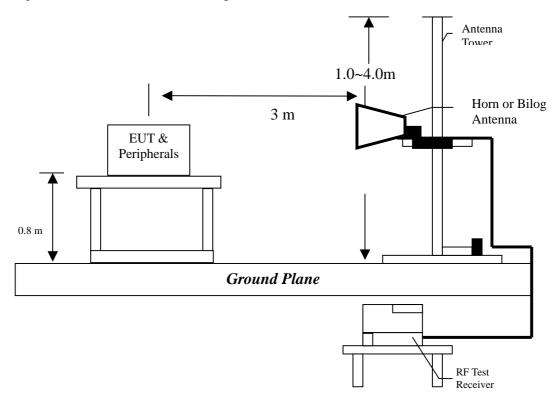


Title: Peak to Excursion Avg. rate
Comment A: 5290MHz at 802.11a mode (Turbo Mode)

Date: 29.MAY 2006 15:38:42



Page 101 of 120


#### 12. Radiated Emission test (FCC 15.205 & 15.209)

#### **12.1 Operating environment**

Temperature: 23
Relative Humidity: 58 %
Atmospheric Pressure 1023 hPa

#### 12.2 Test setup & procedure

The Diagram below shows the test setup, which is utilized to make these measurements.



Radiated emission measurements were performed from 30MHz to tenth harmonic or 40GHz. The EUT for testing is arranged on a wooden turntable. If some peripherals apply to the EUT, the peripherals will be connected to EUT and the whole system. During the test, all cables were arranged to produce worst-case emissions. The signal is maximized through rotation. The height of antenna and polarization is changing constantly for exploring for maximum signal level. The height of antenna can be up to 4 meters and down to 1 meter.



FCC ID.: OXVSSG5

Report No.: EME-060774

Page 102 of 120

The measurement for radiated emission will be done at the distance of three meters unless the signal level is too low to measure at that distance. In the case of the reading under noise floor, a pre-amplifier is used and/or the test is conducted at a closer distance. And then all readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance.

#### 12.3 Emission limits

The spurious Emission shall test through the 10th harmonic. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

| Frequency | Limits        |
|-----------|---------------|
| (MHz)     | (dB µ V/m@3m) |
| 30-88     | 40            |
| 88-216    | 43.5          |
| 216-960   | 46            |
| Above 960 | 54            |

#### Remark:

- 1. In the above table, the tighter limit applies at the band edges.
- 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

Uncertainty was calculated in accordance with NAMAS NIS 81.

Expanded uncertainty (k=2) of radiated emission measurement is  $\pm 3.078$  dB.

Expanded uncertainty (k=2) of conducted emission measurement is  $\pm 2.02$  dB.



Page 103 of 120

## 12.4 Radiated spurious emission test data

# 12.4.1 Measurement results: frequencies equal to or less than 1 GHz

The test was performed on EUT under 802.11a continuously transmitting mode. Channel 36, 40, 44, 48, 52, 56, 60 and 64 were verified. The worst case occurred at 802.11a Tx channel 56.

EUT : SSG 5

Worst Case : 802.11a Tx at channel 56

| Antenna  | Freq.   | Receiver | Corr.  | Reading | Corrected | Limit    | Margin |
|----------|---------|----------|--------|---------|-----------|----------|--------|
| Polariz. |         |          | Factor |         | Level     | @ 3 m    |        |
| (V/H)    | (MHz)   | Detector | (dB/m) | (dBuV)  | (dBuV/m)  | (dBuV/m) | (dB)   |
| V        | 91.110  | QP       | 7.38   | 19.28   | 26.66     | 43.50    | -16.85 |
| V        | 198.780 | QP       | 12.00  | 10.20   | 22.20     | 43.50    | -21.30 |
| V        | 299.660 | QP       | 13.95  | 12.02   | 25.97     | 46.00    | -20.03 |
| V        | 364.650 | QP       | 15.06  | 10.45   | 25.51     | 46.00    | -20.49 |
| V        | 495.600 | QP       | 18.43  | 5.58    | 24.01     | 46.00    | -22.00 |
| V        | 630.430 | QP       | 21.53  | 5.86    | 27.39     | 46.00    | -18.61 |
| Н        | 132.820 | QP       | 12.32  | 11.13   | 23.45     | 43.50    | -20.05 |
| Н        | 232.730 | QP       | 11.74  | 11.10   | 22.84     | 46.00    | -23.16 |
| Н        | 299.660 | QP       | 14.17  | 12.97   | 27.14     | 46.00    | -18.87 |
| Н        | 331.670 | QP       | 14.40  | 12.29   | 26.69     | 46.00    | -19.32 |
| Н        | 365.620 | QP       | 15.48  | 18.48   | 33.96     | 46.00    | -12.05 |
| Н        | 872.930 | QP       | 24.12  | 6.17    | 30.29     | 46.00    | -15.72 |

#### Remark:

- 1. Corr. Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Corr. Factor



FCC ID.: OXVSSG5

Report No.: EME-060774

Page 104 of 120

### 12.4.2 Measurement results: frequency above 1GHz

The test was performed on EUT under 802.11a continuously transmitting mode. Channel 36, 40, 44, 48, 52, 56, 60 and 64 were verified. The worst case occurred at 802.11a Tx channel 36.

EUT : SSG 5

Worst Case : 802.11a Tx at channel 36

| Frequency | Spectrum | Antenna  | Preamp. | Correction | Reading | Corrected | Limit    | Margin |
|-----------|----------|----------|---------|------------|---------|-----------|----------|--------|
|           | Analyzer | Polariz. | Gain    | Factor     |         | Level     | @ 3 m    |        |
| (MHz)     | Detector | (H/V)    | (dB)    | (dB/m)     | (dBuV)  | (dBuV/m)  | (dBuV/m) | (dB)   |
| 10364.00  | PK       | V        | 33.72   | 48.15      | 44.15   | 58.58     | 74       | -15.42 |
| 10364.00  | AV       | V        | 33.72   | 48.15      | 30.76   | 45.19     | 54       | -8.81  |

#### Remark:

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1GHz to 40GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

#### The noise floor are listed as below:

For PK:

1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV 26.5GHz-40GHz: 42dBuV

For AV:

1GHz-3GHz: 10dBuV 3GHz-14GHz: 16dBuV 14GHz-26.5GHz: 28dBuV 26.5GHz-40GHz: 29dBuV



Page 105 of 120

# 13. Emission on the band edge §FCC 15.205

The measurement was made to the average and peak field strength of the fundamental frequency. And the spurious emission in the restrict band must also comply with the FCC subpart C 15.209.

### 13.1 Operating environment

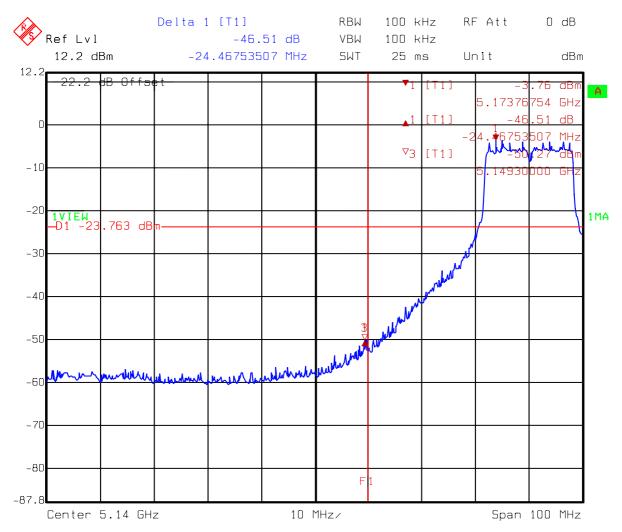
Temperature: 22

Relative Humidity: 56 % Atmospheric Pressure 1023 hPa

#### 13.2 Test setup & procedure

The output of EUT was connected to spectrum analyzer via a 50ohm cable.

The setting of spectrum analyzer is:


Peak: RBW = 100kHz; VBW = 100kHzAverage: RBW = 1MHz; VBW = 10Hz



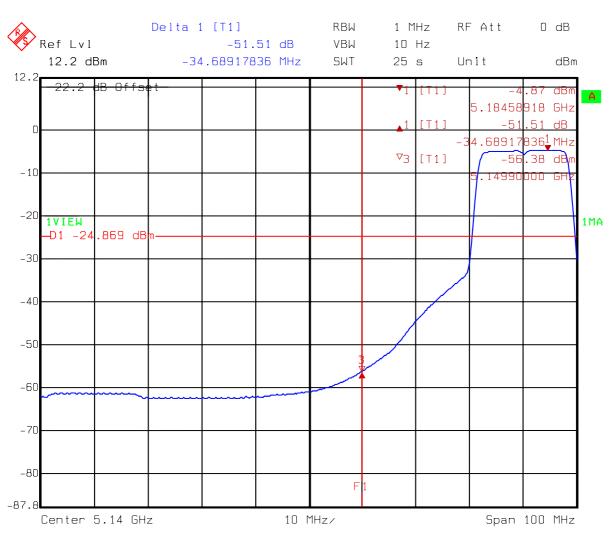
FCC ID.: OXVSSG5 Report No.: EME-060774 Page 106 of 120

#### 13.3 Test Result

#### 13.3.1 Conducted Method



Title: Band Edge


Comment A: Channel 036 at 802.11a mode

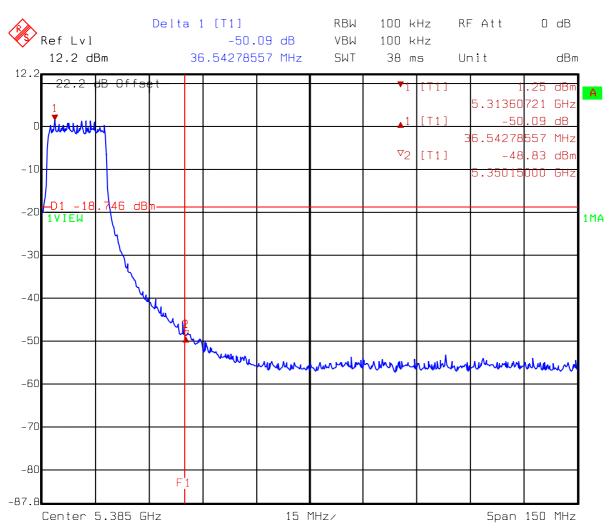
F1=5150MHz (Peak Detect) 15.MAY 2006 21:11:03

Date:



FCC ID.: OXVSSG5 Report No.: EME-060774 Page 107 of 120




Title: Band Edge

Comment A: Channel 036 at 802.11a mode F1=5150MHz (Average Detect) 15.MAY 2006 21:11:52

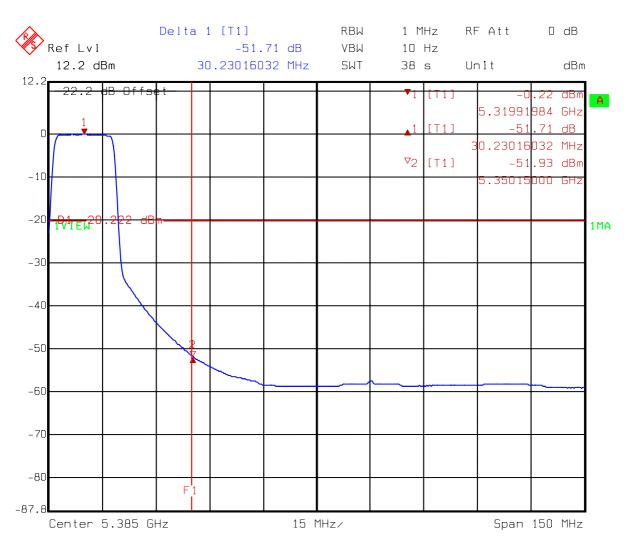
Date:



Page 108 of 120



Title: Band Edge


Comment A: Channel 064 at 802.11a mode

F1=5350MHz (Peak Detect)

Date: 15.MAY 2006 21:01:31



FCC ID.: OXVSSG5 Report No.: EME-060774 Page 109 of 120



Title: Band Edge

Comment A: Channel 064 at 802.11a mode F1=5350MHz (Average Detect)

Date: 15.MAY 2006 21:02:34



FCC ID.: OXVSSG5

Report No.: EME-060774

Page 110 of 120

# 13.3.2 Radiated Method

# Test Mode: 802.11a (OFDM Modulation) operating mode

|           |          | Radiated<br>Method                                          | Conducted<br>Method                                                       | The Max.                                             |                            |                |
|-----------|----------|-------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------|----------------------------|----------------|
| Channel   | Detector | Max. Field<br>Strength of<br>Fundamental<br>@3m<br>(dBuV/m) | Between Carrier Max. Power and Local Max. Emission in Restrict Band (dBc) | Field<br>Strength in<br>Restrict<br>Band<br>(dBuV/m) | Limit<br>@ 3 m<br>(dBuV/m) | Margin<br>(dB) |
|           |          | A                                                           | В                                                                         | С                                                    | D                          | Е              |
| 36        | PK       | 113.68                                                      | 46.51                                                                     | 67.17                                                | 74                         | -6.83          |
| (5180MHz) | AV       | 102.21                                                      | 51.51                                                                     | 50.7                                                 | 54                         | -3.3           |
| 64        | PK       | 114.17                                                      | 50.09                                                                     | 64.08                                                | 74                         | -9.92          |
| (5320MHz) | AV       | 103.69                                                      | 51.71                                                                     | 51.98                                                | 54                         | -2.02          |

Remark: 1. C = A - B

2. E = C - D



Page 111 of 120

# 14. Power Line Conducted Emission test §FCC 15.207

# **14.1 Operating environment**

Temperature: 23
Relative Humidity: 58 %
Atmospheric Pressure 1023 hPa

# 14.2 Test setup & procedure



The EUT are connected to the main power through a line impedance stabilization network (LISN). This provides a 50 ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination.

Both sides (Line and Neutral) of AC line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4/2003 on conducted measurement. The bandwidth of the field strength meter (R & S Test Receiver ESCS 30) is set at 9kHz.

The EUT configuration please refer to the "Conducted set-up photo.pdf".



Page 112 of 120

# 14.3 Emission limit

| Freq.     | Conducted | Limit (dBuV) |
|-----------|-----------|--------------|
| (MHz)     | Q.P.      | Ave.         |
| 0.15~0.50 | 66 – 56*  | 56 – 46*     |
| 0.50~5.00 | 56        | 46           |
| 5.00~30.0 | 60        | 50           |

<sup>\*</sup>Decreases with the logarithm of the frequency.

# 14.4 Uncertainty of Conducted Emission

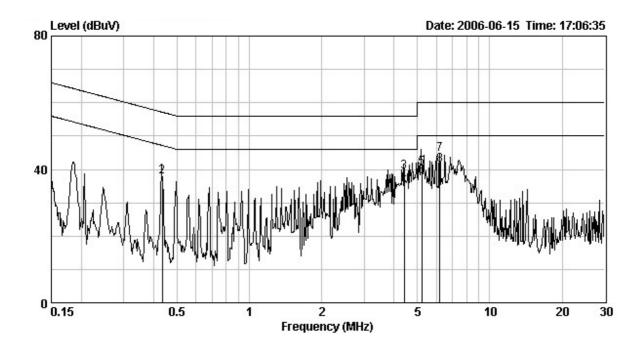
Expanded uncertainty (k=2) of conducted emission measurement is  $\pm 2.6$  dB.



Page 113 of 120

# 14.5 Power Line Conducted Emission test data

Phase: Line Model No.: SSG 5


Test Condition: Normal operating mode

With module: Ethernet

With Adapter: Fairway, VAN40B-12B

| Frequency | Corr.<br>Factor | Level<br>Qp | Limit<br>Qp | Level<br>AV | Limit<br>Av |        | rgin<br>dB) |
|-----------|-----------------|-------------|-------------|-------------|-------------|--------|-------------|
| (MHz)     | (dB)            | (dBuV)      | (dBuV)      | (dBuV)      | (dBuV)      | Qp     | Av          |
|           |                 | 2           |             |             |             |        |             |
| 0.434     | 0.10            | 38.23       | 57.17       | 37.68       | 47.17       | -18.94 | -9.49       |
| 4.399     | 0.26            | 39.26       | 56.00       | 36.23       | 46.00       | -16.74 | -9.77       |
| 5.204     | 0.29            | 40.47       | 60.00       | 37.85       | 50.00       | -19.53 | -12.15      |
| 6.197     | 0.34            | 44.57       | 60.00       | 41.41       | 50.00       | -15.43 | -8.59       |

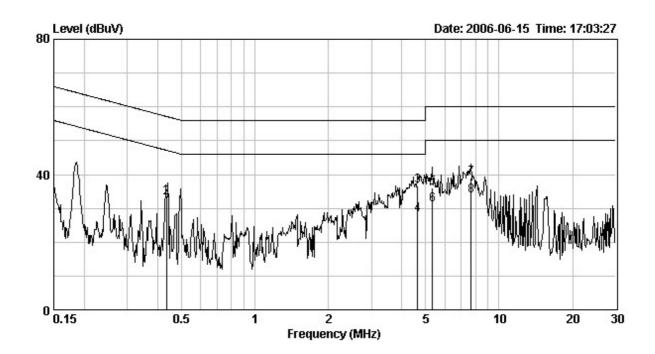
- 1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)





Page 114 of 120

Phase: Neutral Model No.: SSG 5


Test Condition: Normal operating mode

With module: Ethernet

With Adapter: Fairway, VAN40B-12B

| Frequency | Corr.<br>Factor | Level<br>Qp | Limit<br>Qp | Level<br>AV | Limit<br>Av |        | rgin<br>dB) |
|-----------|-----------------|-------------|-------------|-------------|-------------|--------|-------------|
| (MHz)     | (dB)            | (dBuV)      | (dBuV)      | (dBuV)      | (dBuV)      | Qp     | Av          |
|           |                 |             |             |             |             |        |             |
| 0.433     | 0.10            | 33.53       | 57.19       | 33.00       | 47.19       | -23.66 | -14.19      |
| 4.644     | 0.25            | 36.68       | 56.00       | 28.15       | 46.00       | -19.32 | -17.85      |
| 5.326     | 0.25            | 36.10       | 60.00       | 31.05       | 50.00       | -23.90 | -18.95      |
| 7.680     | 0.28            | 38.95       | 60.00       | 33.72       | 50.00       | -21.05 | -16.28      |

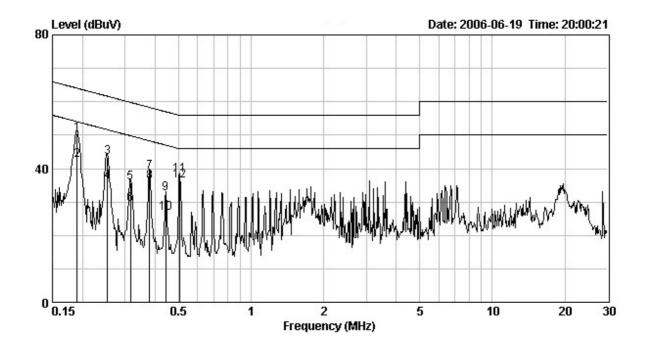
- 1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)





Page 115 of 120

Phase: Line Model No.: SSG 5


Test Condition: Normal operating mode

With module: Ethernet

With Adapter: LEI, NU40-2120333-I3

| Frequency | Corr.<br>Factor | Level<br>Qp | Limit<br>Qp | Level<br>AV | Limit<br>Av |        | rgin<br>dB) |
|-----------|-----------------|-------------|-------------|-------------|-------------|--------|-------------|
| (MHz)     | (dB)            | (dBuV)      | (dBuV)      | (dBuV)      | (dBuV)      | Qp     | Av          |
|           |                 |             |             |             |             |        |             |
| 0.190     | 0.10            | 50.53       | 64.02       | 42.37       | 54.02       | -13.49 | -11.65      |
| 0.254     | 0.10            | 43.36       | 61.63       | 35.98       | 51.63       | -18.27 | -15.65      |
| 0.317     | 0.10            | 35.65       | 59.79       | 29.30       | 49.79       | -24.14 | -20.49      |
| 0.380     | 0.10            | 38.85       | 58.29       | 35.92       | 48.29       | -19.44 | -12.37      |
| 0.443     | 0.10            | 32.48       | 57.00       | 26.75       | 47.00       | -24.52 | -20.25      |
| 0.507     | 0.10            | 38.00       | 56.00       | 36.47       | 46.00       | -18.00 | -9.53       |

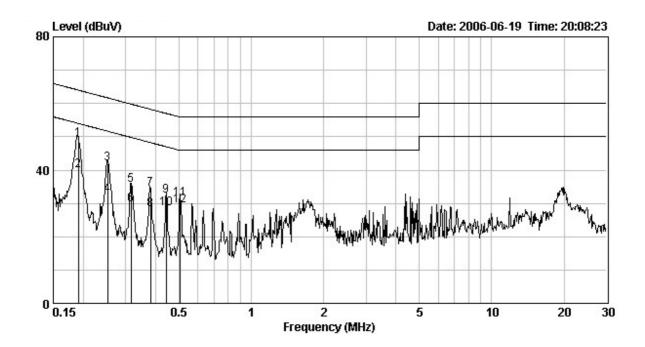
- 1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)





Page 116 of 120

Phase: Neutral Model No.: SSG 5


Test Condition: Normal operating mode

With module: Ethernet

With Adapter: LEI, NU40-2120333-I3

| Frequency | Corr.<br>Factor | Level<br>Qp | Limit<br>Qp | Level<br>AV | Limit<br>Av |        | rgin<br>dB) |
|-----------|-----------------|-------------|-------------|-------------|-------------|--------|-------------|
| (MHz)     | (dB)            | (dBuV)      | (dBuV)      | (dBuV)      | (dBuV)      | Qp     | Av          |
|           |                 |             |             |             |             |        |             |
| 0.191     | 0.10            | 49.18       | 64.00       | 39.87       | 54.00       | -14.82 | -14.13      |
| 0.253     | 0.10            | 41.88       | 61.66       | 32.65       | 51.66       | -19.78 | -19.01      |
| 0.316     | 0.10            | 35.39       | 59.81       | 29.61       | 49.81       | -24.42 | -20.20      |
| 0.380     | 0.10            | 34.18       | 58.27       | 28.19       | 48.27       | -24.09 | -20.08      |
| 0.443     | 0.10            | 32.16       | 57.00       | 28.46       | 47.00       | -24.84 | -18.54      |
| 0.506     | 0.10            | 31.40       | 56.00       | 29.16       | 46.00       | -24.60 | -16.84      |

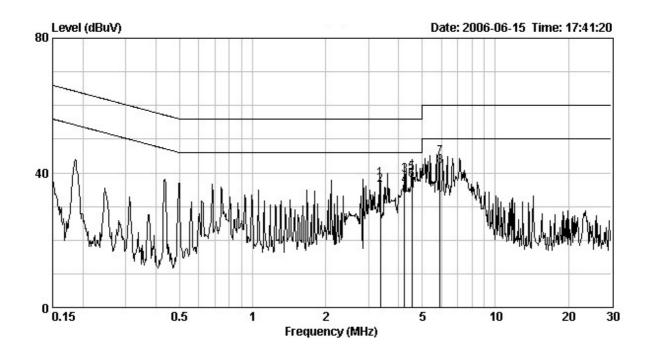
- 1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)





Page 117 of 120

Phase: Line Model No.: SSG 5


Test Condition: Normal operating mode

With module: V.92

With Adapter: Fairway, VAN40B-12B

| Frequency | Corr.<br>Factor | Level<br>Qp | Limit<br>Qp | Level<br>AV | Limit<br>Av |        | rgin<br>dB) |
|-----------|-----------------|-------------|-------------|-------------|-------------|--------|-------------|
| (MHz)     | (dB)            | (dBuV)      | (dBuV)      | (dBuV)      | (dBuV)      | Qp     | Av          |
|           |                 |             |             |             |             |        |             |
| 3.359     | 0.20            | 38.22       | 56.00       | 36.34       | 46.00       | -17.78 | -9.66       |
| 4.231     | 0.25            | 39.36       | 56.00       | 35.91       | 46.00       | -16.64 | -10.09      |
| 4.541     | 0.26            | 39.90       | 56.00       | 37.67       | 46.00       | -16.10 | -8.33       |
| 5.907     | 0.32            | 44.41       | 60.00       | 42.01       | 50.00       | -15.59 | -7.99       |

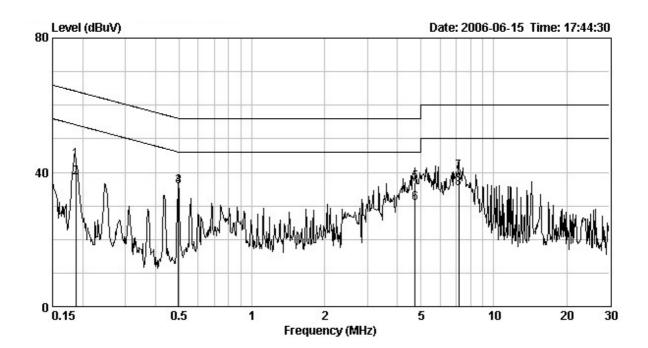
- 1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)





Page 118 of 120

Phase: Neutral Model No.: SSG 5


Test Condition: Normal operating mode

With module: V.92

With Adapter: Fairway, VAN40B-12B

| Frequency | Corr.<br>Factor | Level<br>Qp | Limit<br>Qp | Level<br>AV | Limit<br>Av |        | rgin<br>dB) |
|-----------|-----------------|-------------|-------------|-------------|-------------|--------|-------------|
| (MHz)     | (dB)            | (dBuV)      | (dBuV)      | (dBuV)      | (dBuV)      | Qp     | Av          |
|           |                 |             |             |             |             |        |             |
| 0.187     | 0.10            | 43.65       | 64.17       | 38.42       | 54.17       | -20.52 | -15.75      |
| 0.497     | 0.10            | 35.72       | 56.05       | 35.67       | 46.05       | -20.33 | -10.38      |
| 4.726     | 0.25            | 36.86       | 56.00       | 30.63       | 46.00       | -19.14 | -15.37      |
| 7.152     | 0.27            | 40.27       | 60.00       | 35.22       | 50.00       | -19.73 | -14.78      |

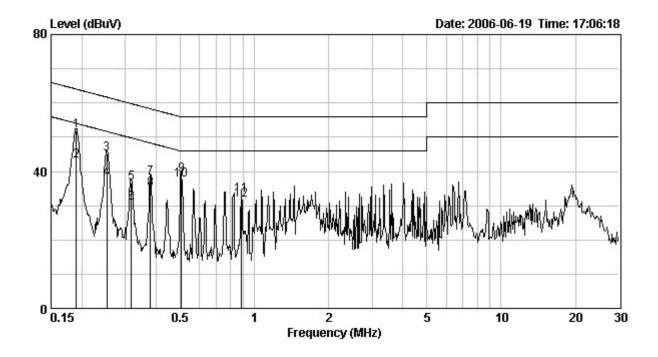
- 1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)





Page 119 of 120

Line Phase: Model No.: SSG 5


Test Condition: Normal operating mode

With module: V.92

With Adapter: LEI, NU40-2120333-I3

| Frequency | Corr.<br>Factor | Level<br>Qp | Limit<br>Qp | Level<br>AV | Limit<br>Av |        | rgin<br>dB) |
|-----------|-----------------|-------------|-------------|-------------|-------------|--------|-------------|
| (MHz)     | (dB)            | (dBuV)      | (dBuV)      | (dBuV)      | (dBuV)      | Qp     | Av          |
|           |                 |             |             |             |             |        |             |
| 0.190     | 0.10            | 51.75       | 64.04       | 43.11       | 54.04       | -12.29 | -10.93      |
| 0.253     | 0.10            | 45.13       | 61.67       | 37.71       | 51.67       | -16.54 | -13.96      |
| 0.317     | 0.10            | 36.72       | 59.79       | 30.71       | 49.79       | -23.07 | -19.08      |
| 0.379     | 0.10            | 38.17       | 58.30       | 34.88       | 48.30       | -20.13 | -13.42      |
| 0.507     | 0.10            | 39.04       | 56.00       | 37.65       | 46.00       | -16.96 | -8.35       |
| 0.887     | 0.10            | 33.20       | 56.00       | 31.61       | 46.00       | -22.80 | -14.39      |

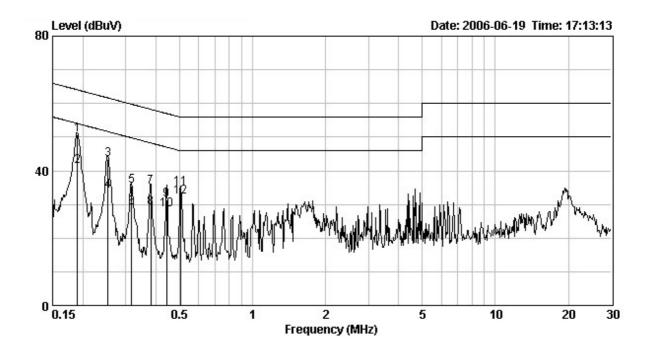
- 1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)





Page 120 of 120

Phase: Neutral Model No.: SSG 5


Test Condition: Normal operating mode

With module: V.92

With Adapter: LEI, NU40-2120333-I3

| Frequency | Corr.<br>Factor | Level<br>Qp | Limit<br>Qp | Level<br>AV | Limit<br>Av |        | rgin<br>dB) |
|-----------|-----------------|-------------|-------------|-------------|-------------|--------|-------------|
| (MHz)     | (dB)            | (dBuV)      | (dBuV)      | (dBuV)      | (dBuV)      | Qp     | Av          |
|           |                 |             |             |             |             |        |             |
| 0.190     | 0.10            | 50.55       | 64.06       | 41.45       | 54.06       | -13.51 | -12.61      |
| 0.254     | 0.10            | 43.24       | 61.63       | 34.13       | 51.63       | -18.39 | -17.50      |
| 0.317     | 0.10            | 35.33       | 59.78       | 29.06       | 49.78       | -24.45 | -20.72      |
| 0.381     | 0.10            | 35.06       | 58.26       | 29.09       | 48.26       | -23.20 | -19.17      |
| 0.443     | 0.10            | 31.40       | 57.00       | 28.38       | 47.00       | -25.60 | -18.62      |
| 0.508     | 0.10            | 34.83       | 56.00       | 32.22       | 46.00       | -21.17 | -13.78      |

- 1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

