

FCC - TEST REPORT

Report Number	:	68.950.20.0307.01	1	Date of Issue	·	July 23, 2020	
Model	<u>:</u>	AMW839R					
Product Type	<u>:</u>	Wireless receiver					
Applicant	<u>:</u>	Targus Internation	al LLC				
Address	<u>:</u>	: 1211 North Miller Street Anaheim, California United States 92806					
Manufacturer	<u>:</u>	Shenzhen Wintop	Electroni	ics Co., Ltd.			
	:	Room 402 Building	g 1 No.34	4 Xinhe Road,	No 46	Xinhe Road, Floor	
	:	4 No.50 Xinhe Roa	ad Shang	gMuGu Comm	unity, F	PingHu Street,	
Address	:	LongGang District,	, Shenzh	en City, Guan	gdong	Province, China.	
Test Result	:	■ Positive □	Negativ	'e			
Total pages including							
Appendices	:	25					

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

1 Table of Contents

1 Table of Contents	2
2 Details about the Test Laboratory	
3 Description of the Equipment Under Test	
4 Summary of Test Standards	5
5 Summary of Test Results	6
6 General Remarks	
7 Test setups	8
8 Technical Requirement	9
8.1 Conducted Emission	9
8.2 Field strength of emissions and Restricted bands	12
8.3 Out of Band Emissions	17
8.4 20dB Bandwidth & 99% Occupied Bandwidth	20
9 Test equipment lists	24
10 System Measurement Uncertainty	25

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12&13, Zhiheng Wisdomland Business Park,

Nantou Checkpoint Road 2, Nanshan District,

Shenzhen City, 518052,

P. R. China

FCC Registration

514049

Number:

FCC Designation

CN5009

Number:

Telephone: 86 755 8828 6998 Fax: 86 755 8828 5299

3 Description of the Equipment Under Test

Description of the Equipment Under Test

Product: Wireless receiver

Model no.: AMW839R

FCC ID: OXM000115

Options and accessories: NIL

Ratings: 5VDC (Supplied by USB Port)

RF Transmission

Frequency:

2405MHz-2475MHz

Modulation: GFSK

Antenna Type: Integrated Antenna

Antenna Gain: 0dBi

Description of the EUT: The product is a Wireless receiver that operated at 2.4GHz,

The TX and RX range is 2405MHz-2475MHz

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	RATINGS	MODEL NO.

4 Summary of Test Standards

Test Standards				
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES			
10-1-2019 Edition	Subpart C - Intentional Radiators			

All the test methods were according to ANSI C63.10-2013.

5 Summary of Test Results

Technical Requirements								
FCC Part 15 Subpart C 15.249								
Test Condition	Pages	Test	Test Result					
		Site	Site Pass Fail N					
15.207 & RSS-Gen A8.8	9	Site 1	\boxtimes					
Conducted emission AC power port								
§15.205(a), §15.209(a), §15.249(a), §15.249(c)	12	Site 1	\boxtimes					
Field strength of emissions and Restricted bands								
§15.249(d) Out of band emissions	17	Site 1						
FCC §15.215(c) 20dB bandwidth	20	Site 1						
99% Occupied Bandwidth	20	Site i		Ш	Ш			
•	0							
§15.203 Antenna requirement	See r	ote 2						

Remark 1: N/A- Not Applicable;

Note 1: The EUT is not intended to operate from the AC power lines;

Note 2: The EUT used an integral PCB antenna, which gain is 0dBi. According to §15.203, it is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: OXM000115 complies with Sectio, 15.205, 15.209, 15.249 of the FCC Part 15, Subpart C Rules.

SUMMARY:

All tests according to the regulations cited on page 6 were

- Performed
- ☐ Not Performed

The Equipment Under Test

- - Fulfills the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date: June 10, 2020

Testing Start Date: June 10, 2020

Testing End Date: July 21, 2020

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

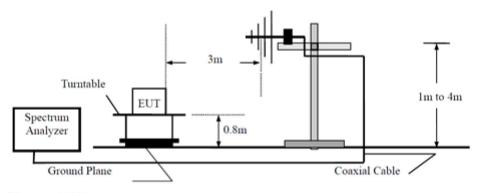
Reviewed by: Prepared by: Tested by:

John Zhi EMC Project Manager

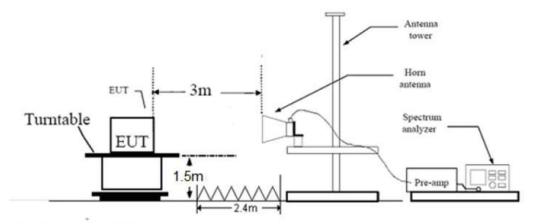
Johnshi

Mark Chen
EMC Project Engineer

Mark chen

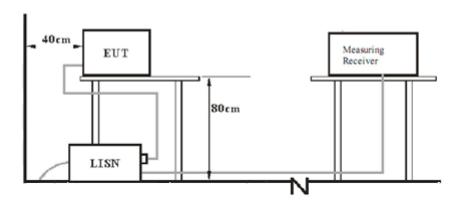

Tree Zhan EMC Test Engineer

Tree Them



7 Test setups

7.1 Radiated test setups Below 1GHz


Above 1GHz

7.2 Conducted RF test setups

7.3 AC Power Line Conducted Emission test setups

8 Technical Requirement

8.1 Conducted Emission

Test Method

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted

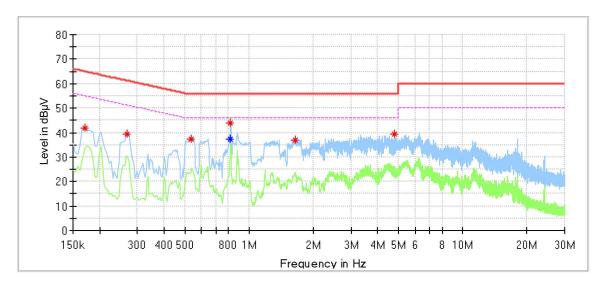
by Average Detector and Quasi-Peak Detector Function respectively.

Limit

Frequency	QP Limit	AV Limit
MHz	dΒμV	dΒμV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

^{*}Decreasing linearly with logarithm of the frequency.

Conducted Emission Test 0.15MHz - 30MHz


EUT: Wireless Receiver

M/N: AMW839R

Operating Condition: TX

Test Specification: Power Line, Live

Comment: 5VDC for Wireless receiver

Critical Freqs

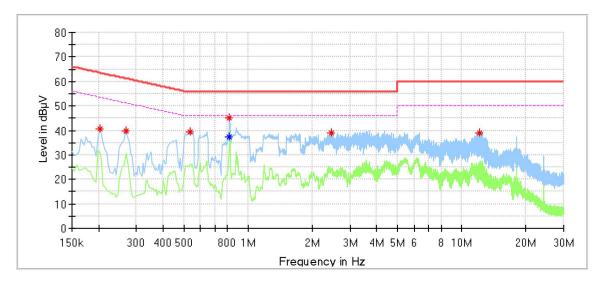
Frequency (MHz)	MaxPeak	Average	Limit	Margin (dB)	Line	Corr. (dB/m)
. ,	(dBµV)	(dBµV)	(dBµV)			
0.170000	41.96		64.96	23.00	L1	9.5
0.270000	39.41		61.12	21.70	L1	9.5
0.538000	37.50		56.00	18.50	L1	9.6
0.818000		37.24	46.00	8.76	L1	9.6
0.818000	43.83		56.00	12.17	L1	9.6
1.638000	37.07		56.00	18.93	L1	9.6
4.806000	39.25		56.00	16.75	L1	9.6

Remark:

Level=Reading Level + Correction Factor Correction Factor=Cable Loss + LISN Factor

(The Reading Level is recorded by software which is not shown in the sheet)

Conducted Emission Test 0.15MHz - 30MHz


EUT: Wireless Receiver

M/N: AMW839R

Operating Condition: TX

Test Specification: Power Line, Neutral

Comment: 5VDC for Wireless receiver

Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB/m)
0.202000	40.43		63.53	23.10	N	9.5
0.270000	39.66		61.12	21.46	N	9.6
0.538000	39.21		56.00	16.79	N	9.6
0.818000		37.45	46.00	8.55	N	9.6
0.818000	45.31		56.00	10.69	N	9.6
2.466000	39.12		56.00	16.88	N	9.6
12.102000	39.03		60.00	20.97	N	9.7

Remark:

Level=Reading Level + Correction Factor

Correction Factor=Cable Loss + LISN Factor

(The Reading Level is recorded by software which is not shown in the sheet)

8.2 Field strength of emissions and Restricted bands

Test Method

- 1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3-meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2: The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5: Use the following spectrum analyzer settings According to C63.10:

For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement and VBW = 10Hz for average measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Note:

- 1: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.
- 3: Modify the unit for continuous operation: use the settings shown above, then correct the reading by subcontracting the peak to average duty cycle correction factor 20log (duty cycle), derived from the appropriate duty cycle calculation.

Field strength of emissions and Restricted bands

Limits

According to §15.249 (a) & RSS-210 A2.9(a), the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24.0–24.25 GHz	250	2500

According to §15.249 (c), Field strength limits are specified at a distance of 3 meters. According to §15.249 (d), Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation. According to §15.205 Unwanted emissions falling into restricted bands in §15.205 (a) shall comply with the limits specified in §15.209.

Frequency	Field Strength	Field Strength	Detector
MHz	uV/m	dBµV/m	
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Field strength of emissions and Restricted bands

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Fundamental test result as below:

Low channel 2405MHz Test Result

	Radiated Emission								
Value	Emissions Frequency MHz	E-Field Polarity	Reading Level dBµV/m	Limit d BµV/m	Margin dBm	Correct factor (dB/m)	Result		
PK	2405	Н	79.54	114.00	34.46	-3.9	Pass		
AV	2405	Н	79.54	94.00	14.46	-3.9	Pass		
PK	2405	V	79.80	114.00	34.20	-3.9	Pass		
AV	2405	V	79.80	94.00	14.20	-3.9	Pass		

Middle channel 2451MHz Test Result

	Radiated Emission								
Value	Emissions Frequency MHz	E-Field Polarity	Reading Level dBµV/m	Limit dBµV/m	Margin dBm	Correct factor (dB/m)	Result		
PK	2451	Н	77.15	114.00	36.85	-3.8	Pass		
AV	2451	Н	77.15	94.00	16.85	-3.8	Pass		
PK	2451	V	78.31	114.00	35.69	-3.8	Pass		
AV	2451	V	78.31	94.00	15.69	-3.8	Pass		

High channel 2475MHz Test Result

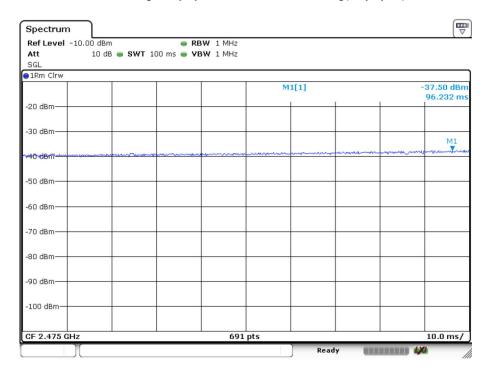
			Radia	ted Emission			
Value	Emissions Frequency MHz	E-Field Polarity	Reading Level dBµV/m	Limit dBµV/m	Margin dBm	Correct factor (dB/m)	Result
PK	2475	Н	86.95	114.00	27.05	-3.7	Pass
AV	2475	Н	86.95	94.00	7.05	-3.7	Pass
PK	2475	V	81.36	114.00	32.64	-3.7	Pass
AV	2475	V	81.36	94.00	12.64	-3.7	Pass

Transmitting spurious emission test result as below:

Low channel 2405MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Danu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB/m)	
30-	965.40	39.60	Н	46	QP	14.40	26.2	Pass
1000MHz	296.91	36.88	V	46	QP	9.12	14.9	Pass
	4901.5	59.01	Н	74	PK	14.99	2.6	Pass
1000-	4901.5	50.31	Н	54	AV	3.69	2.6	Pass
25000MHz	4903.5	55.53	V	74	PK	18.47	2.5	Pass
	4903.5	50.53	V	54	AV	3.47	2.5	Pass

Middle channel 2451MHz Test Result


Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Dallu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB/m)	
30-			Н	43.5	QP			Pass
1000MHz			Н	46	QP			Pass
	4903.5	59.13	Н	74	PK	14.87	2.5	Pass
1000-	4903.5	50.02	Н	54	AV	3.98	2.5	Pass
25000MHz	4901.5	57.65	V	74	PK	16.35	2.6	Pass
	4901.5	50.01	V	54	AV	3.99	2.6	Pass

High channel 2475MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Danu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB/m)	
30-			Н	43.5	QP	-	-	Pass
1000MHz		-	Н	46	QP	1	1	Pass
	4949.5	58.62	Н	74	PK	15.38	1.6	Pass
1000-	4949.5	50.26	Н	54	AV	3.74	1.6	Pass
25000MHz	4951.5	55.33	V	74	PK	18.67	1.5	Pass
	4951.5	50.11	V	54	AV	3.89	1.5	Pass

Duty cycle=100% Peak to average duty cycle correction factor =20log(duty cycle)=0

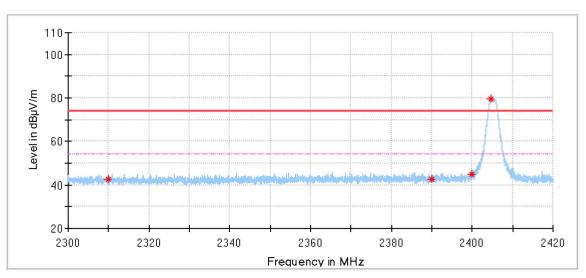
Remark:

- (1) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 10dB below the permissible limits or the field strength is too small to be measured.
- (2) Corrected Amplitude= Read level + Corrector factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Pre-amplifier Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)
- (3) AV Emission = Average Reading Level + Correction Factor (for duty cycle≥98%)

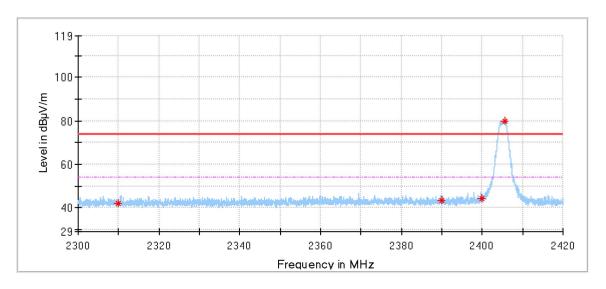
8.3 Out of Band Emissions

Test Method

- 1 Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold.
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

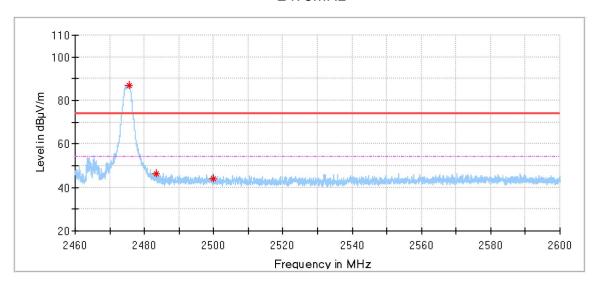

Limits

According to §15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.


Out of Band Emissions

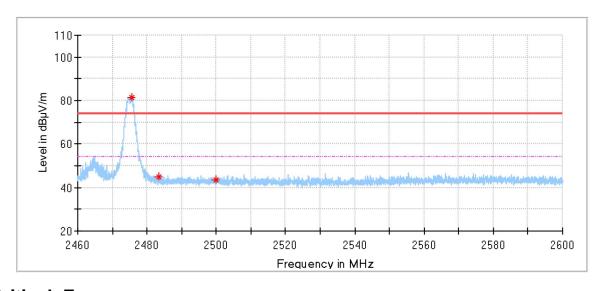
Critical Freqs

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2309.990000	42.55	74.00	31.45	150.0	Н	256.0	-4.2
2390.000000	42.76	74.00	31.24	150.0	Н	262.0	-3.9
2400.020000	44.93	74.00	29.07	150.0	Н	280.0	-3.9
2404.670000	79.54	74.00	-5.54	150.0	Н	223.0	-3.9



Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2309.990000	42.02	74.00	31.98	150.0	V	288.0	-4.2
2390.000000	43.35	74.00	30.65	150.0	٧	149.0	-3.9
2399.990000	44.32	74.00	29.68	150.0	٧	356.0	-3.9
2405.630000	79.80	74.00	-5.80	150.0	V	317.0	-3.9



2475MHz

Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2475.505000	86.95	74.00	-12.95	150.0	Н	43.0	-3.7
2483.485000	46.42	74.00	27.58	150.0	Н	148.0	-3.7
2499.970000	43.85	74.00	30.15	150.0	Н	82.0	-3.7

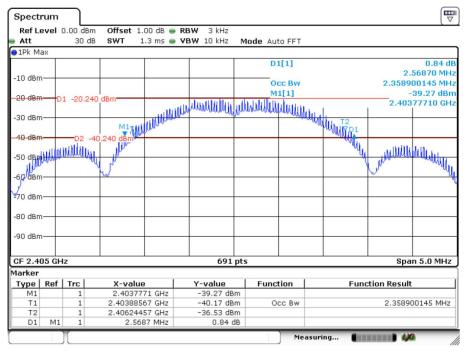
Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2475.645000	81.36	74.00	-7.36	150.0	٧	208.0	-3.7
2483.450000	44.75	74.00	29.25	150.0	٧	247.0	-3.7
2499.970000	43.53	74.00	30.47	150.0	٧	269.0	-3.7

8.4 20dB Bandwidth & 99% Occupied Bandwidth

Test Method

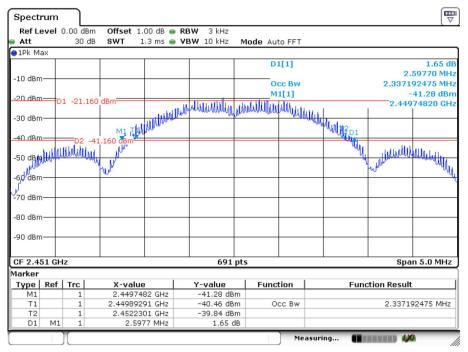
- Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to spectrum analyser. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20dB/99% from the reference level. Record the frequency difference as the emission bandwidth.


Limits:

According to 15.215 (c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

20dB Bandwidth & 99% Occupied Bandwidth

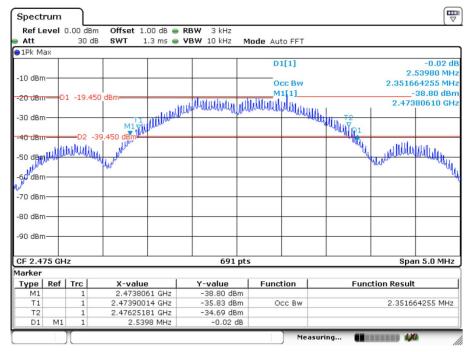
Frequency	20dB Bandwidth	99% Bandwidth	Limit
MHz	MHz	MHz	MHz
2405	2.569	2.359	


Date: 6.JUL.2020 14:30:28

2405MHz

20dB Bandwidth & 99% Occupied Bandwidth

Frequency	20dB Bandwidth	99% Bandwidth	Limit
MHz	MHz	MHz	MHz
2451	2.598	2.337	


Date: 6.JUL.2020 14:37:05

2451MHz

20dB Bandwidth & 99% Occupied Bandwidth

Frequency	20dB Bandwidth	99% Bandwidth	Limit
MHz	MHz	MHz	MHz
2475	2.540	2.352	

Date: 6.JUL.2020 14:44:23

2475MHz

9 Test equipment lists

List of Test Instruments

Radiated Spurious Emission Test

Madiated Opui	Radiated Sparious Linission Test										
Description	Manufacturer	Model no.	Equipment ID	Serial no.	cal interval (year)	cal. due date					
EMI Test Receiver	Rohde & Schwarz	ESR 7	68-4-74-19-001	102176	1	2021-6-29					
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	68-4-80-14-002	707	1	2021-8-4					
Horn Antenna	Rohde & Schwarz	HF907	68-4-80-14-005	102294	1	2021-7-14					
Loop Antenna	Rohde & Schwarz	HFH2-Z2	68-4-80-14-006	100398	1	2021-7-7					
Pre-amplifier	Rohde & Schwarz	SCU 18	68-4-29-14-001	102230	1	2021-6-21					
Attenuator	Agilent	8491A	68-4-81-16-001	MY39264334	1	2021-6-21					
3m Semi-anechoic chamber	TDK	9X6X6	68-4-90-14-001		3	2022-10-28					
Test software	Rohde & Schwarz	EMC32	68-4-90-14-001- A10	Version10.35.0 2	N/A	N/A					

Conducted Emission Test

Description	Manufacturer	Model no.	Equipment ID	Serial no.	cal interval (year)	cal. due date
EMI Test Receiver	Rohde & Schwarz	ESR 3	68-4-74-14-001	101782	1	2021-6-29
LISN	Rohde & Schwarz	ENV4200	68-4-87-14-001	100249	1	2021-6-12
LISN	Rohde & Schwarz	ENV432	68-4-87-16-001	101318	1	2021-6-12
LISN	Rohde & Schwarz	ENV216	68-4-87-14-002	100326	1	2021-6-12
LISN	Rohde & Schwarz	ENV216	68-4-87-19-001	102472	1	2021-6-12
ISN	Rohde & Schwarz	ENY81	68-4-87-14-003	100177	1	2021-6-12
ISN	Rohde & Schwarz	ENY81-CA6	68-4-87-14-004	101664	1	2021-6-12
High Voltage Probe	Schwarzbeck	TK9420(VT9420)	68-4-27-14-001	9420-584	1	2021-6-23
RF Current Probe	Rohde & Schwarz	EZ-17	68-4-27-14-002	100816	1	2021-6-28
Attenuator	Shanghai Huaxiang	TS2-26-3	68-4-81-16-003	080928189	1	2021-6-21
Test software	Rohde & Schwarz	EMC32	68-4-90-14-003- A10	Version9.15.00	N/A	N/A
Shielding Room	TDK	CSR #1	68-4-90-19-004		1	2020-11- 07

RF Conducted Test

	Description	Manufacturer	Model no.	Equipment ID	Serial no.	cal interval	cal. due
						(year)	date
ĺ	Signal Analyzer	Rohde & Schwarz	FSV40	68-4-74-14-004	101030	1	2021-6-21

10 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty					
Test Items	Extended Uncertainty				
Uncertainty for Conducted Emission 150kHz-30MHz (for test using AMN ENV432 or ENV4200)	3.21dB				
Uncertainty for Radiated Emission in 3m chamber (68-4-90-14-001) 30MHz-1000MHz	Horizontal: 5.12dB; Vertical: 5.10dB;				
Uncertainty for Radiated Emission in 3m chamber (68-4-90-14-001) 1000MHz-18000MHz	Horizontal: 5.01dB; Vertical: 5.00dB;				
Uncertainty for Conducted RF test with TS 8997	RF Power Conducted: 1.16dB Frequency test involved: 0.6×10 ⁻⁷ or 1%				