

FCC - TEST REPORT

Report Number	68.950.20.0309.01 Date of Issue: July 23, 2020				
Model	AMW839				
Product Type	Wireless Mouse				
Applicant	Targus International LLC				
Address	1211 North Miller Street Anaheim, California United States 92806				
Manufacturer	Shenzhen Wintop Electronics Co., Ltd.				
	Room 402 Building 1 No.34 Xinhe Road, No 46 Xinhe Road, Floor				
	: 4 No.50 Xinhe Road ShangMuGu Community, PingHu Street,				
Address	LongGang District, Shenzhen City, Guangdong Province, China.				
Test Result	n Positive o Negative				
Total pages including Appendices	22				

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports. The manufacturer's drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Eds., Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

1 Table of Contents

1 Table of Contents	. 2
2 Details about the Test Laboratory	. 3
3 Description of the Equipment Under Test	.4
4 Summary of Test Standards	. 5
5 Summary of Test Results	. 6
6 General Remarks	. 7
7 Test setups	
8 Technical Requirement	. 9
8.1 Field strength of emissions and Restricted bands	9
8.2 Out of Band Emissions	14
8.3 20dB Bandwidth & 99% Occupied Bandwidth	17
9 Test equipment lists	21
10 System Measurement Uncertainty	22

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name:	TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch
	Building 12&13, Zhiheng Wisdomland Business Park,
	Nantou Checkpoint Road 2, Nanshan District,
	Shenzhen City, 518052,
	P. R. China

FCC Registration 514049 Number:

FCC Designation CN5009 Number:

Telephone:	86 755 8828 6998
Fax:	86 755 8828 5299

3 Description of the Equipment Under Test

Description of the Equipment Under Test

Product/PMN:	Wireless Mouse
Model no.:	AMW839
FCC ID:	OXM000114
Options and accessories:	NIL
Ratings:	3VDC (Supplied by 2 × 1.5V AAA Batteries)
RF Transmission Frequency:	2405MHz-2475MHz
Modulation:	GFSK
Antenna Type:	Integrated Antenna
Antenna Gain:	0dBi
Description of the EUT:	The product is a Wireless Mouse that operated at 2.4GHz, The TX and RX range is 2405MHz-2475MHz

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MANUFACTURER RATINGS MODEL NO	

4 Summary of Test Standards

Test Standards				
FCC Part 15 Subpart C PART 15 - RADIO FREQUENCY DEVICES				
10-1-2019 Edition	Subpart C - Intentional Radiators			

All the test methods were according to ANSI C63.10-2013.

5 Summary of Test Results

Technical Requirements							
FCC Part 15 Subpart C 15.249							
Test Condition	Pages	Test	Te	st Res	ult		
		Site	Pass Fail N/				
15.207 & RSS-Gen A8.8	See r	ote 1			\boxtimes		
Conducted emission AC power port							
§15.205(a), §15.209(a), §15.249(a), §15.249(c)	9	Site 1	\square				
Field strength of emissions and Restricted bands							
§15.249(d) Out of band emissions	14	Site 1	\square				
FCC §15.215(c) 20dB bandwidth	17	Site 1					
99% Occupied Bandwidth							
§15.203 Antenna requirement	See r	ote 2	\square				

Remark 1: N/A- Not Applicable;

Note 1: The EUT is not intended to operate from the AC power lines;

Note 2: The EUT used an integral PCB antenna, which gain is 0dBi. According to §15.203, it is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: OXM000114 complies with Section 15.205, 15.209, 15.249 of the FCC Part 15, Subpart C Rules.

SUMMARY:

All tests according to the regulations cited on page 5 were

- n Performed
- O Not Performed
- The Equipment Under Test
- n Fulfills the general approval requirements.
- - **Does not** fulfill the general approval requirements.

Sample Received Date:

Testing Start Date:

June 10, 2020

July 21, 2020

June 10, 2020

Testing End Date:

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

Reviewed by:

Johnshi

John Zhi EMC Project Manager

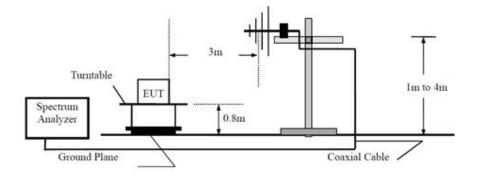
Prepared by:

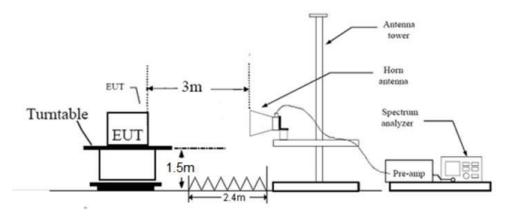
Tested by:

Mark elen

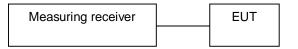
Mark Chen EMC Project Engineer

Tree them


Tree Zhan EMC Test Engineer


7 Test setups

7.1 Radiated test setups


Below 1GHz

Above 1GHz

7.2 Conducted RF test setups

8.1 Field strength of emissions and Restricted bands

Test Method

1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3-meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10:

For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, $VBW \ge RBW$ for peak measurement and VBW = 10Hz for average measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Note:

1: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.

2: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.

3: Modify the unit for continuous operation: use the settings shown above, then correct the reading by subcontracting the peak to average duty cycle correction factor 20log (duty cycle), derived from the appropriate duty cycle calculation.

Field strength of emissions and Restricted bands

Limits

According to §15.249 (a) the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24.0–24.25 GHz	250	2500

According to §15.249 (c), Field strength limits are specified at a distance of 3 meters. According to §15.249 (d), Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation. According to §15.205 Unwanted emissions falling into restricted bands in §15.205 (a) shall comply with the limits specified in §15.209.

Frequency MHz	Field Strength µV/m	Field Strength dBµV/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Field strength of emissions and Restricted bands

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Fundamental test result as below:

Low channel 2405MHz Test Result

	Radiated Emission						
Value	Emissions Frequency MHz	E-Field Polarity	Reading Level dBµV/m	Limit dBµV/m	Margin dBm	Correct factor (dB/m)	Result
PK	2405	Н	65.29	114.00	48.71	-3.9	Pass
AV	2405	Н	65.29	94.00	28.71	-3.9	Pass
PK	2405	V	62.04	114.00	51.96	-3.9	Pass
AV	2405	V	62.04	94.00	31.98	-3.9	Pass

Middle channel 2451MHz Test Result

	Radiated Emission						
Value	Emissions Frequency MHz	E-Field Polarity	Reading Level dBµV/m	Limit dBµV/m	Margin dBm	Correct factor (dB/m)	Result
PK	2451	Н	67.15	114.00	46.85	-3.8	Pass
AV	2451	Н	67.15	94.00	26.85	-3.8	Pass
PK	2451	V	60.31	114.00	53.69	-3.8	Pass
AV	2451	V	60.31	94.00	33.69	-3.8	Pass

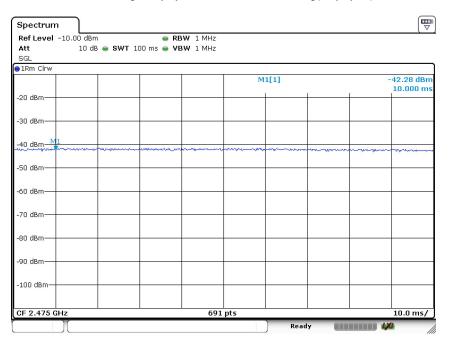
High channel 2475MHz Test Result

	Radiated Emission											
Value	Emissions Frequency MHz	E-Field Polarity	Reading Level dBµV/m	Limit dBµV/m	Margin dBm	Correct factor (dB/m)	Result					
PK	2475	Н	69.97	114.00	44.03	-3.7	Pass					
AV	2475	Н	69.97	94.00	24.03	-3.7	Pass					
PK	2475	V	62.08	114.00	51.92	-3.7	Pass					
AV	2475	V	62.08	94.00	31.92	-3.7	Pass					

Transmitting spurious emission test result as below:

Low channel 2405MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Danu	MHz	dBµV/m		dBµV/m		dBµV/m	(dB/m)	
30-	729.15	31.46	Н	46	QP	14.54	22.8	Pass
1000MHz	908.12	34.34	V	46	QP	11.66	25.1	Pass
			Н	74	PK			Pass
1000-			Н	54	AV			Pass
25000MHz			V	74	PK			Pass
			V	54	AV			Pass


Middle channel 2451MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Danu	MHz	dBµV/m		dBµV/m		dBµV/m	(dB/m)	
30-			Н	43.5	QP			Pass
1000MHz			Н	46	QP			Pass
			Н	74	PK			Pass
1000-			Н	54	AV			Pass
25000MHz			V	74	PK			Pass
			V	54	AV			Pass

High channel 2475MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Бапа	MHz	dBµV/m		dBµV/m		dBµV/m	(dB/m)	
30-			Н	43.5	QP			Pass
1000MHz			Н	46	QP			Pass
			Н	74	PK			Pass
1000-			Н	54	AV			Pass
25000MHz			V	74	PK			Pass
			V	54	AV			Pass

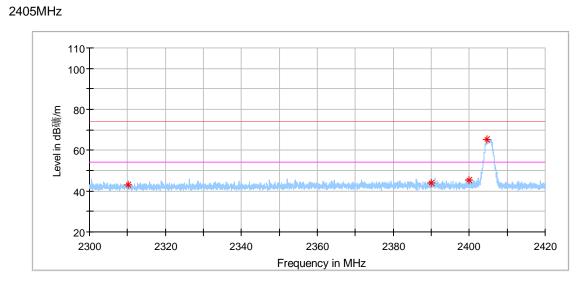
Duty cycle=100% Peak to average duty cycle correction factor =20log(duty cycle)=0

Remark:

- (1) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 10dB below the permissible limits or the field strength is too small to be measured.
- (2) Corrected Amplitude= Read level + Corrector factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Pre-amplifier Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)
- (3) AV Emission = Average Reading Level + Correction Factor (for duty cycle≥98%)

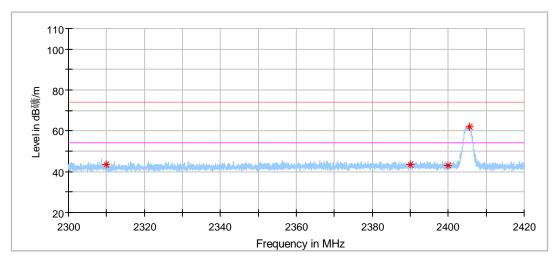
8.2 Out of Band Emissions

Test Method


- Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold.
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

Limits

According to §15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

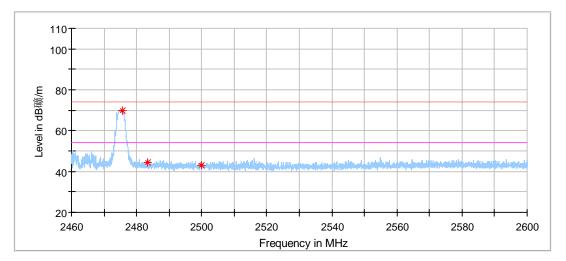


Out of Band Emissions

Critical_Freqs

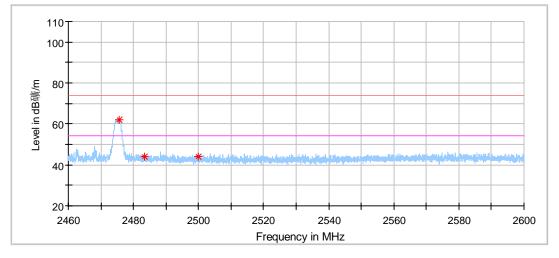
Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2310.050000	42.92	74.00	31.08	150.0	н	215.0	-4.2
2390.090000	44.20	74.00	29.80	150.0	н	319.0	-3.9
2399.960000	45.17	74.00	28.83	150.0	н	165.0	-3.9
2404.730000	65.29	74.00	8.71	150.0	Н	165.0	-3.9

Critical_Freqs


Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2309.930000	43.43	74.00	30.57	150.0	V	142.0	-4.2
2390.030000	43.52	74.00	30.48	150.0	V	90.0	-3.9
2399.990000	43.17	74.00	30.83	150.0	V	168.0	-3.9
2405.630000	62.04	74.00	11.96	150.0	V	54.0	-3.9

EMC_SZ_FR_23.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 15 of 22



2475MHz

Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2475.505000	69.97	74.00	4.03	150.0	н	40.0	-3.7
2483.485000	44.27	74.00	29.73	150.0	н	92.0	-3.7
2499.935000	43.19	74.00	30.81	150.0	н	74.0	-3.7

Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2475.645000	62.08	74.00	11.92	150.0	V	143.0	-3.7
2483.520000	44.07	74.00	29.93	150.0	V	259.0	-3.7
2500.005000	43.98	74.00	30.02	150.0	V	197.0	-3.7

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

8.3 20dB Bandwidth & 99% Occupied Bandwidth

Test Method

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to spectrum analyser. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20dB/99% from the reference level. Record the frequency difference as the emission bandwidth.

Limits:

According to 15.215 (c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

20dB Bandwidth & 99% Occupied Bandwidth

Frequency		20d	B Bandwid	th	99% Ba	ndwidth	Lim
MHz			MHz N		MHz		
2405		2.663			2.	417	
							_
Spectrum							(₩)
Ref Level 0.00 d	Bm Offset	1.00 dB 👄 F	BW 30 kHz				
Att 15	dB SWT	63.2 µs 👄 🛚	/BW 100 kHz M	ode Auto FFT			
⊖1Pk Max							
				D1[1]		-0.23	
-10 dBm				Occ Bw		2.66280	
D1 -17	.470 dBm			M1[1]		2.416787265	a subsection of the subsection
-20 dBm 01 -17	.470 ubm	annor	mound	dealer when a		2.40356010	
-30 dBm	T1 .	- martin		and the	~ T2		
and a second second	M1 Jun				Chai		
-40 dBm	2 -37.470 dB	m				Ach	
mannan	~				5	mounter	
_50 dBm						4 24	1
							m
-60 dBm							
-70 dBm							
-80 dBm							
-90 dBm							
CF 2.405 GHz			691 pts			Span 5.0 M	
Marker			691 pts			apan a.u M	
Type Ref Trc	X-v	alue	Y-value	Function	Fun	ction Result	1
M1 1		35601 GHz	-37.48 dBm				
T1 1		68307 GHz	-33.27 dBm	Occ Bw		2.416787265 M	1Hz
T2 1		09986 GHz	-31.59 dBm				
D1 M1 1	2	2.6628 MHz	-0.25 dB				

Date: 30.JUN.2020 15:14:50

2405MHz

20dB Bandwidth & 99% Occupied Bandwidth

Frequency	/	200	IB Bandwid	th	99% B	andwidth	Limi	
MHz			MHz MHz		MHz			
2451			2.699		2	.446		
Spectrum	ì					E	₽	
Ref Level 0.00 (Bm Offse	t 1.00 dB 👄	RBW 30 kHz			(•)	
	dB SWT	_		lode Auto FF ⁻	r			
91Pk Max								
				D1[1]		-0.25	iB	
						2.69900 MI		
-10 dBm				Occ Bw		2.445730825 MI	-Iz	
-20 dBm D1 -1	7.610 dBm-		Non ren mar	M1[1]		-37.41 dB	m	
-20 ubiii		- warman all	termine the first second second second	and way	Mun T2	2.44955280 G	Iz	
-30 dBm	т1	w			my T2			
	Mis				Y DI			
-40 dBm	2 -37.610 di	3m				menor		
many	~				4	" many many		
,∱0 dBm						Y X	_	
							~	
-60 dBm								
-70 dBm								
-80 dBm								
-oo ubiii								
-90 dBm								
50 abii								
CF 2.451 GHz			(01					
			691 pts	•		Span 5.0 MH	4	
Marker			M		1		_	
Type Ref Tro		495528 GHz	-37.41 dBm	Function	Fur	nction Result	-1	
		965412 GHz	-37.41 uBm	Occ Bw		2.445730825 MH	_	
		209986 GHz	-32.58 dBm	000 BW		2.773730023 MH	<u> </u>	
	1 2.10	2.699 MHz	-0.25 dB					
				、 、	easuring 🔳			

Date: 30.JUN.2020 15:10:38

2451MHz

20dB Bandwidth & 99% Occupied Bandwidth

Frequency	20dB Bandwidt	h 9	9% Bandwidth	Lin
MHz	MHz		MHz	MH
2475	2.648		2.431	
Spectrum Ref Level 0.00 dBm Offset Att 15 dB SWT	: 1.00 dB ● RBW 30 kHz 63.2 µs ● VBW 100 kHz Mc	de Auto FFT		
Pk Max				
-10 dBm		D1[1] Occ Bw		0.29 dB 1830 MHz 9045 MHz
-20 dBm	montenen		2.4736	5.99 dBm 0350 GHz
-30 dBm	m	·Vva	T2 V_D1	
-40 dBm			- marine	ww
Jo ubin				m -
-60 dBm				
-70 dBm				
-80 dBm				
-90 dBm				
CF 2.475 GHz	691 pts		Span	5.0 MHz
Marker				
	alue Y-value	Function	Function Result	
	736035 GHz -35.99 dBm	Occ. Ruy	0 401050	DAE MUS
	736686 GHz -32.18 dBm 509986 GHz -31.49 dBm	Occ Bw	2.431259	045 MH2
	2.6483 MHz 0.29 dB			

Date: 30.JUN.2020 15:20:19

2475MHz

EMC_SZ_FR_23.00 FCC Release 2014-03-20 Page 20 of 22

9 Test equipment lists

List of Test Instruments

Radiated Spurious Emission Test

Description	Manufacturer	Model no.	Equipment ID	Serial no.	cal interval (year)	cal. due date
EMI Test Receiver	Rohde & Schwarz	ESR 7	68-4-74-19-001	102176	1	2021-6-29
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	68-4-80-14-002	707	1	2021-8-4
Horn Antenna	Rohde & Schwarz	HF907	68-4-80-14-005	102294	1	2021-7-14
Loop Antenna	Rohde & Schwarz	HFH2-Z2	68-4-80-14-006	100398	1	2021-7-7
Pre-amplifier	Rohde & Schwarz	SCU 18	68-4-29-14-001	102230	1	2021-6-21
Attenuator	Agilent	8491A	68-4-81-16-001	MY39264334	1	2021-6-21
3m Semi-anechoic chamber	TDK	9X6X6	68-4-90-14-001		3	2022-10-28
Test software	Rohde & Schwarz	EMC32	68-4-90-14-001- A10	Version10.35.0 2	N/A	N/A

RF Conducted

Description	Manufacturer	Model no.	Equipment ID	Serial no.	cal interval (year)	cal. due date
Signal Analyzer	Rohde & Schwarz	FSV40	68-4-74-14-004	101030	1	2021-6-21

10 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty				
Test Items	Extended Uncertainty			
Uncertainty for Radiated Emission in 3m chamber (68-4-90-14-001) 30MHz-1000MHz	Horizontal: 5.12dB; Vertical: 5.10dB;			
Uncertainty for Radiated Emission in 3m chamber (68-4-90-14-001) 1000MHz-18000MHz	Horizontal: 5.01dB; Vertical: 5.00dB;			
Uncertainty for Conducted RF test with TS 8997	RF Power Conducted: 1.16dB Frequency test involved: 0.6×10-7 or 1%			