

PREPARED FOR:

CERTIFICATION TEST REPORT

FOR THE

CAR ALARM SYSTEM TRANSMITTER, 204301/8

FCC PART 15.231

COMPLIANCE

DATE OF ISSUE: MARCH 2, 2000

PREPARED BY:

PKF Electronics (PTY) LTD. P.O. Box 3660 Durban 4000 KWA Zulu, Natal, South Africa	Joyce Walker CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338
W.O. No: 73326	Date of test: January 31, 2000
Report No: FC00-013	
DOCUMENTATION CONTROL:	APPROVED BY:
	Dennisward
Tracy Phillips Documentation Control Supervisor CKC Laboratories, Inc.	Dennis Ward Director of Laboratories CKC Laboratories, Inc.

This report contains a total of 23 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

Page 1 of 23 Report No: FC00-013

TABLE OF CONTENTS

Administrative Information	3
Summary Of Results	4
Equipment Under Test (EUT) Description	4
Measurement Uncertainty	
EUT Operating Frequency	4
Peripheral Devices	4
Report Of Measurements	5
Table 1: Fundamental Radiated Emission Levels	5
Table 2: Six Highest Radiated Emission Levels	6
Table A: List Of Test Equipment	7
EUT Setup	8
Test Instrumentation And Analyzer Settings	8
Table B: Analyzer Bandwidth Settings Per Frequency Range	8
Spectrum Analyzer Detector Functions	9
Peak	9
Quasi-Peak	9
Average	9
Test Methods	10
Radiated Emissions Testing	10
Occupied Bandwidth	11
Sample Calculations	11
Appendix A: Information About The Equipment Under Test	12
I/O Ports	13
Crystal Oscillators	13
Printed Circuit Boards	13
Photograph Showing Radiated Emissions	14
Photograph Showing Radiated Emissions	15
Photograph Showing Radiated Emissions	16
Photograph Showing Radiated Emissions	17
Appendix B: Measurement Data Sheets	18
Occupied Bandwidth Plot	19
Duty Cycle Plot	20

Page 2 of 23 Report No: FC00-013 CKC Laboratories, Inc. has Certificates of Accreditation from the following agencies:

DATech (Germany); A2LA (USA); FCC (USA); VCCI (Japan); BSMI (Taiwan); HOKLAS (Hong Kong).

CKC Laboratories, Inc. has Letters of Acceptance through an MRA for the following agencies:

ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); TUV Rheinland-Germany; TUV Rheinland-

Korea; TUV Rheinland-Russia; Radio Communications Agency (RA); NEMKO (Norway).

ADMINISTRATIVE INFORMATION

DATE OF TEST: January 31, 2000

PURPOSE OF TEST:To demonstrate the compliance of the Car

Alarm System Transmitter, 204301/8, with

the requirements for FCC Part 15.231

devices.

MANUFACTURER: PKF Electronics (PTY) LTD.

P.O. Box 3660 Durban 4000 KWA Zulu, Natal, South Africa

REPRESENTATIVE: M B Parnaby

TEST LOCATION: CKC Laboratories, Inc.

22105 Wilson River Hwy Tillamook, OR 97141

TEST PERSONNEL: Mike Wilkinson

TEST METHOD: ANSI C63.4 1992

FREQUENCY RANGE TESTED: 9 kHz - 5000 MHz

EQUIPMENT UNDER TEST: <u>Car Alarm System Transmitter</u>

Manuf: PKF Electronics (PTY) LTD.

Model: 204301/8 Serial: None FCC ID: Pending

> Page 3 of 23 Report No: FC00-013

SUMMARY OF RESULTS

The PKF Electronics (PTY) LTD. Car Alarm System Transmitter, 204301/8, was tested in accordance with ANSI C63.4 1992 for compliance with FCC Part 15.231.

As received, the above equipment was found to be fully compliant with the limits of FCC Part 15.231. The results in this report apply only to the items tested, as identified herein.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

Low power remote control transmitter.

MEASUREMENT UNCERTAINTY

Associated with data in this report is a ±4dB measurement uncertainty.

EUT OPERATING FREQUENCY

The EUT was operating at 433 MHz

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

PERIPHERAL DEVICES

The EUT was not tested with peripheral devices.

Page 4 of 23 Report No: FC00-013

REPORT OF MEASUREMENTS

The following tables report the highest worst case levels recorded during the tests performed on the Car Alarm System Transmitter, 204301/8. All readings taken are peak readings unless otherwise noted by a "Q" or "A". The data sheets from which these tables were compiled are contained in Appendix B.

Table 1: Fundamental Radiated Emission Levels									
FREQUENCY MHz	METER READING dBμV	COR Bilog dB	RECTION Amp dB	ON FACT Cable dB	ORS Adj dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
433.847 Flat configuration	79.0	16.7	-27.4	4.7	5.7	67.3	80.5	-13.2	V
433.848 Side configuration	87.0	16.7	-27.4	4.7	5.7	75.3	80.5	-5.2	V
433.852 Side configuration	90.3	16.7	-27.4	4.7	5.7	78.6	80.5	-1.9	V
433.852 Vertical configuration	85.8	16.7	-27.4	4.7	5.7	74.1	80.5	-6.4	Н
433.854 Vertical configuration	91.8	16.7	-27.4	4.7	5.7	80.1	80.5	-0.4	V
433.854 Flat configuration	89.6	16.7	-27.4	4.7	5.7	77.9	80.5	-2.6	V

Test Method: ANSI C63.4 1992 NOTES: H = Horizontal PolarizationSpec Limit: FCC Part 15.231(b) V = Vertical Polarization

Test Distance: 3 Meters N = No Polarization

D = Dipole Reading Q = Quasi Peak Reading A = Average Reading

COMMENTS: EUT was placed on the test table in 3 orthogonal planes as indicated for each reading. The EUT has a fresh internal battery and is transmitting continuously with modulation. The temperature was 15.3° C and the humidity was 55%. All readings have a 5.7 dB adjustment made to arrive at the average corrected value. This was derived from the 51.89% measured duty cycle (20 Log .5189 = 5.69 dB).

Page 5 of 23 Report No: FC00-013

Table 2: Six Highest Radiated Emission Levels									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIC Amp dB	ON FACT Cable dB	ORS Adj dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES
867.718	57.9	23.2	-27.6	7.0	5.7	54.8	61.9	-7.1	V
1301.543	62.8	24.9	-35.4	5.7	5.7	52.3	54.0	-1.7	VA
2169.337	58.0	27.6	-32.9	7.6	5.7	54.6	61.9	-7.3	VA
2603.111	59.3	28.8	-32.1	8.7	5.7	59.0	61.9	-2.9	НА
3037.028	56.7	30.5	-30.8	11.0	5.7	61.7	61.9	-0.2	VA
3904.445	46.3	32.5	-33.1	10.2	5.7	50.2	54.0	-3.8	VA

Test Method: ANSI C63.4 1992 NOTES: H = Horizontal Polarization
Spec Limit: FCC Part 15.231(b) V = Vertical Polarization
Test Distance: 3 Meters N = No Polarization

N = No Polarization D = Dipole Reading Q = Quasi Peak Reading A = Average Reading

COMMENTS: The EUT has a fresh internal battery and is transmitting continuously with modulation. The temperature was 15.3° C and the humidity was 55%. The orthogonal position of the EUT is vertical. This is the worst case position as determined by the fundamental measurements and preliminary spurious investigation. All readings are harmonics of the fundamental and have a 5.7 dB adjustment made to arrive at the average corrected value. This was derived from the 51.89% measured duty cycle (20 Log .5189 = 5.69 dB). The frequency range investigated was 9 kHz to 5.0 GHz

Page 6 of 23 Report No: FC00-013

TABLE A

LIST OF TEST EQUIPMENT

Tillamook site C

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8568A	2235A02426	04/21/1999	04/21/2000	202
HP 85650A	2043A00433	04/21/1999	04/21/2000	29
HP 8447D	2727A05432	06/01/1999	06/01/2000	282
Chase CBL6111C	2456	08/30/1999	08/30/2000	1991
HP8564E	3623A00539	12/07/1999	12/07/2000	1406
Cable 125 ft.	n/a	02/04/1999	02/04/2000	2086
Cable 10 ft.	n/a	02/05/1999	02/05/2000	1016
EMCO 3115	9006-3414	02/24/1999	02/24/2000	327
HP 83051A	3332A00309	10/19/1999	10/19/2000	2115
EMCO 6502	2078	06/17/1999	06/17/2000	432

Test software, EMI Test 3.09.

Page 7 of 23 Report No: FC00-013

EUT SETUP

The equipment under test (EUT) was set up in a manner that represented its normal use. Any special conditions required for the EUT to operate normally are identified in the comments that accompany Table 1 for fundamental radiated emissions and Table 2 for radiated emissions. Additionally, a complete description of the crystals and printed circuit boards are included on the information sheets contained in Appendix A.

During radiated emissions testing, the EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters. This configuration is typical for radiated emissions testing of table top devices.

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Table A were used to collect the radiated emissions data for the Car Alarm System Transmitter, 204301/8. For radiated measurements below 30 MHz, the magloop antenna was used. For radiated measurements from 30 to 1000 MHz, the biconilog antenna was used. For frequencies above 1000 MHz, the horn antenna was used. All antennas were located at a distance of 3 meters from the edge of the EUT.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of 97 dB μ V, and a vertical scale of 10 dB per division.

TABLE B : ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE							
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING				
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz				
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz				
RADIATED EMISSIONS	1000 MHz	5 GHz	1 MHz				

Page 8 of 23 Report No: FC00-013

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in Tables 1 and 2 indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data for the Car Alarm System Transmitter, 204301/8.

Peak

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

Average

When the frequencies exceed 1 GHz, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

Page 9 of 23 Report No: FC00-013

TEST METHODS

The radiated emissions data of the Car Alarm System Transmitter, 204301/8, was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the "Sample Calculations". The corrected data was then compared to the FCC Part 15.231 emissions limits to determine compliance.

Preliminary and final measurements were taken in order to better ensure that all emissions from the EUT were found and maximized.

Radiated Emissions Testing

During the preliminary radiated scan, the EUT was powered up and operating in its defined test mode. Frequencies below 30 MHz were tested using a loop antenna. The frequency range of 30 MHz - 1000 MHz was then scanned with the biconilog antenna located about 1.5 meter above the ground plane in the vertical polarity. During this scan, the turntable was rotated and all peaks, which were at or near the limit, were recorded. Lastly, a scan of the FM band from 88 - 110 MHz was made, using a reduced resolution bandwidth and a reduced frequency span. The biconilog antenna was changed to the horizontal polarity and the above steps were repeated. The horn antenna was used to scan for frequencies above 1000 MHz. Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission.

For the final radiated scan, the equipment was again positioned facing the antenna. A thorough scan of all frequencies was manually made using a small frequency span, rotating the turntable as needed. Comparison with the previously recorded measurements was then made.

Using the peak readings from both scans as a guide, the test engineer then maximized the readings with respect to the table rotation and antenna. Photographs showing the final worst case configuration of the EUT are contained in Appendix A.

Page 10 of 23 Report No: FC00-013

FCC Part 15.231(c) - Occupied Bandwidth Measurements

In accordance with Part 15.231(c), the fundamental frequency was kept within 0.25% of the center frequency for devices operating >70 MHz and < 900 MHz.

SAMPLE CALCULATIONS

The basic spectrum analyzer reading was converted using correction factors as shown in the emissions readings in Tables 1 and 2. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula:

Meter reading (dBµV)

- + Antenna Factor (dB)
- + Cable Loss (dB)
- Distance Correction (dB)
- Pre-amplifier Gain (dB)
- = Corrected Reading ($dB\mu V/m$)

This reading was then compared to the applicable specification limit to determine compliance.

A typical data sheet will display the following in column format:

#	Freq MHz	Rdng dBuV	Cable	Amp	Bilog	Horn	Log	Dist	Corr dBuV/m	Spec	Margin	Polar
	Adj											

means reading number

Freq MHz is the frequency in MHz of the obtained reading.

Rdng dBuV is the reading obtained on the spectrum analyzer in dBuV.

Amp is short for the preamplifier factor or gain in dB.

Bilog is the biconilog antenna factor in dB.

Log is the log periodic antenna factor in dB.

Horn is the horn antenna factor in dB.

Cable is the cable loss in dB of the coaxial cable on the OATS.

Dist is the distance factor (in dB). It is used when testing at a different test distance than the one stated in the spec.

Corr dBµV/m is the corrected reading which is now in dBµV/m (field strength).

Spec is the specification limit (dB) stated in the agency's regulations.

Margin is the closeness to the specified limit in dB; + is over and - is under the limit.

Polar is the Polarity of the antenna with respect to earth.

Adj is the 5.7 dB adjustment made to arrive at the average corrected value

Page 11 of 23 Report No: FC00-013

APPENDIX A INFORMATION ABOUT THE EQUIPMENT UNDER TEST

Page 12 of 23 Report No: FC00-013

INFORMATION ABOUT THE EQUIPMENT UNDER TEST					
Test Software/Firmware:	N/A				
CRT was displaying:	N/A				
Power Supply Manufacturer:	N/A				
Power Supply Part Number:	N/A				
AC Line Filter Manufacturer:	N/A				
AC Line Filter Part Number:	N/A				
	NT/A				
Line voltage used during testing:	N/A				

	I/O PORTS	
Type		#
N/A		

CRYSTAL OSCILLATORS					
Type	Freq In MHz				
SAW CONTROLLED RESONATOR	433,92				

PRINTED CIRCUIT BOARDS								
Function	Model & Rev	Clocks, MHz	Layers	Location				
LOW POWERED TRANMITTER WITH ON/OF AM MODULATION	204-312	SAW CONTROLLED 433,92	2	SINGLE BOARD LOCATED IN PLASTIC HOUSING				

Page 13 of 23 Report No: FC00-013

Radiated Emissions - Front Side

Page 14 of 23 Report No: FC00-013

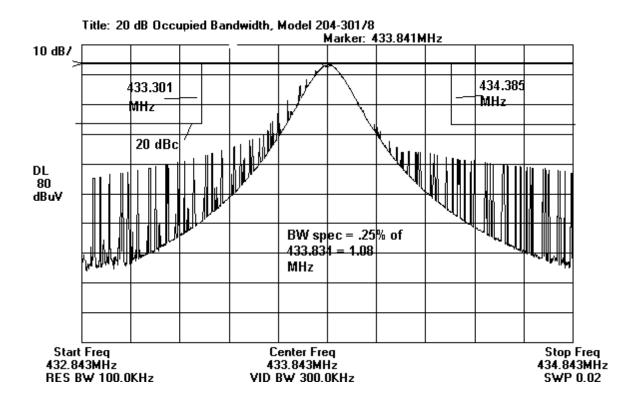
Radiated Emissions - Flat View

Page 15 of 23 Report No: FC00-013

Radiated Emissions - Vertical View

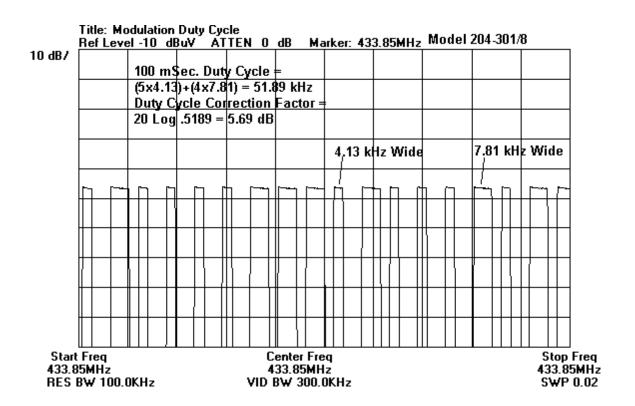
Page 16 of 23 Report No: FC00-013

Radiated Emissions - Back View


Page 17 of 23 Report No: FC00-013

APPENDIX B

MEASUREMENT DATA SHEETS


Page 18 of 23 Report No: FC00-013

Occupied Bandwidth Plot

Page 19 of 23 Report No: FC00-013

Duty Cycle Plot Configuration

Page 20 of 23 Report No: FC00-013 Test Location: CKC Laboratories. Inc. • 22105 Wilson River Hwy • Tillamook, OR 97141 • 800 500-4EMC

Customer: Knightwatch, LTD
Specification: 15.231 Fundamental

Work Order #: 73326 Date: 1/31/2000
Test Type: Maximized Emissions Time: 17:16:54
Equipment: Vehicle Security Transmitter Sequence#: 1

Manufacturer: Knightwatch, LTD Tested By: Mike Wilkinson

Model: 204-301/8 S/N: None

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Vehicle Security	Knightwatch, LTD	204-301/8	None	
Transmitter*	_			

Support Devices:

Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

EUT was placed on the test table in 3 orthogonal planes as indicated for each reading. The EUT has a fresh internal battery and is transmitting continuously with modulation. The temperature was 15.3°C and the humidity was 55%. All readings have a 5.7 dB adjustment made to arrive at the average corrected value. This was derived from the 51.89% measured duty cycle (20 Log .5189 = 5.69 dB).

Measu	rement Data:	R	eading lis	sted by m	argin.	Test Distance: 3 Meters					
			Amp	Bilog	Cable	Adj					
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBμV/m	dB	Ant
1	433.854M	91.8	-27.4	+16.7	+4.7	+5.7	+0.0	80.1	80.5	-0.4	Vert
									Vertical Po	osition	
2	433.852M	90.3	-27.4	+16.7	+4.7	+5.7	+0.0	78.6	80.5	-1.9	Vert
									Side Positi	on	
3	433.854M	89.6	-27.4	+16.7	+4.7	+5.7	+0.0	77.9	80.5	-2.6	Vert
4	433.848M	87.0	-27.4	+16.7	+4.7	+5.7	+0.0	75.3	80.5	-5.2	Vert
									Side Positi	on	
5	433.852M	85.8	-27.4	+16.7	+4.7	+5.7	+0.0	74.1	80.5	-6.4	Horiz
									Vertical Po	osition	
6	433.847M	79.0	-27.4	+16.7	+4.7	+5.7	+0.0	67.3	80.5	-13.2	Vert
7	433.843M	76.7	-27.4	+16.7	+4.7	+5.7	+0.0	65.0	80.5	-15.5	Vert

Page 21 of 23 Report No: FC00-013 Test Location: CKC Laboratories. Inc. • 22105 Wilson River Hwy • Tillamook, OR 97141 • 800 500-4EMC

Customer: Knightwatch, LTD

Specification: 15.231 spurs

Work Order #: 73326 Date: 02/01/2000
Test Type: Radiated Scan Time: 16:27:06
Equipment: Vehicle Security Transmitter Sequence#: 2

Manufacturer: Knightwatch, LTD Tested By: Mike Wilkinson

Model: 204-301/8 S/N: None

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Vehicle Security	Knightwatch, LTD	204-301/8	None	
Transmitter*	_			

Support Devices:

Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

The EUT has a fresh internal battery and is transmitting continuously with modulation. The temperature was 15.3°C and the humidity was 55%. The orthogonal position of the EUT is vertical. This is the worst case position as determined by the fundamental measurements and preliminary spurious investigation. All readings are harmonics of the fundamental and have a 5.7 dB adjustment made to arrive at the average corrected value. This was derived from the 51.89% measured duty cycle (20 Log .5189 = 5.69 dB). The frequency range investigated was 9 kHz to 5.0 GHz

Measurement Data: Reading listed by marg					argin.	in. Test Distance: 3 Meters						
			Amp	Bilog	Cable	Amp						
#	Freq	Rdng	Cable	Cable	Horn	Adj	Dist	Corr	Spec	Margin	Polar	
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant	
1	3037.028M	56.7	+0.0	+0.0	+0.0	-30.8	+0.0	61.7	61.9	-0.2	Vert	
	Ave		+8.7	+2.3	+30.5	+5.7						
2	1301.543M	62.8	+0.0	+0.0	+0.0	-35.4	+0.0	52.3	54.0	-1.7	Vert	
	Ave		+4.9	+0.8	+24.9	+5.7						
3	1301.503M	62.5	+0.0	+0.0	+0.0	-35.4	+0.0	52.0	54.0	-2.0	Horiz	
	Ave		+4.9	+0.8	+24.9	+5.7						
4	2603.111M	59.3	+0.0	+0.0	+0.0	-32.1	+0.0	59.0	61.9	-2.9	Horiz	
	Ave		+7.5	+1.2	+28.8	+5.7						
5	3904.445M	46.3	+0.0	+0.0	+0.0	-33.1	+0.0	50.2	54.0	-3.8	Vert	
	Ave		+9.1	+1.1	+32.5	+5.7						
6	2603.078M	58.3	+0.0	+0.0	+0.0	-32.1	+0.0	58.0	61.9	-3.9	Vert	
	Ave		+7.5	+1.2	+28.8	+5.7						
7	3036.958M	52.7	+0.0	+0.0	+0.0	-30.8	+0.0	57.7	61.9	-4.2	Horiz	
	Ave		+8.7	+2.3	+30.5	+5.7						
8	867.718M	57.9	-27.6	+23.2	+7.0	+0.0	+0.0	54.8	61.9	-7.1	Vert	
			+0.0	+0.0	+0.0	+5.7						
9	2169.337M	58.0	+0.0	+0.0	+0.0	-32.9	+0.0	54.6	61.9	-7.3	Vert	
	Ave		+6.4	+1.2	+27.6	+5.7						
10	2169.288M	53.3	+0.0	+0.0	+0.0	-32.9	+0.0	49.9	61.9	-12.0	Horiz	
	Ave		+6.4	+1.2	+27.6	+5.7						

Page 22 of 23 Report No: FC00-013

11 1735.222M	55.7	+0.0	+0.0	+0.0	-34.3	+0.0	48.9	61.9	-13.0	Horiz
Ave		+5.7	+0.9	+26.6	+5.7					
12 867.721M	50.3	-27.6	+23.2	+7.0	+0.0	+0.0	47.2	61.9	-14.7	Horiz
Ave		+0.0	+0.0	+0.0	+5.7					
13 1735.287M	50.8	+0.0	+0.0	+0.0	-34.3	+0.0	44.0	61.9	-17.9	Vert
Ave		+5.7	+0.9	+26.6	+5.7					

Page 23 of 23 Report No: FC00-013