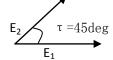
The following formulas were used to calculate MSCL with a 6' foot path loss and a 45 degree polarity mismatch between the inside antenna and the mobile device:


Path Loss =36.6+20Lg (F MHz) +20Lg (D
$$_{miles}$$
) dB Polarity Loss=10Lg(E $_{1}/E_{2}$) 2 =10Lg((E $_{1}/E_{1}$ sin(45 $_{deq}$)) 2 =20Lg((1/sin(45 $_{deq}$))=3.0 dB

Where:

E₁=Maximum Possible Magnitude of the Electric Field form the Mobile Device

E2=Magnitude of the electric field from the Mobil Device with a 45deg polarity

mismatch=E₁Sin(τ)

MSCL= Path Loss + Polarity Loss - Antenna Gain with Coax Loss dB

The results of the calculations are shown in the following table:

	Uplink Frequency (MHz)	707.0	781.5	836.5	1732.5	1880.0
	Path Loss (dB)	34.7	35.6	36.2	42.5	43.2
	Polarity Loss (dB)	3	3	3	3	3
	Antenna Gain with Coax Loss(dB)	1.5	1.5	1.5	2.5	2.5
	MSCL (dB)	36.2	37.1	37.7	43.0	43.7