

REGULATORY COMPLIANCE TEST REPORT

FCC 15.247 & ISED RSS-247

Report No.: ITRO16-U2 Rev A

Company: Itron Networked Solutions, Inc.

Test of: NIC 411

TEST REPORT

Test of: Itron Networked Solutions, Inc. NIC 411

To: FCC 15.247 & ISED RSS-247

Test Report Serial No.: ITRO16-U2 Rev A

This report supersedes: NONE

Applicant: Itron Networked Solutions, Inc.

230 West Tasman Drive San Jose, California 95134

USA

Product Function: Plug in radio device, mesh network

Issue Date: 11th July 2019

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc.

575 Boulder Court Pleasanton California 94566 USA

Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Table of Contents

1. ACCREDITATION, LISTINGS & RECOGNITION	. 4
1.1. TESTING ACCREDITATION	
1.2. RECOGNITION	
1.3. PRODUCT CERTIFICATION	6
2. DOCUMENT HISTORY	
3. TEST RESULT CERTIFICATE	8
4. REFERENCES AND MEASUREMENT UNCERTAINTY	
4.1. Normative References	
4.2. Test and Uncertainty Procedure1	10
5. PRODUCT DETAILS AND TEST CONFIGURATIONS1	
5.1. Technical Details1	
5.2. Scope Of Test Program1	12
5.3. Equipment Model(s) and Serial Number(s)1	
5.4. Antenna Details1	
5.5. Cabling and I/O Ports1	
5.6. Test Configurations	
5.7. Equipment Modifications	
5.8. Deviations from the Test Standard	
6. TEST SUMMARY	
7. TEST EQUIPMENT CONFIGURATION(S)	
7.1. Conducted RF Emission Test Setup with Environmental Chamber	
7.2. Radiated Emissions 3M Chamber	
8. MEASUREMENT AND PRESENTATION OF TEST DATA	
9. TEST RESULTS	
9.1. Conducted Output Power	
9.2. Emissions	
9.2.1. Radiated Emissions	
9.2.1.1. TX Spurious & Restricted Band Emissions	
9.2.2. Diuliai Ellissiolis (0.03 - 1 GHZ)	$\mathcal{S}U$

Itron Networked Solutions, Inc. NIC 411 FCC 15.247 & ISED RSS-247 (900 MHz)

Serial #: ITRO16-U2 Rev A

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; https://www.a2la.org/scopepdf/2381-01.pdf

Accredited Laboratory

A2LA has accredited

MICOM LABS

Pleasanton, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized international Standard ISO/IEC 17025:2005

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system [refer to joint ISO-ILAC-IAF Communiqué dated April 2017].

Presented this 14th day of May 2018.

President and CEO For the Accreditation Council Certificate Number 2381,01 Valid to November 30, 2019

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

Issue Date: 11th July 2019 Page: 4 of 33

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	САВ	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

EU MRA - European Union Mutual Recognition Agreement.

NB - Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

Issue Date: 11th July 2019 Page: 5 of 33

Itron Networked Solutions, Inc. NIC 411 FCC 15.247 & ISED RSS-247 (900 MHz)

Serial #:

ITRO16-U2 Rev A

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; https://www.a2la.org/scopepdf/2381-02.pdf

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

Issue Date: 11th July 2019 Page: 6 of 33

Title: Itron Networked Solutions, Inc. NIC 411To: FCC 15.247 & ISED RSS-247 (900 MHz)

Serial #: ITRO16-U2 Rev A

2. DOCUMENT HISTORY

Document History						
Revision	Date	Comments				
Draft	2nd July 2019	Draft report for client review.				
Rev A	11 th July 2019	Initial release.				

Issue Date: 11th July 2019 **Page**: 7 of 33

Itron Networked Solutions, Inc. NIC 411 FCC 15.247 & ISED RSS-247 (900 MHz)

ITRO16-U2 Rev A Serial #:

3. TEST RESULT CERTIFICATE

Manufacturer: Itron Networked Solutions, Inc.

230 West Tasman Drive

San Jose

California 95134, USA

Telephone: +1 925 462 0304

Tested By: MiCOM Labs, Inc.

Pleasanton

Fax: +1 925 462 0306

575 Boulder Court

California 94566 USA

Type Of Equipment: Plug in radio device, mesh network

S/N's: MAC ID: 00:13:50:05:00:58:EB:1E

Test Date(s): 4th June 2019 Website: www.micomlabs.com

STANDARD(S)

Model: NIC 411

TEST RESULTS

FCC 15.247 & ISED RSS-247 (900 MHz)

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

TESTING CERT #2381.01

Graeme Grieve

Quality Manager MiCOM Labs, Inc.

Gordon Hurst

President & CEO MiCOM Labs, Inc.

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
I	KDB 662911 D01 & D02	Oct 31 2013	Guidance for measurement of output emission of devices that employ single transmitter with multiple outputs or systems with multiple transmitters operating simultaneously in the same frequency band
II	KDB 558074 D01 v05	29th August 2018	Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices operating under section 15.247 of the FCC Rules.
III	A2LA	August 2018	R105 - Requirement's When Making Reference to A2LA Accreditation Status
IV	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
V	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
VI	CISPR 32	2015	Electromagnetic compatibility of multimedia equipment - Emission requirements
VII	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
VIII	FCC 47 CFR Part 15.247	2016	Radio Frequency Devices; Subpart C – Intentional Radiators
IX	ICES-003	Issue 6 Jan 2016; Updated April 2017	Information Technology Equipment (Including Digital Apparatus) – Limits and methods of measurement.
Х	M 3003	Edition 3 Nov.2012	Expression of Uncertainty and Confidence in Measurements
ΧI	RSS-247 Issue 2	Feb 2017	Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices
XII	RSS-Gen Issue 5	March 2019 Amendment 1	General Requirements for Compliance of Radio Apparatus
XIII	FCC 47 CFR Part 2.1033	2016	FCC requirements and rules regarding photographs and test setup diagrams.
XIV	KDB 789033 D02 V02r01	14th December, 2017	Guidelines For Compliance Testing Of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E

Issue Date: 11th July 2019 Page: 9 of 33

Title: Itron Networked Solutions, Inc. NIC 411 **To:** FCC 15.247 & ISED RSS-247 (900 MHz)

Serial #: ITRO16-U2 Rev A

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

Issue Date: 11th July 2019 **Page**: 10 of 33

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

Details	Description
Purpose:	Test of the Itron Networked Solutions, Inc. NIC 411 to FCC
·	15.247; Radio Frequency Devices; Subpart C – Intentional
	Radiators: & ISED RSS-247; Digital Transmission Systems
	(DTSs), Frequency Hopping System (FHSs) and Licence-Exempt
	Local Area Network (LE-LEN) Devices.
Applicant:	Itron Networked Solutions, Inc.
	230 West Tasman Drive San Jose
	California 95134, USA
Manufacturer:	Itron Networked Solutions, Inc.
Laboratory performing the tests:	,
Laboratory portorning the tooler	575 Boulder Court
	Pleasanton California 94566 USA
Test report reference number:	ITRO16-U2 Rev A
Date EUT received:	4th June 2019
Standard(s) applied:	FCC 15.247 & ISED RSS-247
Dates of test (from - to):	
No of Units Tested:	
Product Family Name:	
	NIC 411-0102
Location for use:	
Declared Frequency Range(s):	
Type of Modulation:	
EUT Modes of Operation:	
Declared Nominal Output Power:	
Transmit/Receive Operation:	
Rated Input Voltage and Current:	
Operating Temperature Range:	-40 to +85°C
ITU Emission Designator:	
	4.26 in (w) x 1.85 in (h) x 0.56 in (d)
Weight:	S .
Hardware Rev:	
Software Rev:	4.6.1

Issue Date: 11th July 2019 **Page**: 11 of 33

Title: Itron Networked Solutions, Inc. NIC 411 **To:** FCC 15.247 & ISED RSS-247 (900 MHz)

Serial #: ITRO16-U2 Rev A

5.2. Scope Of Test Program

Itron Networked Solutions, Inc. NIC 411

The scope of this test program is to perform limited testing to the requirements of the FCC & ISED standards listed below comprising;- digital emissions; radiated emissions; and output power on the Itron Networked Solutions, Inc. NIC 411 in the frequency ranges 902 - 928 MHz to establish that there are no changes in equipment performance as a result of a change in RF switch used in the product and to verify on going compliance.

FCC CFR 47 Part 15.247; Radio Frequency Devices; Subpart C - Intentional Radiators

Canada ISED RSS-247

Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices.

The following RF Switch information was supplied by the customer.

	Manufacturer	Туре	Model
Original	CEL	SPDT RF Switch	UPG2009TB
Replacement	CEL	SPDT RF Switch	CG2409M2

Issue Date: 11th July 2019 **Page**: 12 of 33

Title: Itron Networked Solutions, Inc. NIC 411 **To:** FCC 15.247 & ISED RSS-247 (900 MHz)

Serial #: ITRO16-U2 Rev A

5.3. Equipment Model(s) and Serial Number(s)

Equipment	Equipment Type	Manufacturer	Model	Serial Number
NIC 411	EUT	Itron Networked Solutions, Inc	NIC 411	MAC ID: 00:13:50:05:00:58:EB:1E
Laptop Computer	Support	Dell	Latitude E6410	N/A

5.4. Antenna Details

Туре	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
integral	INSI	N/A	f type	4	-	360	-	902 - 928
External	INSI	N/A	f type	3.0	-	360	-	902 - 928

BF Gain - Beamforming Gain Dir BW - Directional BeamWidth

X-Pol - Cross Polarization

5.5. Cabling and I/O Ports

NONE

Issue Date: 11th July 2019 **Page:** 13 of 33

Serial #:

Itron Networked Solutions, Inc. NIC 411 FCC 15.247 & ISED RSS-247 (900 MHz)

ITRO16-U2 Rev A

5.6. Test Configurations

Results for the following configurations are provided in this report:

Operational Mode	Data Rate with Highest Power	/MU=\				
kbp/s				High		
	900-930 MHz					
GFSK	100	902.3	914.0	926.9		

5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program: 1. NONE

> Issue Date: 14 of 33 11th July 2019 Page:

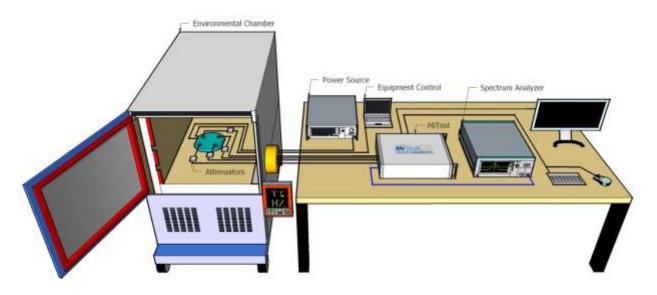
Title: Itron Networked Solutions, Inc. NIC 411 **To:** FCC 15.247 & ISED RSS-247 (900 MHz)

Serial #: ITRO16-U2 Rev A

6. TEST SUMMARY

List of Measurements

Test Header	Result	Data Link
Conducted Output Power	Complies	View Data
Emissions	Complies	-
Radiated Emissions	Complies	View Data
Digital Emissions (0.03 - 1 GHz)	Complies	View Data


Issue Date: 11th July 2019 Page: 15 of 33

7. TEST EQUIPMENT CONFIGURATION(S)

7.1. Conducted RF Emission Test Setup with Environmental Chamber

MiTest Automated Test System

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

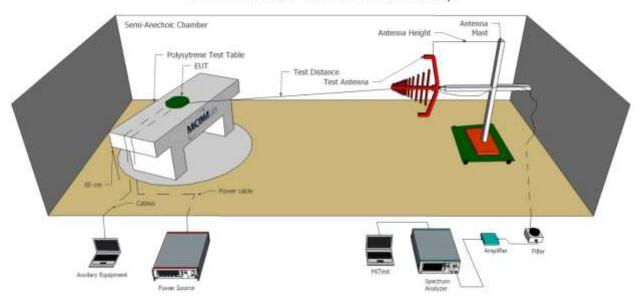
Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
#3 SA	MiTest Box to SA	Fairview Microwave	SCA1814- 0101-72	#3 SA	20 Jul 2019
#3P1	EUT to MiTest box port 1	Fairview Microwave	SCA1814- 0101-72	#3P1	20 Jul 2019
#3P2	EUT to MiTest box port 2	Fairview Microwave	SCA1814- 0101-72	#3P2	20 Jul 2019
#3P3	EUT to MiTest box port 3	Fairview Microwave	SCA1814- 0101-72	#3P3	20 Jul 2019
#3P4	EUT to MiTest box port 4	Fairview Microwave	SCA1812- 0101-72	#3P4	20 Jul 2019
249	Resistance Thermometer	Thermotronics	GR2105-02	9340 #2	30 Oct 2019
361	Desktop for RF#1, Labview Software installed	Dell	Vostro 220	WS RF#1	Not Required
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Oct 2019
398	MiTest RF Conducted Test Software	MiCOM	MiTest ATS	Version 4.1	Not Required

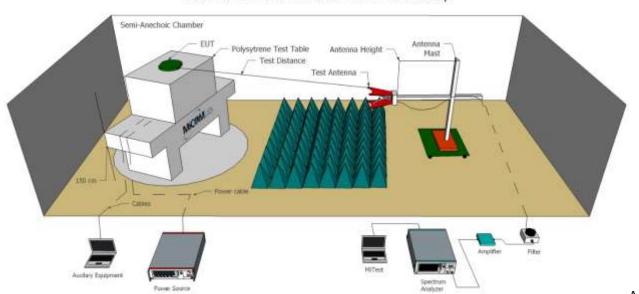
Issue Date: 11th July 2019

Page: 16 of 33

Serial #:

Itron Networked Solutions, Inc. NIC 411 To: FCC 15.247 & ISED RSS-247 (900 MHz) ITRO16-U2 Rev A


405	DC Power Supply 0-60V	Agilent	6654A	MY4001826	Cal when used
408	USB to GPIB interface	National Instruments	GPIB-USB HS	14C0DE9	Not Required
436	USB Wideband Power Sensor	Boonton	55006	8731	14 Sep 2019
440	USB Wideband Power Sensor	Boonton	55006	9178	22 Sep 2019
441	USB Wideband Power Sensor	Boonton	55006	9179	20 Sep 2019
442	USB Wideband Power Sensor	Boonton	55006	9181	6 Oct 2019
445	PoE Injector	D-Link	DPE-101GL	QTAH1E2000625	Not Required
461	Spectrum Analyzer	Agilent	E4440A	MY46185537	20 Sep 2019
510	Barometer/Thermometer	Control Company	68000-49	170871375	11 Dec 2019
515	MiTest Cloud Solutions RF Test Box	MiCOM	2nd Gen with DFS	515	20 Jul 2019
75	Environmental Chamber	Thermatron	SE-300-2-2	27946	24 Feb 2020


7.2. Radiated Emissions 3M Chamber

The following tests were performed using the radiated test set-up shown in the diagram below. Radiated emissions below 1GHz.Radiated Emissions above 1GHz.

Radiated Emissions Below 1GHz Test Setup

Radiated Emissions Above 1GHz Test Setup

full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Issue Date: 11th July 2019 Page:

18 of 33

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CU101	04R08507	Not Required
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	4 Apr 2020
341	900MHz Notch Filter	EWT	EWT-14-0199	H1	8 Oct 2019
346	1.6 TO 10GHz High Pass Filter	EWT	EWT-57-0112	H1	8 Oct 2019
373	26III RMS Multimeter	Fluke	Fluke 26 series III	76080720	21 Sep 2019
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Oct 2019
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	12 Sep 2019
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	12 Oct 2019
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	12 Sep 2019
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
414	DC Power Supply 0-60V	HP	6274	1029A01285	Cal when used
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
447	MiTest Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0	447	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	9 Oct 2019
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	9 Oct 2019
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	9 Oct 2019
465	Low Pass Filter DC-1000 MHz	Mini-Circuits	NLP-1200+	VUU01901402	9 Oct 2019
480	Cable - Bulkhead to Amp	SRC Haverhill	157-3050360	480	24 Aug 2019
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-3050787	481	24 Aug 2019
510	Barometer/Thermometer	Control Company	68000-49	170871375	11 Dec 2019
518	Cable - Amp to Antenna	SRC Haverhill	157-3051574	518	24 Aug 2019
87	Uninterruptible Power Supply	Falcon Electric	ED2000- 1/2LC	F3471 02/01	Cal when used
VLF-1700	Low pass filter DC-1700 MHz	Mini Circuits	VLF-1700	None	8 Oct 2019

Issue Date: 11th July 2019 **Page:** 19 of 33

8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

Issue Date: 11th July 2019 **Page**: 20 of 33

Serial #:

Itron Networked Solutions, Inc. NIC 411 FCC 15.247 & ISED RSS-247 (900 MHz)

ITRO16-U2 Rev A

9. TEST RESULTS

9.1. Conducted Output Power

Conducted Test Conditions for Fundamental Emission Output Power						
Standard:	FCC CFR 47: 15.247 (b) & (c) Ambient Temp. (°C): 24.0 - 27.5					
Test Heading:	Output Power	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.247 (b) & (c)	999 - 1001				
Reference Document(s):	See Normative References					

Test Procedure for Fundamental Emission Output Power Measurement In the case of average power measurements an average power sensor was utilized.

For peak power measurements the spectrum analyzer built-in power function was used to integrate peak power over the 20 dB bandwidth.

Testing was performed under ambient conditions at nominal voltage only. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured, summed (Σ) and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document. Supporting Information

Calculated Power = $A + G + Y + 10 \log (1/x) dBm$

A = Total Power $[10*Log10 (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{c/10})]$

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Limits for Fundamental Emission Output Power

- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following for non-frequency hopping systems:
 - (3) For systems using digital modulation in the 902-928 MHz and 2400-2483.5 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
 - (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (c) Operation with directional antenna gains greater than 6 dBi.
 - (1) Fixed point-to-point operation:
 - (i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.
 - (iii) Fixed, point-to-point operation, as used in paragraphs (c)(1)(i) and (c)(1)(ii) of this section, excludes the use of point-to-multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum or digitally modulated intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation

Issue Date: 11th July 2019

Itron Networked Solutions, Inc. NIC 411 FCC 15.247 & ISED RSS-247 (900 MHz)

Serial #: ITRO16-l

ITRO16-U2 Rev A

instructions informing the operator and the installer of this responsibility.

- (2) In addition to the provisions in paragraphs (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:
 - (i) Different information must be transmitted to each receiver.
 - (ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:
 - (A) The directional gain shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.
 - (B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.
 - (iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB.
 - (iv) Transmitters that emit a single directional beam shall operate under the provisions of paragraph (c)(1) of this section.

Issue Date: 11th July 2019 **Page:** 22 of 33

Serial #:

Itron Networked Solutions, Inc. NIC 411 FCC 15.247 & ISED RSS-247 (900 MHz)

ITRO16-U2 Rev A

Equipment Configuration for Peak Output Power

Variant:	400 KHz	Duty Cycle (%):	99.0
Data Rate:	100.00 KBit/s	Antenna Gain (dBi):	4.0
Modulation:	GFSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	N	leasured Outp	ut Power (dBn	n)	Calculated	Limit	Marain		
Frequency		Por	t(s)		Total Power Limit Margin EU Σ Port(s) S		Limit Margin		
MHz	а	b	С	d	dBm	dBm	dB		
902.3	27.10				27.10	30	-2.90	Max	
914.0	26.80				26.80	30	-3.20	Max	
926.9	27.13				27.13	30	-2.87	Max	

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER			
Measurement Uncertainty:	±1.33 dB			

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Issue Date: 11th July 2019 **Page:** 23 of 33

Itron Networked Solutions, Inc. NIC 411 FCC 15.247 & ISED RSS-247 (900 MHz)

Serial #: ITRO16-

ITRO16-U2 Rev A

9.2. Emissions

9.2.1. Radiated Emissions

Radiated Test Conditions for Radiated Spurious and Band-Edge Emissions (Restricted Bands)						
	FCC CFR 47: Part 15.205 SED RSS-GEN:8.9, 8.10 Ambient Temp. (°C): 20.0 - 24.5					
Test Heading:	Radiated Spurious and Band- Edge Emissions	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.205, 15.209 Pressure (mBars): 999 - 1001					
Reference Document(s):	See Normative References					

Test Procedure for Radiated Spurious and Band-Edge Emissions (Restricted Bands)

Radiated emissions for restricted bands above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned. Measurements on any restricted band frequency or frequencies above 1 GHz are based on the use of measurement instrumentation employing peak and average detectors. All measurements were performed using a resolution bandwidth of 1 MHz.

Test configuration and setup for Radiated Spurious and Band-Edge Measurement were per the Radiated Test Set-up specified in this document.

Limits for Restricted Bands Peak emission: 74 dBuV/m

Average emission: 54 dBuV/m

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

where:

FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

Example:

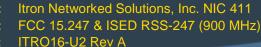
Given receiver input reading of 51.5 dBmV; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength (FS) of the measured emission is:

FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dBmV/m

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are as follows: Level (dBmV/m) = 20 * Log (level (mV/m))

40 dBmV/m = 100 mV/m 48 dBmV/m = 250 mV/m

Restricted Bands of Operation (15.205)


(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

Issue Date: 11th July 2019

Page: 24 of 33

Serial #:

Frequency Band					
MHz	MHz	MHz	GHz		
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46		
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75		
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5		
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4		
6.31175-6.31225	123-138	2200-2300	14.47-14.5		
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4		
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
2.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
2.57675-12.57725	322-335.4	3600-4400	Above 38.6		
13.36-13.41					

- (b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.
- (c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhere in this subpart, the provisions of this section apply to emissions from any intentional radiator.
- (d) The following devices are exempt from the requirements of this section:

MiCOMLabs,

- (1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section more than 99% of the time the device is actively transmitting, without compensation for duty cycle.
- (2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.
- (3) Cable locating equipment operated pursuant to §15.213.
- (4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GHz, or §15.257 of this part.
- (5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.
- (6) Transmitters operating under the provisions of subparts D or F of this part.
- (7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

Issue Date: 11th July 2019 Page: 25 of 33

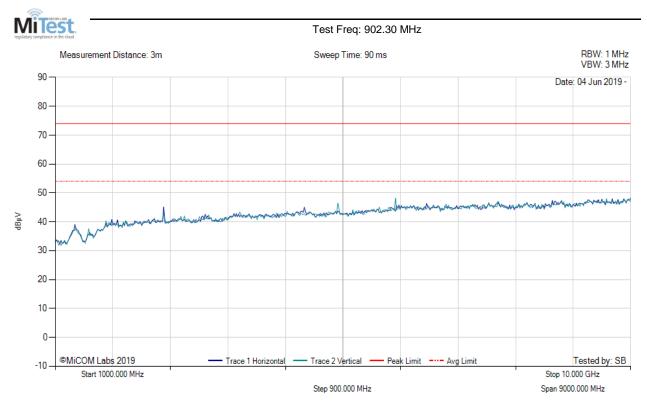
Title: Itron Networked Solutions, Inc. NIC 411 **To:** FCC 15.247 & ISED RSS-247 (900 MHz)

Serial #: ITRO16-U2 Rev A

(8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §15.245(b).

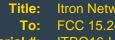
- (9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in §15.249(a).
- (e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of §15.245 shall not exceed the limits specified in §15.245(b).

Issue Date: 11th July 2019 **Page:** 26 of 33



9.2.1.1. TX Spurious & Restricted Band Emissions

Equipment Configuration for Restricted Band Spurious Emissions

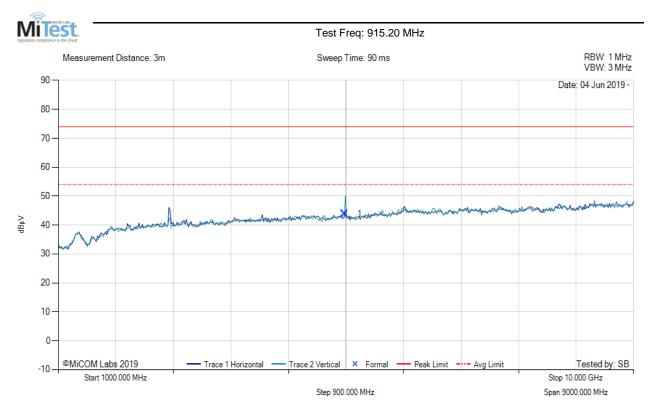

Antenna:	Integral	Variant:	400KHz
Antenna Gain (dBi):	4.0	Modulation:	GFSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	902.30	Data Rate:	100 Kbit/s
Power Setting:	Max	Tested By:	SB

Test Measurement Results

There are no emissions found within 6dB of the limit line.

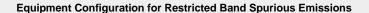
Issue Date: 11th July 2019 Page: 27 of 33

Itron Networked Solutions, Inc. NIC 411 FCC 15.247 & ISED RSS-247 (900 MHz)

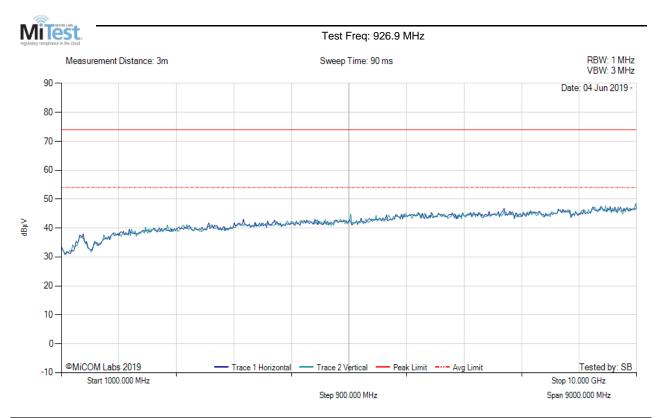

Serial #: ITRO16-U2 Rev A

Antenna:	Integral	Variant:	400KHz
Antenna Gain (dBi):	4.0	Modulation:	GFSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	915.20	Data Rate:	100 Kbit/s
Power Setting:	Max	Tested By:	SB

Test Measurement Results


MiCOMLabs.

1000.00 - 10000.00 MHz												
Num Frequency MHz Raw dBμV Cable Loss dB AF dB/m Level dBμV/m Measurement Type Pol Hgt cm Azt Deg Limit dBμV/m Margin dB Pass /Fail												
1	5478.80	58.01	-2.69	-11.56	43.76	Peak (NRB)	Vertical	200	0			Pass


Serial #: ITRO16-U2 Rev A

Antenna:	Integral	Variant:	400KHz
Antenna Gain (dBi):	4.0	Modulation:	GFSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	926.9	Data Rate:	100 Kbit/s
Power Setting:	Max	Tested By:	SB

Test Measurement Results

MiC@MLabs.

There are no emissions found within 6dB of the limit line.

Issue Date: 11th July 2019 **Page**: 29 of 33

Itron Networked Solutions, Inc. NIC 411 FCC 15.247 & ISED RSS-247 (900 MHz)

Serial #:

ITRO16-U2 Rev A

9.2.2. Digital Emissions (0.03 - 1 GHz)

Radiated Test Conditions for Radiated Digital Emissions (0.03 – 1 GHz)						
Standard:	tandard: FCC CFR 47:15.209,					
Test Heading:	Digital Emissions	32 - 45				
Standard Section(s):	15.209 Pressure (mBars): 999 - 1001					
Reference Document(s):	See Normative References					

Test Procedure for Radiated Digital Emissions (0.03 – 1 GHz)

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

Test configuration and setup for Radiated Spurious and Band-Edge Measurement were per the Radiated Test Set-up specified in this document.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

FS = R + AF + CORR

FS = Field Strength

R = Measured Receiver Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss AG = Amplifier Gain

For example:

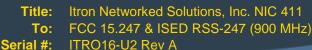
Given a Receiver input reading of 51.5dBmV: Antenna Factor of 8.5dB: Cable Loss of 1.3dB: Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dBmV/m

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are done as:

Level (dBmV/m) = 20 * Log (level (mV/m))

40 dBmV/m = 100 mV/m48 dBmV/m = 250mV/m


Limits for Radiated Digital Emissions (0.03 - 1 GHz)

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

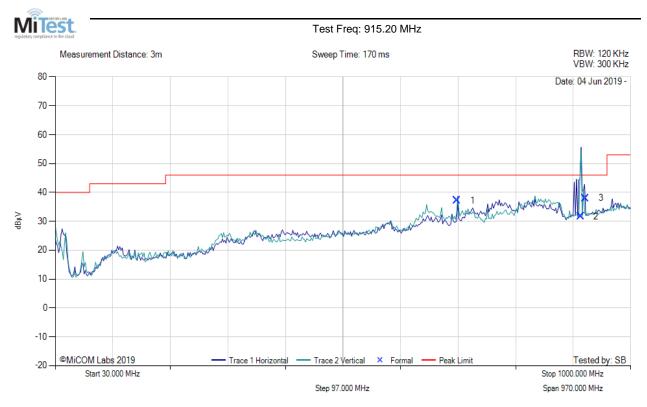
> Issue Date: 11th July 2019

Page: 30 of 33

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report. MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Frequency (MHz)	Field S			
	μV/m (microvolts/meter)	Measurement Distance (m)		
0.009-0.490	2400/F(kHz)		300	
0.490-1.705	24000/F(kHz)		30	
1.705-30.0	30	29.5	30	
30-88	100**	40	3	
88-216	150**	43.5	3	
216-960	200**	46.0	3	
Above 960	500	54.0	3	

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241. (b) In the emission table above, the tighter limit applies at the band edges. (c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency. (d) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. (e) The provisions in §§15.31, 15.33, and 15.35 for measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part. (f) In accordance with §15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in §15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in §15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit. Emissions which must be measured above the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator and which fall within the restricted bands shall comply with the general radiated emission limits in §15.109 that are applicable to the incorporated digital device. (g) Perimeter protection systems may operate in the 54-72 MHz and 76-88 MHz bands under the provisions of this section. The use of such perimeter protection systems is limited to industrial, business and commercial applications.


Issue Date: 11th July 2019 **Page:** 31 of 33

Equipment Configuration for Radiated Digital Emissions

Antenna:	Not Applicable	Variant:	400KHz
Antenna Gain (dBi):	Not Applicable	Modulation:	GFSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	915.20	Data Rate:	100 Kbit/s
Power Setting:	Max	Tested By:	SB

Test Measurement Results

	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	707.48	38.01	6.14	-7.00	37.15	Peak (NRB)	Vertical	201	62			Pass
2	915.88	29.73	6.68	-4.80	31.61	Fundamental	Vertical	201	62			
3	915.88	36.10	6.71	-4.80	38.01	Fundamental	Vertical	201	62			

575 Boulder Court
Pleasanton, California 94566, USA
Tel: +1 (925) 462 0304
Fax: +1 (925) 462 0306
www.micomlabs.com