

REGULATORY COMPLIANCE TEST REPORT

FCC: CFR 47 FCC 15.247 (900 MHz FHSS) ISED: RSS-247 Issue 2

Report No.: ITRO29-U2 Rev A

Company: Itron Networked Solutions, Inc

Model Name: NIC 531-0601

REGULATORY COMPLIANCE TEST REPORT

Company: Itron Networked Solutions, Inc

Model Name: NIC 531-0601

To: FCC 15.247 & ISED RSS-247

Test Report Serial No.: ITRO29-U2 Rev A

This report supersedes: ITRO18-U2 Rev A

- Applicant: Itron Networked Solutions, Inc. 230 West Tasman Drive San Jose, California 95134 USA
- Product Function: Plug in radio device, mesh network
 - Issue Date: 19th May 2020

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Table of Contents

1. ACCREDITATION, LISTINGS & RECOGNITION	
1.1. TESTING ACCREDITATION	
1.2. RECOGNITION	
1.3. PRODUCT CERTIFICATION	-
2. DOCUMENT HISTORY	7
3. TEST RESULT CERTIFICATE	
4. REFERENCES AND MEASUREMENT UNCERTAINTY	
4.1. Normative References	
4.2. Test and Uncertainty Procedure	
5. PRODUCT DETAILS AND TEST CONFIGURATIONS	
5.1. Technical Details	
5.2. Scope Of Test Program	
5.3. Equipment Model(s) and Serial Number(s)	13
5.4. Antenna Details	
5.5. Cabling and I/O Ports	
5.6. Test Configurations	
5.7. Equipment Modifications	
5.8. Deviations from the Test Standard	
6. TEST SUMMARY	
7. TEST EQUIPMENT CONFIGURATION(S)	
7.1. Conducted RF Emission Test Setup with Environmental Chamber	
7.2. Radiated Emissions 3M Chamber.	
8. MEASUREMENT AND PRESENTATION OF TEST DATA	
9. TEST RESULTS	
9.1. 20 dB & 99% Bandwidth	
9.2. Frequency Hopping Tests	
9.2.1. Number of Hopping Channels	
9.2.2. Channel Separation	
9.2.3. Channel Occupancy & Dwell Time	
9.3. Output Power	
9.4. Emissions 9.4.1. Conducted Emissions	
9.4.1. Conducted Emissions	
9.4.1.1. Conducted Onwanted Spunous Emissions	
9.4.1.2. Conducted Band-Edge Emissions	
9.4.2.3. TX Spurious & Restricted Band Emissions	
9.4.2.5. TX Spundus & Restricted Band Emissions	
A. APPENDIX - GRAPHICAL IMAGES	
A.1. 20 dB & 99% Bandwidth	
A.2. Frequency Hopping Tests	
A.2.1. Number of Hopping Channels	
A.2.2. Channel Separation	
A.2.3. Dwell Time	
A.2.4. Channel Occupancy	
A.3. Emissions	
A.3.1. Conducted Emissions	
A.3.1.1. Conducted Unwanted Spurious Emissions	
A.3.1.2. Conducted Band-Edge Emissions	
A.3.2. Radiated Emissions	
A.3.2.3. TX Spurious & Restricted Band Emissions	
A.3.3. Digital Emissions (0.03 - 1 GHz)	

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2017. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

Accredited Laboratory

A2LA has accredited

MICOM LABS

Pleasanton, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 24th day of February 2020.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2381.01 Valid to November 30, 2021

For the fests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing and certification capabilities. In addition to being recognized for Testing and Certification under Phase 2 agreements with Canada, Europe and Japan, our international recognition includes Conformity Assessment Body designation under Phase 1 agreements with APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	MRA Phase	Identification No.
USA	USA Federal Communications Commission (FCC)		-	US0159 Test Firm Designation #: US1084
Canada	Industry Canada (ISED)	FCB	APEC MRA 2	US0159 ISED #: 4143A
Japan	MIC (Ministry of Internal Affairs and Communication) Japan Approvals Institute for Telecommunication Equipment (JATE)	САВ	Japan MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA 2	NB 2280
Mexico	Instituto Federal de Telecomunicaciones (IFT)	CAB	Mexico MRA 1	US0159
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	САВ	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

EU MRA – European Union Mutual Recognition Agreement

NB – Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

MRA Phase

Phase I - recognition for product testing

Phase II - recognition for both product testing and certification

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

2. DOCUMENT HISTORY

Document History							
Date	Comments						
19 th May 2020	Client requested to extend the frequency range of the NIC 531-0601 device. No hardware or physical changes were made to the device in order to extend the frequency range. Initial frequency range: 902.3 - 926.8 MHz New frequency range: 902.3 - 927.6 MHz Due to the margin when the device was initially tested only mode 150Kbp/s FSK @ 927.6MHz was exercised						
20 th May 2020	Updated Release						
: ITRO18-U2							
25 th April 2019	Initial Release						
	Date 19 th May 2020 20 th May 2020						

In the above table the latest report revision will replace all earlier versions.

3. TEST RESULT CERTIFICATE

Manufacturer: Itron Networked Solutions, Inc. 230 West Tasman Drive San Jose California 95134, USA

Model: NIC 531-0601

Equipment Type: Plug in radio device, mesh network

S/N's: 00:13:50:07:00:00:1A:CA 00:13:50:07:00:00:19:82 (927.6 MHz)

Test Date(s): 29th March 2019 Updated 19th May 2020 (927.6 MHz) **Tested By:** MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA

Telephone: +1 925 462 0304 Fax: +1 925 462 0306

Website: www.micomlabs.com

TEST RESULTS

EQUIPMENT COMPLIES

STANDARD(S)

FCC 15.247 & ISED RSS-247 (900 MHz FHSS)

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.

2. Details of test methods used have been recorded and kept on file by the laboratory.

3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs, Inc.

TESTING CERT #2381.01

Gordon Hurst President & CEO MiCOM Labs, Inc.

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

MiC@MLabs.

REF.	PUBLICATION	YEAR	TITLE
I	KDB 558074 D01 v05	24th August 2018	Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices operating under section 15.247 of the FCC Rules.
П	A2LA	August 2018	R105 - Requirement's When Making Reference to A2LA Accreditation Status
111	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
IV	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
V	CISPR 32	2015	Electromagnetic compatibility of multimedia equipment - Emission requirements
VI	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
VII	FCC 47 CFR Part 15, Subpart B	2014	Title 47: Telecommunication PART 15—RADIO FREQUENCY DEVICES, SubPart B; Unintentional Radiators
VIII	FCC 47 CFR Part 15.247	2016	Radio Frequency Devices; Subpart C – Intentional Radiators
IX	FCC Public Notice DA 00-705	March 2000	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems
x	ICES-003	Issue 6 Jan 2016; Updated April 2017	Information Technology Equipment (Including Digital Apparatus) – Limits and methods of measurement.
XI	M 3003	Edition 3 Nov.2012	Expression of Uncertainty and Confidence in Measurements
XII	RSS-247 Issue 2	Feb 2017	Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices
XIII	RSS-Gen Issue 5	April 2018	General Requirements for Compliance of Radio Apparatus
XIV	FCC 47 CFR Part 2.1033	2016	FCC requirements and rules regarding photographs and test setup diagrams.

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

Details	Description
Purpose:	Test of the Itron Networked Solutions, Inc. NIC 531-0601 to FCC
	15.247 & ISED RSS-247.
	Radio Frequency Devices; Subpart C – Intentional Radiators:
	& ISED RSS-247; Digital Transmission Systems (DTSs),
	Frequency Hopping System (FHSs) and Licence-Exempt Local
	Area Network (LE-LEN) Devices.
Applicant:	
	230 West Tasman Drive San Jose
	California 95134, USA
Manufacturer:	Itron Networked Solutions, Inc.
Laboratory performing the tests:	
	575 Boulder Court
	Pleasanton California 94566 USA
Test report reference number:	
Date EUT received:	
Standard(s) applied:	FCC 15.247 & ISED RSS-247
Dates of test (from - to):	19 th May 2020
No of Units Tested:	2
Product Family Name:	NIC 531-0601
Model(s):	NIC 531-0601, NIC 531-0601-12, NIC 531-0601-13
Location for use:	
Declared Frequency Range(s):	902 - 928 MHz
Type of Modulation:	FHSS
EUT Modes of Operation:	902 - 928 MHz:
	50 kbps/FSK; 100 kbps/FSK; 150 kbps/FSK;
	150 kbps/GFSK; 200 kbps/GFSK; 300 kbps/GFSK;
	6.25 kbps/OQPSK;
Declared Naminal Outrast D	600kbps/OFDM3
Declared Nominal Output Power:	
Transmit/Receive Operation:	Transceiver – Half Duplex
Rated Input Voltage and Current:	
Operating Temperature Range:	-40 to +85°C
ITU Emission Designator:	FSK 117KF1D
	FSK 162KF1D OQPSK 115KF1D
Equipment Dimensions:	
Weight:	
Hardware Rev:	
Software Rev:	

5.2. Scope Of Test Program

Itron Networked Solutions, Inc NIC 531-0601

The scope of the test program was to test the Itron Networked Solutions, Inc NIC 531-0601 FHSS configurations in the frequency ranges 902 - 928 MHz for compliance against the following specification:

FCC CFR 47 Part 15.247 (FHSS); Radio Frequency Devices; Subpart C - Intentional Radiators

Industry Canada RSS-247

Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices

The EUT supports the following modes of operation:-

100 kbps/FSK 50 kbps/FSK 150 kbps/FSK 150 kbps/GFSK 200 kbps/GFSK 300 kbps/GFSK 6.25 kbps/OQPSK 600 kbps/OFDM

Only the lowest and highest data rates were tested to cover extreme ranges of the device.

The following product description was provided by Itron Inc.

NIC 531-0601 is a plug-in radio device, will communicate over mesh and HAN networks. The NIC 531-0601 may be integrated into Itron Centron II meters and may support standard and extended last gasp (ELG).

NIC 531-0601 products include the following model numbers/configurations:

NIC 531-0601: 900+2.4, INT ANT, HW1 NIC 531-0601-12: 900+2.4, INT ANT, HW1, 15s ELG NIC 531-0601-13: 900+2.4, INT ANT, HW1, 75s ELG

5.3. Equipment Model(s) and Serial Number(s)

Equipment	Equipment Type	Manufacturer	Model	Serial Number
NIC 531-0601	EUT	Itron Networked	NIC 531-0601	00:13:50:07:00:00:1A:CA
		Solutions, Inc		
Laptop Computer	Support	Dell	Latitude E6410	N/A

5.4. Antenna Details

Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
Tai Sheng Cheng	155- 0184-00	f type	1.0	-	360	-	902 - 928
Tai Sheng Cheng	155- 0184-00	f type	0.0	-	360	-	2400 - 2483.5
BF Gain - Beamforming Gain							
Dir BW - Directional BeamWidth X-Pol - Cross Polarization							
3	Tai Sheng Cheng Tai Sheng Cheng eamforming G rectional Beam	Tai Sheng155- 0184-00Tai Sheng155- 0184-00Tai Sheng0184-00eamforming Gain rectional BeamWidth	Tai Sheng155- 0184-00f typeTai Sheng155- 0184-00f typeTai Sheng155- 0184-00f typeeamforming Gain rectional BeamWidthrectional BeamWidth	ManufacturerModelFamily(dBi)Tai Sheng155- 0184-00f type1.0Tai Sheng155- 0184-00f type0.0eamforming Gain rectional BeamWidthrectional BeamWidthrectional BeamWidth	ManufacturerModelFamily(dBi)BF GainTai Sheng155- 0184-00f type1.0-Tai Sheng155- 0184-00f type0.0-Cheng0184-00f type0.0-eamforming Gain rectional BeamWidth	ManufacturerModelFamily(dBi)BF GainDir BWTai Sheng155- 0184-00f type1.0-360Tai Sheng155- 0184-00f type0.0-360Cheng0184-00f type0.0-360eamforming Gain rectional BeamWidth360	ManufacturerModelFamily(dBi)BF GainDir BWX-PolTai Sheng155- 0184-00f type1.0-360-Tai Sheng155- 0184-00f type0.0-360-Cheng0184-00f type0.0-360-eamforming Gain rectional BeamWidth

5.5. Cabling and I/O Ports

NONE

5.6. Test Configurations

Results for the following configurations are provided in this report:

Operational	Data Rate with Highest Power		Channel Frequency (MHz)						
Mode(s)	KBit/s	Low	Mid	High					
	902 - 928 MHz								
FSK	100	902.3	915.2	926.9					
FSK	50	902.4	915.2	926.8					
FSK	150	902.4	915.2	927.6					
GFSK	150	902.3	915.2	926.9					
GFSK	200	902.3	915.2	926.9					
GFSK	300	902.4	915.2	926.8					
OQPSK	6.25	902.4	915.2	926.8					
OFDM	600	902.4	915.2	926.8					

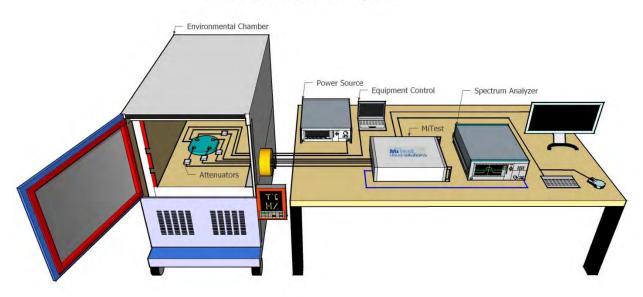
5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance: 1. NONE

5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program: 1. NONE

6. TEST SUMMARY


List of Measurements	1	
Test Header	Result	Data Link
20 dB & 99% Bandwidth	Complies	View Data
Frequency Hopping Tests	Complies	-
Number of Hopping Channels	Complies	View Data
Channel Separation	Complies	View Data
Dwell Time	Complies	View Data
Channel Occupancy	Complies	View Data
Output Power	Complies	View Data
Emissions	Complies	-
(1) Conducted Emissions	Complies	-
(i) Conducted Unwanted Spurious Emissions	Complies	View Data
(ii) Conducted Band-Edge Emissions	Complies	View Data
(2) Radiated Emissions	Complies	-
(i) TX Spurious & Restricted Band Emissions	Complies	View Data
(3) Digital Emissions (0.03 - 1 GHz)	Complies	View Data

7. TEST EQUIPMENT CONFIGURATION(S)

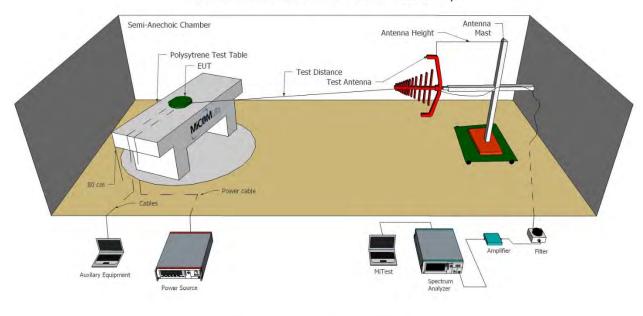
7.1. Conducted RF Emission Test Setup with Environmental Chamber

MiTest Automated Test System

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

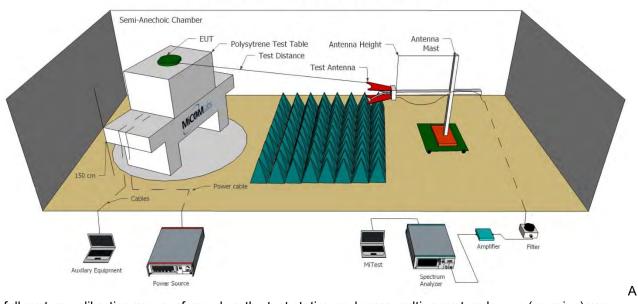
Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
#3 SA	#3 SA MiTest Box to SA		SCA1814- 0101-72	#3 SA	9 Sep 2020
#3P1	EUT to MiTest box port	Fairview Microwave	SCA1814- 0101-72	#3P1	9 Sep 2020
#3P2	EUT to MiTest box port 2	Fairview Microwave	SCA1814- 0101-72	#3P2	9 Sep 2020
#3P3	EUT to MiTest box port 3	Fairview Microwave	SCA1814- 0101-72	#3P3	9 Sep 2020
#3P4	EUT to MiTest box port 4	Fairview Microwave	SCA1812- 0101-72	#3P4	9 Sep 2020
249	Resistance Thermometer	Thermotronics	GR2105-02	9340 #2	30 Oct 2020
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	8 Oct 2020
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Oct 2020
398	MiTest RF Conducted Test Software	MiCOM	MiTest ATS	Version 4.1	Not Required

Issue Date:20th May 2020Page:16 of 148This test report may be reproduced in full only.The document may only be updated by MiCOM Labs
personnel. All changes will be noted in the Document History section of the report.MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com



405	DC Power Supply 0-60V	Agilent	6654A	MY4001826	Cal when used
408	USB to GPIB interface	National Instruments	GPIB-USB HS	14C0DE9	Not Required
440	USB Wideband Power Sensor	Boonton	55006	9178	22 Sep 2020
441	USB Wideband Power Sensor	Boonton	55006	9179	20 Sep 2020
442	USB Wideband Power Sensor	Boonton	55006	9181	19 Sep 2020
445	PoE Injector	D-Link	DPE-101GL	QTAH1E2000625	Not Required
461	Spectrum Analyzer	Agilent	E4440A	MY46185537	20 Sep 2020
510	Barometer/Thermometer	Control Company	68000-49	170871375	20 Dec 2020
515	MiTest Cloud Solutions RF Test Box	MiCOM	2nd Gen with DFS	515	9 Sep 2020
534	Power Sensor 50 GHz - 70dBm to +20dBm	R&S	NRP50SN	1419.0093K02- 100888-SB	26 Feb 2021
75	Environmental Chamber	Thermatron	SE-300-2-2	27946	20 Feb 2021

7.2. Radiated Emissions 3M Chamber


MiC@MLabs.

The following tests were performed using the radiated test set-up shown in the diagram below. Radiated emissions below 1GHz.Radiated Emissions above 1GHz.

Radiated Emissions Below 1GHz Test Setup

Radiated Emissions Above 1GHz Test Setup

full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CU101	04R08507	Not Required
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	8 Oct 2020
298	3M Radiated Emissions Chamber Maintenance Check	MiCOM	3M Chamber	298	26 Nov 2020
330	Variac 0-280 Vac	Staco Energy Co	3PN1020B	0546	Cal when used
336	Active loop Ant 10kHz to 30 MHz	EMCO	EMCO 6502	00060498	29 Nov 2020
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	4 Apr 2021
341	900MHz Notch Filter	EWT	EWT-14-0199	H1	3 Sep 2020
346	1.6 TO 10GHz High Pass Filter	EWT	EWT-57-0112	H1	3 Sep 2020
373	26III RMS Multimeter	Fluke	Fluke 26 series III	76080720	21 Sep 2020
377	Band Rejection Filter 5150 to 5880MHz	Microtronics	BRM50716	034	3 Sep 2020
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Oct 2020
396	2.4 GHz Notch Filter	Microtronics	BRM50701	001	3 Sep 2020
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	6 Sep 2020
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	12 Oct 2020
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	9 Sep 2020
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
414	DC Power Supply 0-60V	HP	6274	1029A01285	Cal when used
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
447	MiTest Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0	447	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	5 Sep 2020
463	Schwarzbeck cable from	Schwarzbeck	AK 9513	463	5 Sep 2020

Issue Date: 20th May 2020

Page: 19 of 148

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs

personnel. All changes will be noted in the Document History section of the report. MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, <u>www.micomlabs.com</u>

	Amplifier to Bulkhead.				
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	9 Sep 2020
465	Low Pass Filter DC- 1000 MHz	Mini-Circuits	NLP-1200+	VUU01901402	3 Sep 2020
480	Cable - Bulkhead to Amp	SRC Haverhill	157-3050360	480	9 Sep 2020
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-3050787	481	9 Sep 2020
510	Barometer/Thermometer	Control Company	68000-49	170871375	20 Dec 2020
518	Cable - Amp to Antenna	SRC Haverhill	157-3051574	518	9 Sep 2020
87	Uninterruptible Power Supply	Falcon Electric	ED2000-1/2LC	F3471 02/01	Cal when used
CC05	Confidence Check	MiCOM	CC05	None	4 Oct 2020

8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using stateof-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

9. TEST RESULTS

9.1. 20 dB & 99% Bandwidth

Conducted Test Conditions for 20 dB and 99% Bandwidth							
Standard:	FCC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5 ISED RSS-247:5.1 24.0 - 27.5 24.0 - 27.5						
Test Heading:	20 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45				
Standard Section(s):	15.247 (a)(1)(i)/(ii) Pressure (mBars): 999 - 1001						
Reference Document(s):	See Normative References						

Test Procedure for 20 dB and 99% Bandwidth Measurement

The bandwidth at 20 dB and 99 % was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits for 20 dB and 99% Bandwidth

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

(ii) Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies. The maximum 20 dB bandwidth of the hopping channel is 1 MHz. The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

Variant:	FSK	Duty Cycle (%):	99
Data Rate:	100.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Measured 20 dB Bandwidth (MHz)				20 dB Bandwidth (MHz)		Lingit	Lowest
Frequency		Port(s)					Limit	Margin
MHz	а	b	С	d	Highest	Lowest	MHz	MHz
902.3	<u>0.130</u>				0.130	0.130	0.5	-0.37
915.2	<u>0.129</u>				0.129	0.129	0.5	-0.37
926.9	<u>0.127</u>				0.127	0.127	0.5	-0.37

Test		Measured 99% E	Bandwidth (MHz	Maximum		
Frequency		Por	t(s)	99% Bandwidth		
MHz	а	b	С	d	(MHz)	
902.3	<u>0.116</u>				0.116	
915.2	<u>0.117</u>				0.117	
926.9	<u>0.115</u>				0.115	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Variant:	FSK	Duty Cycle (%):	99
Data Rate:	150.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Ме	asured 20 dB	Bandwidth (M	Hz)	20 dB Band	width (MLI=)	Limit	Lowest
Frequency		Por	t(s)			width (MHz)	Linnit	Margin
MHz	а	b	с	d	Highest	Lowest	MHz	MHz
902.4	<u>0.180</u>				0.180	0.180	0.5	-0.32
915.2	<u>0.180</u>				0.180	0.180	0.5	-0.32
927.6	<u>0.184</u>				0.184	0.184	0.5	-0.28

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	: WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Variant:	OQPSK	Duty Cycle (%):	99
Data Rate:	6.25 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Me	Measured 20 dB Bandwidth (MHz)				20 dB Bandwidth (MHz)		Lowest
Frequency		Port(s)					Limit	Margin
MHz	а	b	С	d	Highest	Lowest	MHz	MHz
902.4	<u>0.123</u>				0.123	0.123	0.5	-0.38
915.0	<u>0.128</u>				0.128	0.128	0.5	-0.37
926.8	<u>0.125</u>				0.125	0.125	0.5	-0.38

Test		Measured 99% E	Bandwidth (MHz	Maximum		
Frequency		Por	t(s)	99% Bandwidth		
MHz	а	b	С	d	(MHz)	
902.4	<u>0.114</u>				0.114	
915.0	<u>0.115</u>				0.115	
926.8	<u>0.114</u>				0.114	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Variant:	2FSK	Duty Cycle (%):	99
Data Rate:	50.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	2FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Measured 20 dB Bandwidth (MHz)			20 dB Bandwidth (MHz)		Limit	Lowest	
Frequency	Port(s)					Linit	Margin	
MHz	а	b	с	d	Highest	Lowest	MHz	MHz
902.4	<u>0.084</u>				0.084	0.084	0.5	-0.416
915.2	<u>0.087</u>				0.087	0.087	0.5	-0.413
926.8	<u>0.084</u>				0.084	0.084	0.5	-0.416

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Variant:	GFSK	Duty Cycle (%):	99
Data Rate:	150.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	GFSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Measured 20 dB Bandwidth (MHz)			20 dB Bandwidth (MHz)		Limit	Lowest	
Frequency	Port(s)					Linin	Margin	
MHz	а	b	С	d	Highest	Lowest	MHz	MHz
902.3	<u>0.179</u>				0.179	0.179	0.5	-0.321
915.2	<u>0.182</u>				0.182	0.182	0.5	-0.318
926.9	<u>0.181</u>				0.181	0.181	0.5	-0.319

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Variant:	GFSK	Duty Cycle (%):	99
Data Rate:	200.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	GFSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Measured 20 dB Bandwidth (MHz)			20 dB Bandwidth (MHz)		Limit	Lowest	
Frequency	Port(s)					Linin	Margin	
MHz	а	b	С	d	Highest	Lowest	MHz	MHz
902.3	<u>0.232</u>				0.232	0.232	0.5	-0.268
915.2	<u>0.238</u>				0.238	0.238	0.5	-0.262
926.9	<u>0.232</u>				0.232	0.232	0.5	-0.268

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Variant:	GFSK	Duty Cycle (%):	99
Data Rate:	300.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	GFSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Measured 20 dB Bandwidth (MHz)			20 dB Bandwidth (MHz)		Limit	Lowest		
Frequency	Port(s)			Port(s) 20 C				Linit	Margin
MHz	а	b	С	d	Highest	Lowest	MHz	MHz	
902.4	<u>0.367</u>				0.367	0.367	0.5	-0.133	
915.2	<u>0.360</u>				0.360	0.360	0.5	-0.140	
926.8	<u>0.363</u>				0.363	0.363	0.5	-0.137	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Variant:	OFDM3	Duty Cycle (%):	99
Data Rate:	600.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM3	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Me	asured 20 dB	Bandwidth (M	Hz)	20 dB Bandwidth (MHz)		Limit	Lowest
Frequency		Por	t(s)				Linin	Margin
MHz	а	b	С	d	Highest	Lowest	MHz	MHz
902.4	<u>0.335</u>				0.335	0.335	0.5	-0.165
915.2	<u>0.332</u>				0.332	0.332	0.5	-0.168
926.8	<u>0.366</u>				0.366	0.366	0.5	-0.134

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

9.2. Frequency Hopping Tests

Conducted Test Conditions for Frequency Hopping Measurements			
Standard:	FCC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5 ISED RSS-247:5.1 24.0 - 27.5 24.0 - 27.5		
Test Heading:	Frequency Hopping Tests	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.247 (a)(1)(i)/(ii) Pressure (mBars): 999 - 1001		
Reference Document(s):	See Normative References, FCC Public Notice DA 00-705		

Test Procedure for Frequency Hopping Measurements

These tests cover the following measurements:

- i) channel separation
- ii) channel occupancy
- iii) dwell time
- iv) number of hopping frequencies

Frequency hopping testing was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency or hopping mode.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits for Frequency Hopping Measurements

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

(ii) Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies. The maximum 20 dB bandwidth of the hopping channel is 1 MHz. The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

9.2.1. Number of Hopping Channels

Equipment Configuration for Number of Hopping Channels

Variant:	FSK	Antenna:	Not Applicable
Data Rate:	100.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
Duty Cycle (%):	99.0	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Frequency Range (MHz)	Number of Hopping Channels	Limit	Pass / Fail
902.0-910.0	<u>26</u>		
910.0-920.1	<u>34</u>		
920.0-928.0	<u>23</u>		
Total number of Hops	83	50	Pass

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Equipment Configuration for Number of Hopping Channels

Variant:	FSK	Antenna:	Not Applicable
Data Rate:	150.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
Duty Cycle (%):	99.0	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Frequency Range (MHz)	Number of Hopping Channels	Limit	Pass / Fail
902.0-910.0	<u>20</u>		
910.0-920.0	<u>25</u>		
920.0-928.0	<u>20</u>		
Total number of Hops	65	50	Pass

Traceability to Industry Recognized Test Methodologies		
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK	
Measurement Uncertainty:	±2.81 dB	

Equipment Configuration for Number of Hopping Channels

Variant:	OQPSK	Antenna:	Not Applicable
Data Rate:	6.25 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable
Duty Cycle (%):	99.0	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Frequency Range (MHz)	Number of Hopping Channels	Limit	Pass / Fail
902.0-910.0	<u>37</u>		
910.0-920.0	<u>50</u>		
920.0-928.0	<u>36</u>		
Total number of Hops	123	50	Pass

Traceability to Industry Recognized Test Methodologies		
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK	
Measurement Uncertainty:	±2.81 dB	

9.2.2. Channel Separation

Equipment Configuration for Channel Separation

Variant:	FSK	Antenna:	Not Applicable
Data Rate:	100.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
Duty Cycle (%):	99.0	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Center Frequency (MHz)	Chan Separation (MHz)	Limit (MHz)	Pass / Fail
915.2	<u>0.300</u>	0.127	Pass

Traceability to Industry Recognized Test Methodologies		
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK	
Measurement Uncertainty:	±2.81 dB	

Equipment Configuration for Channel Separation

Variant:	FSK	Antenna:	Not Applicable
Data Rate:	150.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
Duty Cycle (%):	99.0	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Center Frequency (MHz)	Chan Separation (MHz)	Limit (MHz)	Pass / Fail
915.2	<u>0.400</u>	0.180	Pass

Traceability to Industry Recognized Test Methodologies		
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK	
Measurement Uncertainty:	±2.81 dB	

Equipment Configuration for Channel Separation

Variant:	OQPSK	Antenna:	Not Applicable
Data Rate:	6.25 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable
Duty Cycle (%):	99.0	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Center Frequency (MHz)	Chan Separation (MHz)	Limit (MHz)	Pass / Fail
915.0	<u>0.400</u>	0.125	Pass

Traceability to Industry Recognized Test Methodologies		
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK	
Measurement Uncertainty:	±2.81 dB	

9.2.3. Channel Occupancy & Dwell Time

Equipment Configuration for Channel Occupancy

Variant:	FSK	Antenna:	Not Applicable
Data Rate:	100.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
Duty Cycle (%):	99.0	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency(MHz)	Dwell Time (Single Burst) (S)	Channel Occupancy (mS)	Observation Period (S)	Channel Occupancy Limit (mS)	Pass / Fail
915.20	<u>0.101</u>	<u>201.040</u>	20.00	400.000	Pass

Traceability to Industry Recognized Test Methodologies		
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK	
Measurement Uncertainty:	±2.81 dB	

Equipment Configuration for Channel Occupancy

Variant:	FSK	Antenna:	Not Applicable
Data Rate:	150.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
Duty Cycle (%):	99.0	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency(MHz)	Dwell Time (Single Burst) (S)	Channel Occupancy (mS)	Observation Period (S)	Channel Occupancy Limit (mS)	Pass / Fail
915.20	<u>0.055</u>	<u>165.330</u>	20.00	400.000	Pass

Traceability to Industry Recognized Test Methodologies		
Work Instruction: WI-03 MEASURING RF SPECTRUM MASK		
Measurement Uncertainty:	±2.81 dB	

Equipment Configuration for Channel Occupancy

Variant:	OQPSK	Antenna:	Not Applicable
Data Rate:	6.25 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable
Duty Cycle (%):	99.0	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency(MHz)	Dwell Time (Single Burst) (S)	Channel Occupancy (mS)	Observation Period (S)	Channel Occupancy Limit (mS)	Pass / Fail
915.00	<u>0.136</u>	<u>136.170</u>	20.00	400.000	Pass

Traceability to Industry Recognized Test Methodologies		
Work Instruction: WI-03 MEASURING RF SPECTRUM MASK		
Measurement Uncertainty:	±2.81 dB	

9.3. Output Power

Conducted Test Conditions for Fundamental Emission Output Power						
Standard:	FCC CFR 47: 15.247 (a)(1), (b)(1)/(2)/(3) ISED RSS-247:5.4	Ambient Temp. (°C):	24.0 - 27.5			
Test Heading:	Output Power	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.247 (a)(1), (b)(1)/(2)/(3) Pressure (mBars): 999 - 1001					
Reference Document(s):	See Normative References					

Test Procedure for Fundamental Emission Output Power Measurement

In the case of average power measurements an average power sensor was utilized.

For peak power measurements the spectrum analyzer built-in power function was used to integrate peak power over the 20 dB bandwidth.

Testing was performed under ambient conditions, nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured, summed (Σ) and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document. Supporting Information Calculated Power = $A + G + Y + 10 \log (1/x) dBm$

A = Total Power $[10*Log10 (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})]$

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Limits for Fundamental Emission Output Power

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following for frequency hopping systems:

(1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

(2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time

Title:Itron Networked Solutions, Inc NIC 531-0601To:FCC 15.247 & ISED RSS-247 (900 MHz FHSS)Serial #:ITRO29-U2 Rev A

intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Variant:	FSK	Duty Cycle (%):	99.0
Data Rate:	100.00 KBit/s	Antenna Gain (dBi):	1.00
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test					Calculated Total	Limit	Margin
Frequency	Port(s)			Power Σ Port(s)			
MHz	а	b	С	d	dBm	dBm	dB
902.3	29.61				29.61	30.00	-0.39
915.2	29.88				29.88	30.00	-0.12
926.9	29.09				29.09	30.00	-0.91

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Variant:	FSK	Duty Cycle (%):	99.0
Data Rate:	150.00 KBit/s	Antenna Gain (dBi):	1.00
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Output Power (dBm) Port(s)			Calculated Total Power Σ Port(s)	Limit	Margin	
MHz	а	b	С	d	dBm	dBm	dB
902.4	29.62				29.62	30.00	-0.38
915.2	29.55				29.55	30.00	-0.45
927.6	29.79				29.79	30.00	-0.21

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Variant:	OQPSK	Duty Cycle (%):	99.0
Data Rate:	6.25 KBit/s	Antenna Gain (dBi):	1.00
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test					Calculated Total	Limit	Margin
Frequency	Port(s)			Power Σ Port(s)		· 5	
MHz	а	b	С	d	dBm	dBm	dB
902.4	29.83				29.83	30.00	-0.17
915.0	29.37				29.37	30.00	-0.63
926.8	29.60				29.60	30.00	-0.40

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Variant:	2FSK	Duty Cycle (%):	99.0
Data Rate:	50.00 KBit/s	Antenna Gain (dBi):	1.00
Modulation:	2FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Output Power (dBm) Port(s)				Calculated Total Power Σ Port(s)	Limit	Margin
MHz	а	b	С	d	dBm	dBm	dB
902.4	29.48				29.48	30	-0.52
915.2	29.55				29.55	30	-0.45
926.8	29.27				29.27	30	-0.73

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Variant:	GFSK	Duty Cycle (%):	99.0
Data Rate:	150.00 KBit/s	Antenna Gain (dBi):	1.00
Modulation:	GFSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Output Power (dBm) Port(s)				Calculated Total Power Σ Port(s)	Limit	Margin
MHz	а	b	С	d	dBm	dBm	dB
902.3	29.73				29.73	30	-0.27
915.2	29.56				29.56	30	-0.44
926.9	29.48				29.48	30	-0.52

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Variant:	GFSK	Duty Cycle (%):	99.0
Data Rate:	200.00 KBit/s	Antenna Gain (dBi):	1.00
Modulation:	GFSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test					Calculated Total	Limit	Margin
Frequency	Port(s)				Power Σ Port(s)	Linin	Margin
MHz	а	b	С	d	dBm	dBm	dB
902.3	29.53				29.53	30	-0.47
915.2	29.36				29.36	30	-0.64
926.9	29.59				29.59	30	-0.41

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Variant:	GFSK	Duty Cycle (%):	99.0
Data Rate:	300.00 KBit/s	Antenna Gain (dBi):	1.00
Modulation:	GFSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Measured Output Power (dBm)				Calculated Total Power Σ Port(s)	Limit	Margin
Frequency	Port(s)			. ,		_	
MHz	а	b	С	d	dBm	dBm	dB
902.4	29.54				29.54	30	-0.46
915.2	29.78				29.78	30	-0.22
926.8	29.39				29.39	30	-0.61

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Variant:	OFDM3	Duty Cycle (%):	99.0
Data Rate:	600.00 KBit/s	Antenna Gain (dBi):	1.00
Modulation:	OFDM3	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Output Power (dBm) Port(s)				Calculated Total Power Σ Port(s)	Limit	Margin
MHz	а	b	С	d	dBm	dBm	dB
902.4	29.17				29.17	30	-0.83
915.2	29.33				29.33	30	-0.67
926.8	29.19				29.19	30	-0.81

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

9.4. Emissions

9.4.1. Conducted Emissions

Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions						
Standard:	FCC CFR 47:15.247 (d) Ambient Temp. (°C): 24.0 - 27.5					
Test Heading:	Transmitter Conducted Spurious and Band-Edge Emissions 22 - 45					
Standard Section(s):	15.247 (d) Pressure (mBars): 999 - 1001					
Reference Document(s):	See Normative References					

Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

Transmitter Conducted Spurious and Band-Edge emissions were measured at a limit of 30 dBc (average detector) or 20 dBc (peak detector) below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in transmit mode of operation at the appropriate centre frequency closest to the band-edge. Emissions were maximized during the measurement and limits derived from the peak spectral power and drawn on each plot.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits Transmitter Conducted Spurious and Band-Edge Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

9.4.1.1. Conducted Unwanted Spurious Emissions

Equipment Configuration for Unwanted Emissions Peak

Variant:	FSK	Duty Cycle (%):	99
Data Rate:	100.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Frequency		Unwanted Emissions Peak (dBm)						
Frequency	Range	P	ort a	Po	rt b	Po	rt c	Po	rt d
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
902.3	30.0 - 10000.0	<u>-32.622</u>	8.26						
915.2	30.0 - 10000.0	<u>-32.661</u>	8.46						
926.9	30.0 - 10000.0	<u>-33.600</u>	5.05						
	•				•				

Traceability to Industry Recognized Test Methodologies					
Work Instruction: WI-05 MEASUREMENT OF SPURIOUS EMISSIONS					
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Equipment Configuration for Unwanted Emissions Peak

Variant:	FSK	Duty Cycle (%):	99
Data Rate:	150.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Frequency		Unwanted Emissions Peak (dBm)						
Frequency	Range	P	ort a	Po	rt b	Po	rt c	Po	rt d
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
902.4	30.0 - 10000.0	<u>-32.769</u>	7.59						
915.2	30.0 - 10000.0	<u>-33.029</u>	6.79						
927.6	30.0 - 10000.0	<u>-32.113</u>	6.93						
				-	•				

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Equipment Configuration for Unwanted Emissions Peak

Variant:	OQPSK	Duty Cycle (%):	99
Data Rate:	6.25 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OQPSK	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Frequency		Unwanted Emissions Peak (dBm)						
Frequency	Range	P	ort a	Po	rt b	Po	rt c	Po	rt d
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
902.4	30.0 - 10000.0	<u>-32.927</u>	7.92						
915.0	30.0 - 10000.0	<u>-32.960</u>	6.71				-	-	
926.8	30.0 - 10000.0	<u>-33.132</u>	5.50						
					•	•			

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

9.4.1.2. Conducted Band-Edge Emissions

Equipment Configuration for Conducted Low Band-Edge Emissions (Hopping) Peak

Variant:	FSK	Duty Cycle (%):	99.0
Data Rate:	100.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	902.3 MHz	02.3 MHz					
Band-Edge Frequency:	902.0 MHz	02.0 MHz					
Test Frequency Range:	875.0 - 905.0 Mł	875.0 - 905.0 MHz					
	Band-E	dge Markers	and Limit	Revise	ed Limit	Margin	
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)	
а	<u>-11.75</u>	4.97	902.10			-0.100	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Equipment Configuration for Conducted Low Band-Edge Emissions (Hopping) Peak

Variant:	FSK	Duty Cycle (%):	99.0
Data Rate:	150.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	902.4 MHz						
Band-Edge Frequency:	902.0 MHz	02.0 MHz					
Test Frequency Range:	875.0 - 905.0 MH	375.0 - 905.0 MHz					
	Band-Edge Markers and Limit			Revised Limit		Margin	
Port(s)	M1 Amplitude (dBm)				M2A Frequency (MHz)	(MHz)	
а	<u>-18.38</u>						

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Equipment Configuration for Conducted Low Band-Edge Emissions (Hopping) Peak

Variant:	OQPSK	Duty Cycle (%):	99.0
Data Rate:	6.25 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	902.4 MHz						
Band-Edge Frequency:	902.0 MHz	02.0 MHz					
Test Frequency Range:	875.0 - 905.0 MH	375.0 - 905.0 MHz					
	Band-Ec	lge Markers a	and Limit	Revise	ed Limit	Margin	
Port(s)	M1 Amplitude Plot Limit M2 Frequency (dBm) (dBm) (MHz)			Amplitude (dBm)	M2A Frequency (MHz)	(MHz)	
а	<u>-29.17</u>						

Traceability to Industry Recognized Test Methodologies

Work Instruc	ion: WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncerta	nty: <=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Equipment Configuration for Conducted Low Band-Edge Emissions (Static) Peak

Variant:	FSK	Duty Cycle (%):	99.0
Data Rate:	100.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:		-	

Test Measurement Results

Channel Frequency:	902.3 MHz						
Band-Edge Frequency:	902.0 MHz	02.0 MHz					
Test Frequency Range:	875.0 - 905.0 MH	375.0 - 905.0 MHz					
	Band-Edge Markers and Limit			Revised Limit		Margin	
Port(s)	M1 Amplitude (dBm)				M2A Frequency (MHz)	(MHz)	
а	<u>-8.72</u>	8.47	902.10			-0.100	

Traceability to Industry Recognized Test Methodologies

		Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
		Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Equipment Configuration for Conducted Low Band-Edge Emissions (Static) Peak

Variant:	FSK	Duty Cycle (%):	99.0
Data Rate:	150.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	902.4 MHz					
Band-Edge Frequency:	902.0 MHz	902.0 MHz				
Test Frequency Range:	875.0 - 905.0 MHz	875.0 - 905.0 MHz				
	Band-Edg	ge Markers a	and Limit	Revise	d Limit	Margin
Port(s)	M1 Amplitude (dBm)	(MHZ)				(MHz)
а	<u>-18.59</u>	7.85	902.20			-0.200

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Equipment Configuration for Conducted Low Band-Edge Emissions (Static) Peak

Variant:	OQPSK	Duty Cycle (%):	99.0
Data Rate:	6.25 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	902.4 MHz					
Band-Edge Frequency:	902.0 MHz	902.0 MHz				
Test Frequency Range:	875.0 - 905.0 Mł	875.0 - 905.0 MHz				
	Band-E	Band-Edge Markers and Limit Revised Limit Margin				
Port(s)	M1 Amplitude Plot Limit M2 Frequency Amplitude M2A Frequency (MHz) (MHz) (MHz) (MHz)				(MHz)	
а	<u>-19.11</u>	8.22	902.20			-0.200

Traceability to Industry Recognized Test Methodologies

		Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
		Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Equipment Configuration for Conducted Upper Band-Edge Emissions (Hopping) Peak

Variant:	FSK	Duty Cycle (%):	99.0
Data Rate:	100.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	926.9 MHz						
Band-Edge Frequency:	928.0 MHz	928.0 MHz					
Test Frequency Range:	925.0 - 950.0 MH	925.0 - 950.0 MHz					
	Band-Ec	Band-Edge Markers and Limit Revised Limit Margin					
Port(s)	M3 Amplitude (dBm)	(MH7)					
а	<u>-36.30</u>	6.12	927.10			-0.900	

Traceability to Industry Recognized Test Methodologies

Work Instruc	ion: WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncerta	nty: <=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Equipment Configuration for Conducted Upper Band-Edge Emissions (Hopping) Peak

Variant:	FSK	Duty Cycle (%):	99.0
Data Rate:	150.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	927.6 MHz					
Band-Edge Frequency:	928.0 MHz	928.0 MHz				
Test Frequency Range:	925.0 - 950.0 MH	925.0 - 950.0 MHz				
	Band-Ed	lge Markers a	and Limit	Revise	d Limit	Margin
Port(s)	M3 Amplitude (dBm)	· · · · · · · · · · · · · · · · · · ·				
а	<u>-20.326</u>	9.650	927.54			-0.246

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Equipment Configuration for Conducted Upper Band-Edge Emissions (Hopping) Peak

Variant:	OQPSK	Duty Cycle (%):	99.0
Data Rate:	6.25 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	926.8 MHz					
Band-Edge Frequency:	928.0 MHz	928.0 MHz				
Test Frequency Range:	925.0 - 950.0 Mł	925.0 - 950.0 MHz				
	Band-Edge Markers and Limit			Revise	Margin	
Port(s)	M3 Amplitude Plot Limit M2 Frequency (dBm) (dBm) (MHz)			Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-32.04</u>	8.57	927.00			-1.000

Traceability to Industry Recognized Test Methodologies

		Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
		Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Equipment Configuration for Conducted Upper Band-Edge Emissions (Static) Peak

Variant:	FSK	Duty Cycle (%):	99.0
Data Rate:	100.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	927.6 MHz					
Band-Edge Frequency:	928.0 MHz	928.0 MHz				
Test Frequency Range:	925.0 - 950.0 MH	925.0 - 950.0 MHz				
	Band-Edge Markers and Limit			Revise	Margin	
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-21.960</u>	2.380	927.704			-0.296

Traceability to Industry Recognized Test Methodologies

		Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
		Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Equipment Configuration for Conducted Upper Band-Edge Emissions (Static) Peak

Variant:	FSK	Duty Cycle (%):	99.0
Data Rate:	150.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	926.8 MHz					
Band-Edge Frequency:	928.0 MHz					
Test Frequency Range:	925.0 - 950.0 MH	925.0 - 950.0 MHz				
	Band-Edge Markers and Limit			Revise	Margin	
Port(s)	M3 Amplitude (dBm)				M2A Frequency (MHz)	(MHz)
а	<u>-32.33</u>	6.18	927.00			-1.000

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Equipment Configuration for Conducted Upper Band-Edge Emissions (Static) Peak

Variant:	OQPSK	Duty Cycle (%):	99.0
Data Rate:	6.25 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	926.8 MHz					
Band-Edge Frequency:	928.0 MHz	928.0 MHz				
Test Frequency Range:	925.0 - 950.0 MH	925.0 - 950.0 MHz				
	Band-Edge Markers and Limit			Revise	Margin	
Port(s) M3 Amplitude Plot Limit M2 Frequency (dBm) (dBm) (MHz)				Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-31.64</u>	6.02	927.00			-1.000

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

9.4.2. Radiated Emissions

Radiated Test Conditions for Radiated Spurious and Band-Edge Emissions (Restricted Bands)							
Standard:	CC CFR 47:15.247 Ambient Temp. (°C): 20.0 - 24.5 SED RSS-GEN:8.9, 8.10 Ambient Temp. (°C): 20.0 - 24.5						
Test Heading:	Test Heading: Radiated Spurious and Band- Edge Emissions		32 - 45				
Standard Section(s):	15.205, 15.209 Pressure (mBars): 999 - 1001						
Reference Document(s):	See Normative References						

Test Procedure for Radiated Spurious and Band-Edge Emissions (Restricted Bands)

Radiated emissions for restricted bands above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned. Measurements on any restricted band frequency or frequencies above 1 GHz are based on the use of measurement instrumentation employing peak and average detectors. All measurements were performed using a resolution bandwidth of 1 MHz.

Test configuration and setup for Radiated Spurious and Band-Edge Measurement were per the Radiated Test Set-up specified in this document.

Limits for Restricted Bands Peak emission: 74 dBuV/m Average emission: 54 dBuV/m

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data. FS = R + AF + CORR - FO

where: FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

Example:

Given receiver input reading of 51.5 dBmV; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength (FS) of the measured emission is:

FS = 51.5 + 8.5 + 1.3 - 26.0 +1 = 36.3 dBmV/m

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are as follows: Level (dBmV/m) = 20 * Log (level (mV/m))

40 dBmV/m = 100 mV/m 48 dBmV/m = 250 mV/m Restricted Bands of Operation (15.205)

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

	Frequency	y Band		
MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
2.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
2.57675-12.57725	322-335.4	3600-4400	Above 38.6	
13.36-13.41				

(b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhere in this subpart, the provisions of this section apply to emissions from any intentional radiator.

(d) The following devices are exempt from the requirements of this section:

(1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section, more than 99% of the time the device is actively transmitting, without compensation for duty cycle.

(2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.

(3) Cable locating equipment operated pursuant to §15.213.

(4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GHz, or §15.257 of this part.

(5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.

(6) Transmitters operating under the provisions of subparts D or F of this part.

(7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

(8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §15.245(b).

Title:Itron Networked Solutions, Inc NIC 531-0601To:FCC 15.247 & ISED RSS-247 (900 MHz FHSS)Serial #:ITRO29-U2 Rev A

(9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in §15.249(a).

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of §15.245 shall not exceed the limits specified in §15.245(b).

9.4.2.3. TX Spurious & Restricted Band Emissions

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	Tai Sheng Cheng 155-0184-00	Variant:	FSK
Antenna Gain (dBi):	1.00	Modulation:	FSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	902.30	Data Rate:	100.00 KBit/s
Power Setting:	Max	Tested By:	JMH

Test Measurement Results

	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1804.71	64.79	-1.55	-14.44	48.80	Peak (NRB)	Horizontal	200	77			Pass
#2	6316.09	66.56	-2.91	-9.12	54.53	Peak (NRB)	Vertical	200	212			Pass
Test No	est Notes: EUT powered by DC 24 V											

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	Tai Sheng Cheng 155-0184-00	Variant:	FSK
Antenna Gain (dBi):	1.00	Modulation:	FSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	915.20	Data Rate:	100.00 KBit/s
Power Setting:	Max	Tested By:	JMH

Test Measurement Results

	1000.00 - 10000.00 MHz																					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail										
#1	1830.41	62.98	-1.52	-14.03	47.43	Peak (NRB)	Horizontal	200	81			Pass										
#2	2745.73	60.93	-1.91	-11.96	47.06	Max Peak	Horizontal	98	224	74.0	-26.9	Pass										
#3	2745.73	54.87	-1.91	-11.96	41.00	Max Avg	Horizontal	98	224	54.0	-13.0	Pass										
#4	6406.56	62.02	-2.96	-9.21	49.85	Peak (NRB)	Vertical	200	81			Pass										
Test Not	tes: EUT pow	ered by D	OC 24 V									Fest Notes: EUT powered by DC 24 V										

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	Tai Sheng Cheng 155-0184-00	Variant:	100 kbps FSK
Antenna Gain (dBi):	1.00	Modulation:	FSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	927.6	Data Rate:	100.00 KBit/s
Power Setting:	30	Tested By:	JMH

Test Measurement Results

	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1854.36	62.21	-1.56	-13.81	46.84	Peak (NRB)	Horizontal	200	19			Pass
#2	2781.81	59.36	-1.89	-11.91	45.56	Max Peak	Horizontal	177	162	74	-28.44	Pass
#3	2781.81	52.77	-1.89	-11.91	38.97	Max Avg	Horizontal	177	162	54	-15.03	Pass
#4	3708.96	62.82	-2.2	-11.63	48.99	Max Peak	Vertical	134	98	74	-25.01	Pass
#5	3708.96	57.17	-2.2	-11.63	43.34	Max Avg	Vertical	134	98	54	-10.66	Pass
#6	4635.98	62.32	-2.49	-12.24	47.59	Max Peak	Vertical	179	155	74	-26.41	Pass
#7	4635.98	55.1	-2.49	-12.24	40.37	Max Avg	Vertical	179	155	54	-13.63	Pass
#8	6490.26	65.12	-2.95	-8.94	53.23	Peak (NRB)	Horizontal	200	282			Pass
Test No	est Notes: EUT powered by DC 24 V											

9.4.3. Digital Emissions (0.03 - 1 GHz)

Radiated Test Conditions for Radiated Digital Emissions (0.03 – 1 GHz)							
Standard:	FCC CFR 47:15.209, ICES-003: 6.2 RSS-GEN: 7	Ambient Temp. (°C):	20.0 - 24.5				
Test Heading:	Digital Emissions	Rel. Humidity (%):	32 - 45				
Standard Section(s):	15.209	Pressure (mBars):	999 - 1001				
Reference Document(s):	See Normative References						

Test Procedure for Radiated Digital Emissions (0.03 – 1 GHz)

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

Test configuration and setup for Radiated Spurious and Band-Edge Measurement were per the Radiated Test Set-up specified in this document.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

FS = R + AF + CORR

where: FS = Field Strength R = Measured Receiver Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain

For example:

Given a Receiver input reading of 51.5dBmV; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

FS = 51.5 + 8.5 + 1.3 - 26.0 +1 = 36.3dBmV/m

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are done as:

Level (dBmV/m) = 20 * Log (level (mV/m))

40 dBmV/m = 100mV/m 48 dBmV/m = 250mV/m

Issue Date: 20th May 2020

Limits for Radiated Digital Emissions (0.03 – 1 GHz)

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

_ /	Field S		
Frequency (MHz)	μV/m (microvolts/meter) dBμV/m (dB microvolts/meter)		Measurement Distance (m)
0.009-0.490	2400/F(kHz)		300
0.490-1.705	24000/F(kHz)		30
1.705-30.0	30	29.5	30
30-88	100**	40	3
88-216	16 150** 43.5		3
216-960	200**	46.0	3
Above 960	500	54.0	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241. (b) In the emission table above, the tighter limit applies at the band edges. (c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency. (d) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. (e) The provisions in §§15.31, 15.33, and 15.35 for measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part. (f) In accordance with §15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in §15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in §15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit. Emissions which must be measured above the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator and which fall within the restricted bands shall comply with the general radiated emission limits in §15.109 that are applicable to the incorporated digital device. (g) Perimeter protection systems may operate in the 54-72 MHz and 76-88 MHz bands under the provisions of this section. The use of such perimeter protection systems is limited to industrial, business and commercial applications.

Equipment Configuration for Radiated Digital Emissions

Antenna:	Tai Sheng Cheng 155-0184-00	Variant:	FSK
Antenna Gain (dBi):	1.00	Modulation:	FSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	902.30	Data Rate:	100.00 KBit/s
Power Setting:	Max	Tested By:	JMH

Test Measurement Results

	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	112.75	53.43	4.06	-15.40	42.09	MaxQP	Vertical	99	138	43.0	-0.9	Pass
#2	291.54	46.84	4.80	-14.70	36.94	MaxQP	Horizontal	98	212	46.0	-9.1	Pass
#3	880.25	31.79	6.59	-5.20	33.18	MaxQP	Horizontal	98	209	46.0	-12.8	Pass
#4	902.29	54.55	6.65	-5.10	56.10	Fundamental	Horizontal	100	0			
#5	966.30	39.65	6.84	-4.00	42.49	MaxQP	Vertical	107	343	53.0	-10.5	Pass
Test No	tes: EUT pow	ered by D	DC 24 V. 9	900 MHz	notch in fro	ont of amp to pre	event overloa	ad				

Equipment Configuration for Radiated Digital Emissions

Antenna:	Tai Sheng Cheng 155-0184-00	Variant:	FSK
Antenna Gain (dBi):	1.00	Modulation:	FSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	915.20	Data Rate:	100.00 KBit/s
Power Setting:	Max	Tested By:	JMH

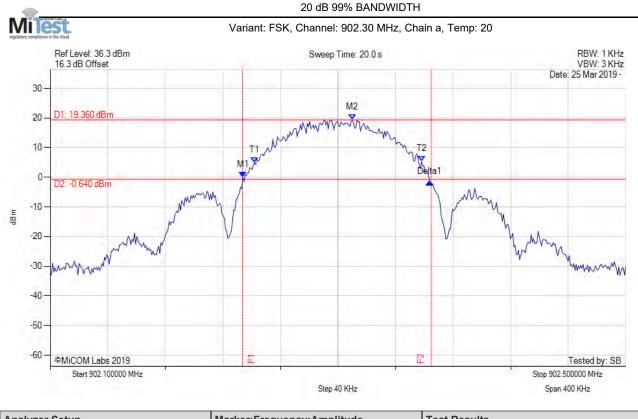
Test Measurement Results

	30.00 - 1000.00 MHz																		
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail							
#1	118.18	51.04	4.09	-14.80	40.33	MaxQP	Vertical	98	144	43.0	-2.7	Pass							
#2	293.50	45.57	4.81	-14.60	35.78	MaxQP	Vertical	132	173	46.0	-10.2	Pass							
#3	446.59	36.90	5.34	-11.20	31.04	MaxQP	Horizontal	101	176	46.0	-15.0	Pass							
#4	915.18	48.13	6.67	-4.70	50.10	Fundamental	Vertical	100	0										
#5	979.17	38.00	6.88	-3.80	41.08	MaxQP	Vertical	105	281	53.0	-11.9	Pass							
Test No	tes: EUT pow	ered by D	DC 24 V. 9	900 MHz	notch in fro	ont of amp to pre	event overloa	ad				est Notes: EUT powered by DC 24 V. 900 MHz notch in front of amp to prevent overload							

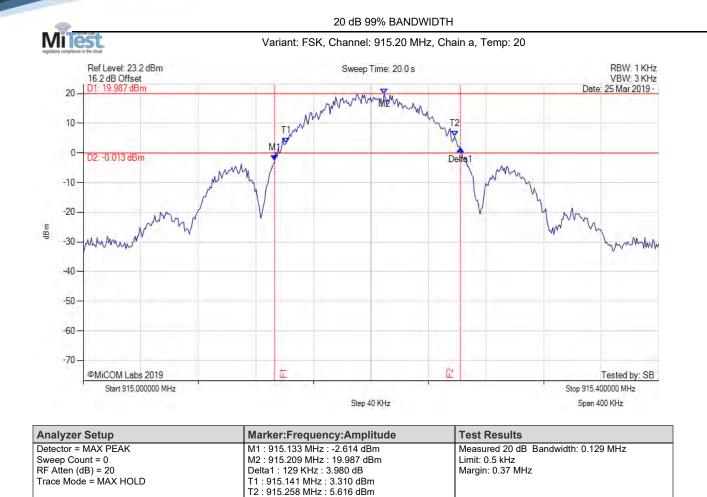
Equipment Configuration for Radiated Digital Emissions

Antenna:	Tai Sheng Cheng 155-0184-00	Variant:	100 kbps FSK
Antenna Gain (dBi):	1.00	Modulation:	FSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	927.6	Data Rate:	100.00 KBit/s
Power Setting:	30	Tested By:	JMH

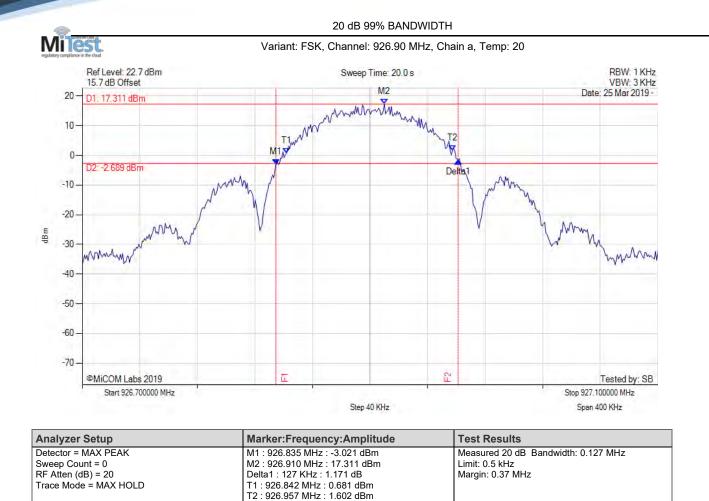
Test Measurement Results

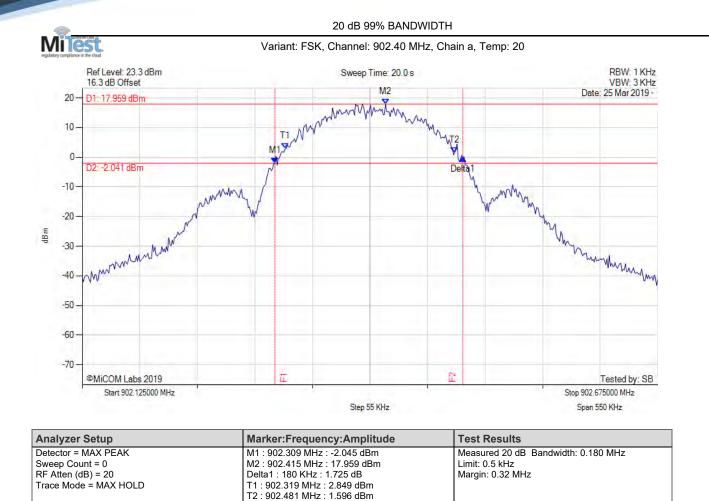

	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	117.2	51.59	4.09	-14.8	40.88	MaxQP	Vertical	99	148	43	-2.12	Pass
#2	291.17	41.82	4.81	-14.6	32.03	MaxQP	Vertical	98	151	46	-13.97	Pass
#3	452.26	33.31	5.36	-11	27.67	MaxQP	Horizontal	194	171	46	-18.33	Pass
#4	875.52	36.3	6.58	-5.2	37.68	MaxQP	Vertical	124	13	46	-8.32	Pass
#5	927.94	53.3	6.72	-4.6	55.42	Fundamental	Vertical	100	0			
#6	976.85	36.63	6.87	-3.9	39.6	MaxQP	Vertical	103	310	53	-13.4	Pass
Test No	tes: EUT pow	ered by D	OC 24 V. 9	00 MHz	notch in fro	ont of amp to pre	event overloa	ad				

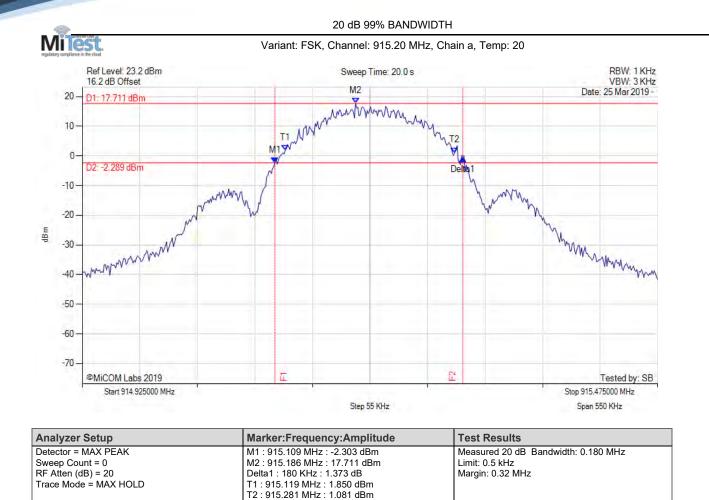
A. APPENDIX - GRAPHICAL IMAGES

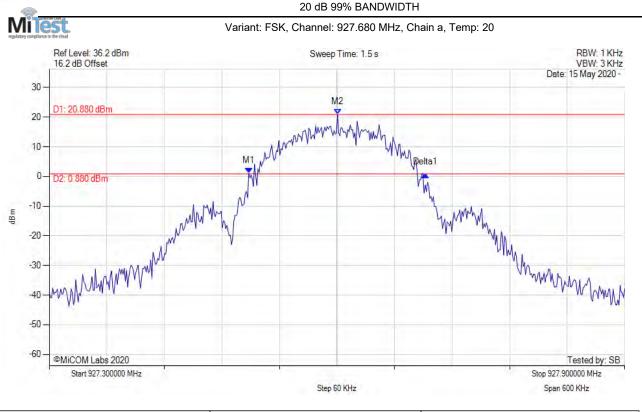


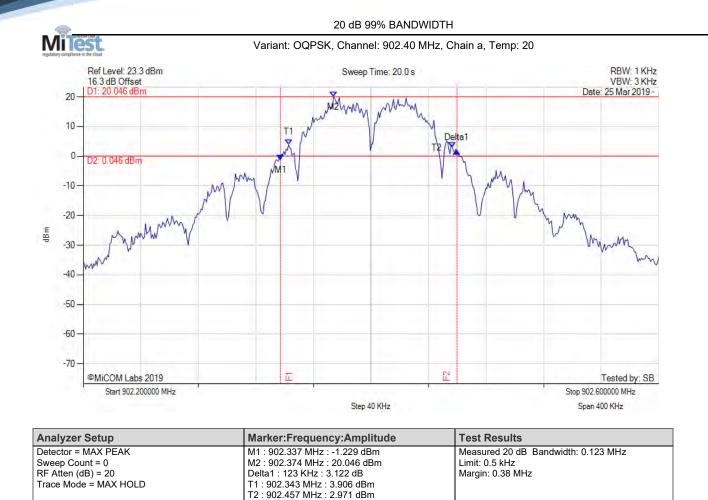
A.1. 20 dB & 99% Bandwidth

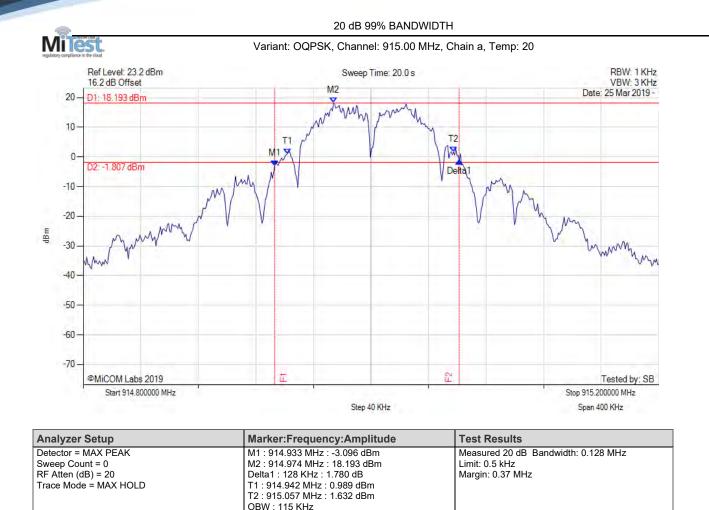

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 902.234 MHz : 0.000 dBm	Measured 20 dB Bandwidth: 0.130 MHz
Sweep Count = 0	M2 : 902.310 MHz : 19.363 dBm	Limit: 0.5 kHz
RF Atten (dB) = 30	Delta1 : 130 KHz : -1.460 dB	Margin: 0.37 MHz
Trace Mode = MAX HOLD	T1 : 902.242 MHz : 5.007 dBm	
	T2 : 902.358 MHz : 5.365 dBm	
	OBW : 116 KHz	

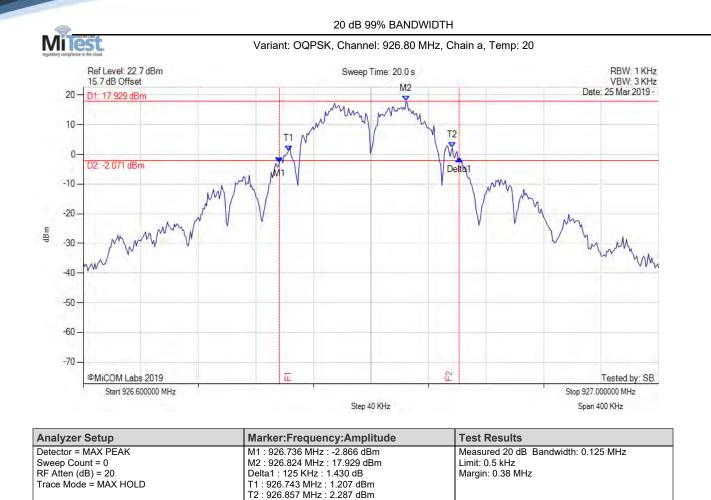

OBW : 117 KHz


OBW : 115 KHz

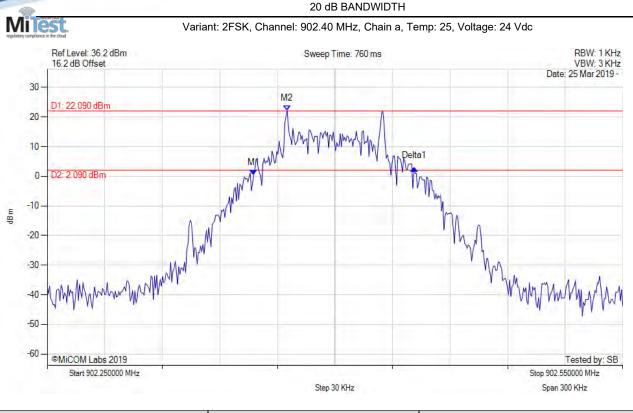

OBW : 162 KHz

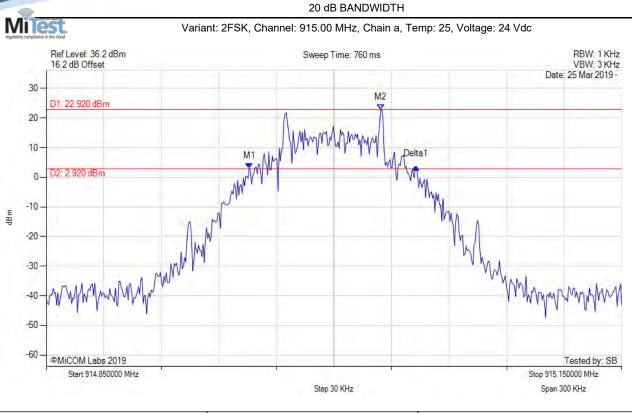

OBW : 162 KHz

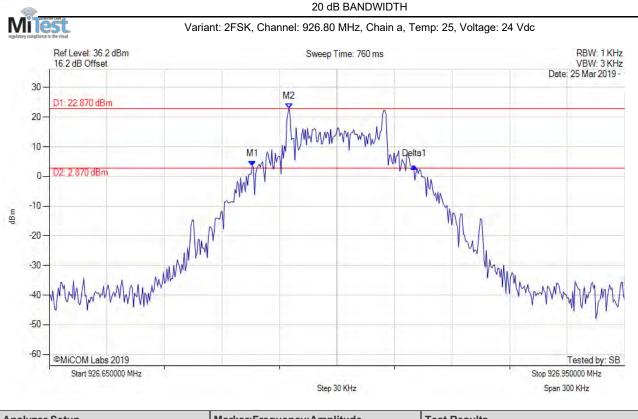

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 927.508 MHz : 1.060 dBm	Channel Frequency: 927.60 MHz
Sweep Count = 0	M2 : 927.601 MHz : 20.885 dBm	
RF Atten (dB) = 20	Delta1 : 184 KHz : -0.511 dB	
Trace Mode = MAX HOLD		

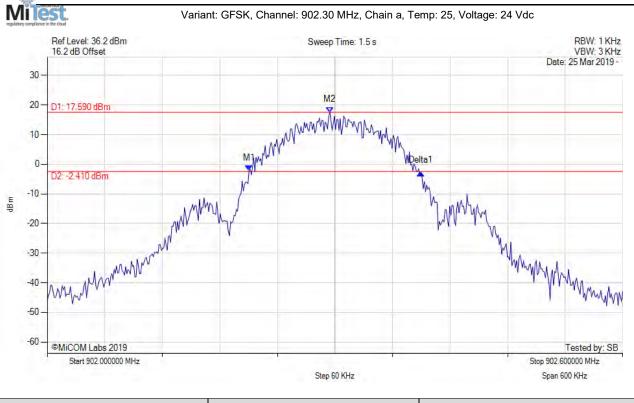


OBW : 114 KHz

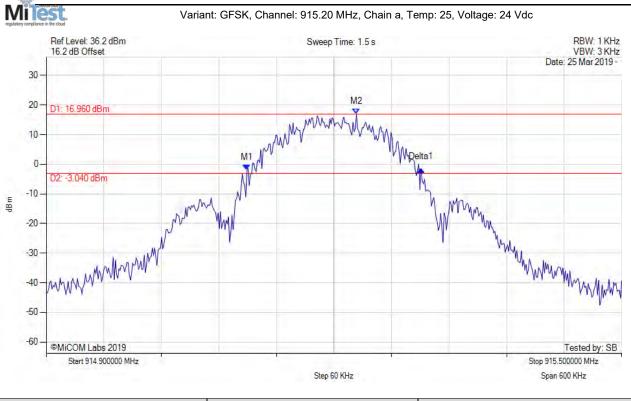



OBW : 114 KHz


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = CLR/WRITE	M1 : 902.358 MHz : 0.477 dBm M2 : 902.375 MHz : 22.090 dBm Delta1 : 84 KHz : 2.184 dB	Channel Frequency: 902.40 MHz


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0	M1 : 914.956 MHz : 3.076 dBm M2 : 915.024 MHz : 22.916 dBm Delta1 : 87 KHz : 0.480 dB	Channel Frequency: 915.00 MHz

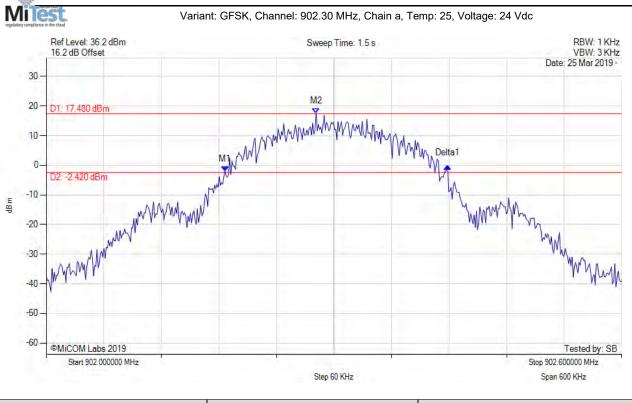
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 926.756 MHz : 3.536 dBm	Channel Frequency: 926.80 MHz
Sweep Count = 0	M2 : 926.775 MHz : 22.875 dBm	
RF Atten (dB) = 30	Delta1 : 84 KHz : -0.102 dB	
Trace Mode = CLR/WRITE		



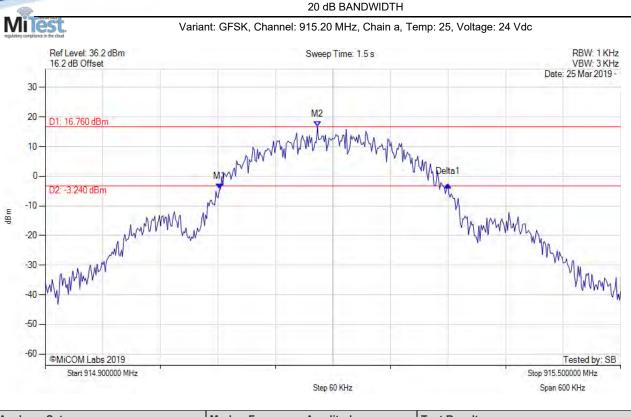
20 dB BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0	M1 : 902.210 MHz : -2.108 dBm M2 : 902.295 MHz : 17.591 dBm Delta1 : 179 KHz : -0.750 dB	Channel Frequency: 902.30 MHz

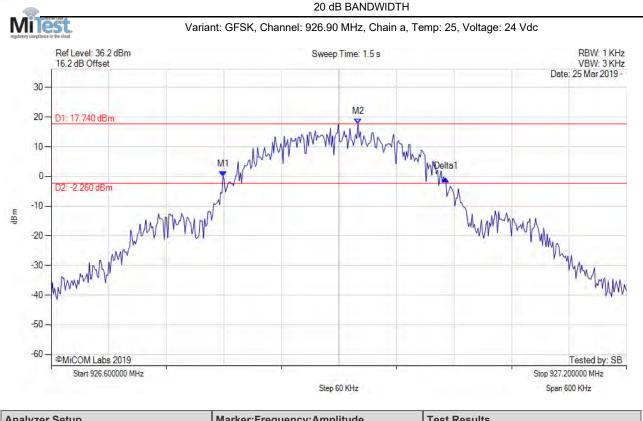
20 dB BANDWIDTH

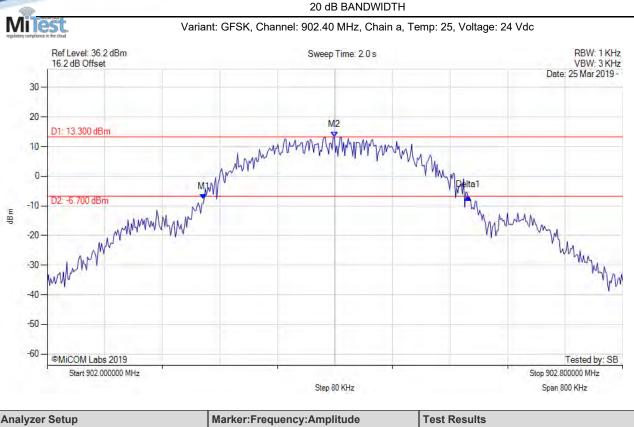

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 915.109 MHz : -2.006 dBm	Channel Frequency: 915.20 MHz
Sweep Count = 0	M2 : 915.223 MHz : 16.961 dBm	
RF Atten (dB) = 30	Delta1 : 182 KHz : 0.234 dB	
Trace Mode = CLR/WRITE		

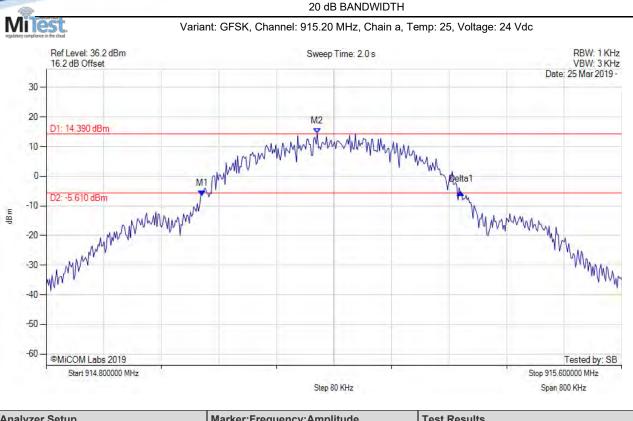
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 926.808 MHz : -0.940 dBm	Channel Frequency: 926.90 MHz
Sweep Count = 0	M2 : 926.901 MHz : 18.875 dBm	
RF Atten (dB) = 30	Delta1 : 181 KHz : 0.035 dB	
Trace Mode = CLR/WRITE		

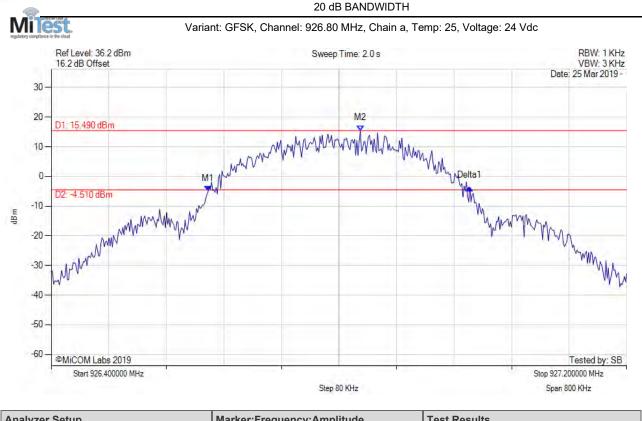


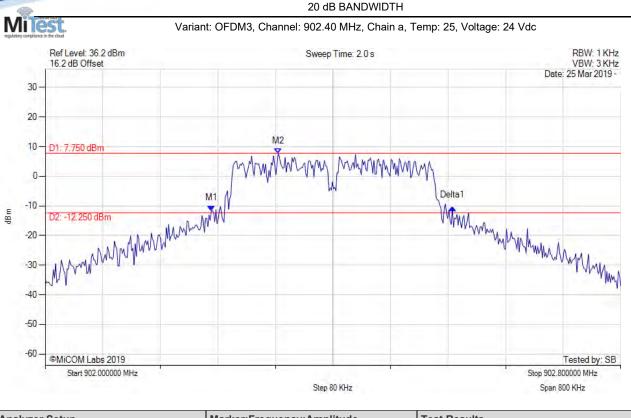
20 dB BANDWIDTH

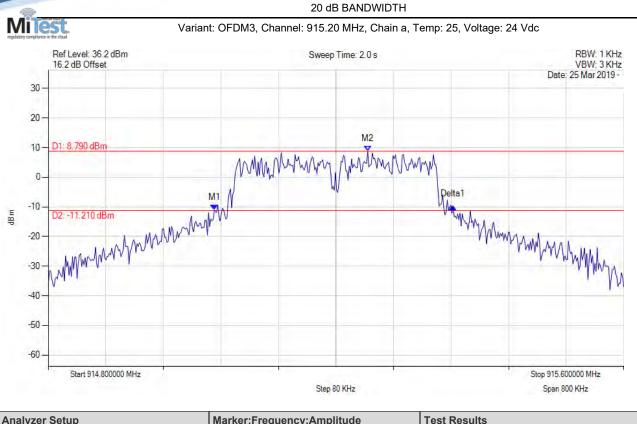

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 902.186 MHz : -2.061 dBm	Channel Frequency: 902.30 MHz
Sweep Count = 0	M2 : 902.281 MHz : 17.481 dBm	
RF Atten (dB) = 30	Delta1 : 232 KHz : 1.897 dB	
Trace Mode = CLR/WRITE		

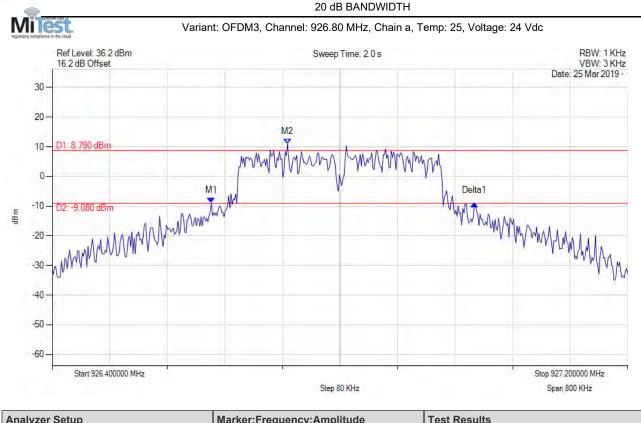

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 915.082 MHz : -4.314 dBm	Channel Frequency: 915.20 MHz
	M2 : 915.184 MHz : 16.759 dBm	
RF Atten (dB) = 30	Delta1 : 238 KHz : 1.576 dB	
Trace Mode = CLR/WRITE		


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 926.779 MHz : 0.036 dBm	Channel Frequency: 926.90 MHz
Sweep Count = 0	M2 : 926.920 MHz : 17.740 dBm	
RF Atten (dB) = 30	Delta1 : 232 KHz : -0.700 dB	
Trace Mode = CLR/WRITE		

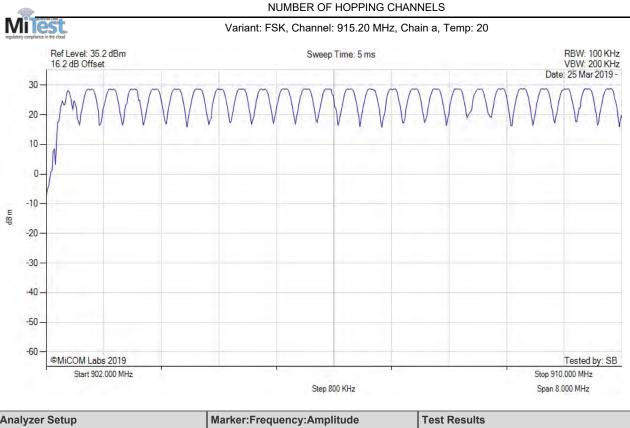

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0 RF Atten (dB) = 30	M1 : 902.217 MHz : -7.806 dBm M2 : 902.399 MHz : 13.300 dBm Delta1 : 367 KHz : 0.661 dB	Channel Frequency: 902.40 MHz
Trace Mode = CLR/WRITE		


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0	M1 : 915.016 MHz : -6.523 dBm M2 : 915.177 MHz : 14.388 dBm	Channel Frequency: 915.20 MHz
RF Atten (dB) = 30	Delta1 : 360 KHz : 1.208 dB	
Trace Mode = CLR/WRITE		

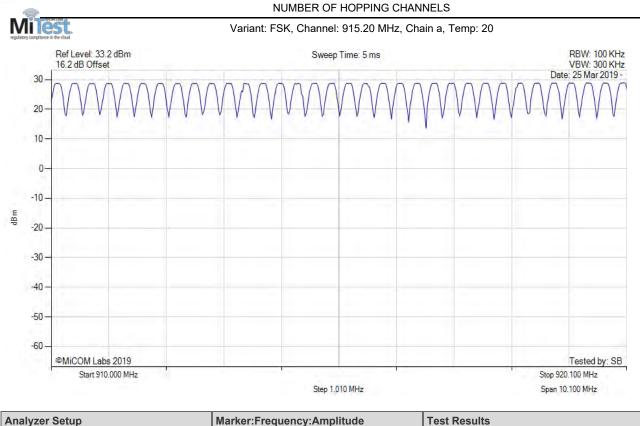

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 926.618 MHz : -5.032 dBm	Channel Frequency: 926.80 MHz
Sweep Count = 0	M2 : 926.830 MHz : 15.494 dBm	
RF Atten (dB) = 30	Delta1 : 363 KHz : 1.192 dB	
Trace Mode = CLR/WRITE		


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = CLR/WRITE	M1 : 902.231 MHz : -11.609 dBm M2 : 902.324 MHz : 7.754 dBm Delta1 : 335 KHz : 0.986 dB	Channel Frequency: 902.40 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAX HOLD	M1 : 915.031 MHz : -11.032 dBm M2 : 915.244 MHz : 8.789 dBm Delta1 : 332 KHz : 1.121 dB	Channel Frequency: 915.20 MHz

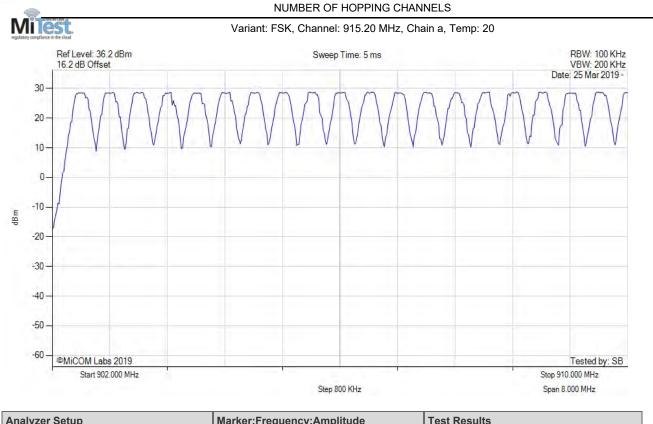


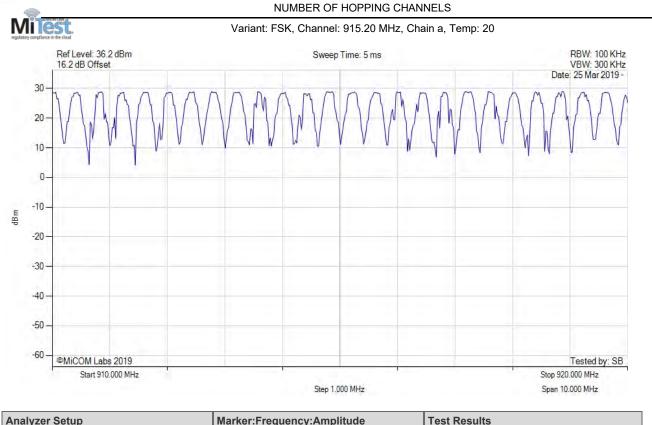
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 926.621 MHz : -8.982 dBm	Channel Frequency: 926.80 MHz
Sweep Count = 0	M2 : 926.727 MHz : 10.925 dBm	
RF Atten (dB) = 30	Delta1 : 366 KHz : -0.059 dB	
Trace Mode = CLR/WRITE		


A.2. Frequency Hopping Tests

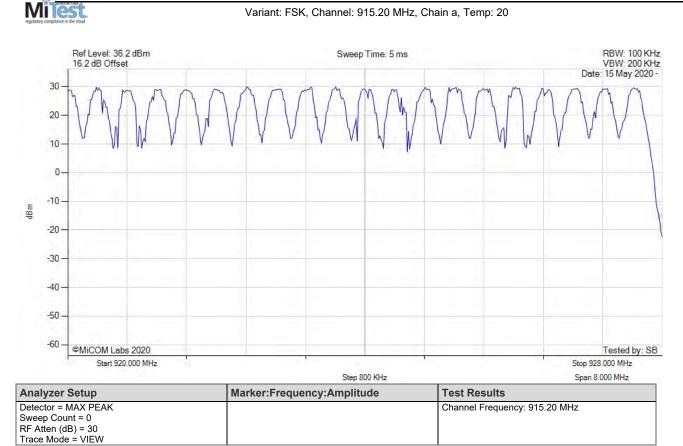
A.2.1. Number of Hopping Channels

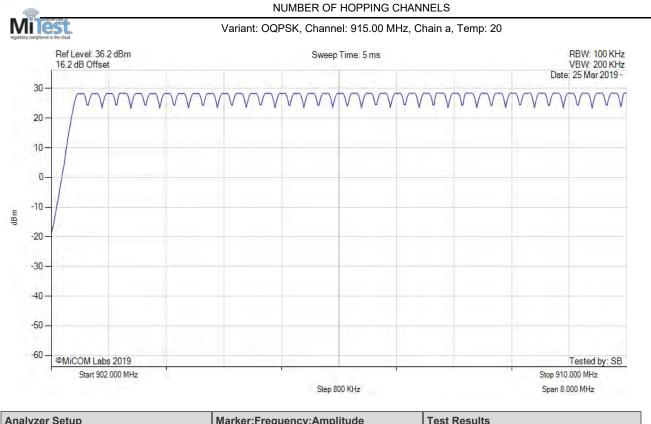

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK		Channel Frequency: 915.20 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = VIEW		


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK		Channel Frequency: 915.20 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = VIEW		


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK		Channel Frequency: 915.20 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = VIEW		

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK		Channel Frequency: 915.20 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = VIEW		



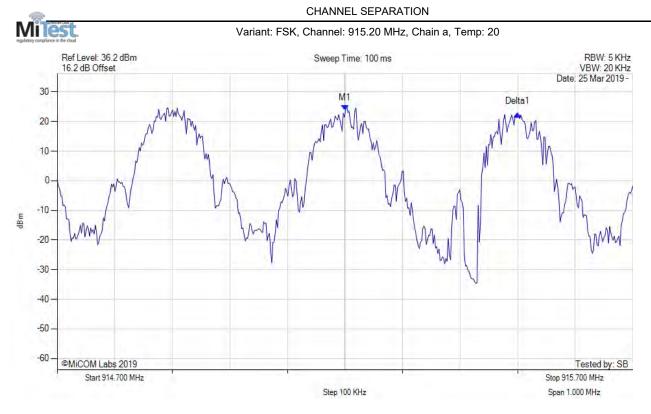

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK		Channel Frequency: 915.20 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = VIEW		

NUMBER OF HOPPING CHANNELS

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK		Channel Frequency: 915.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = VIEW		

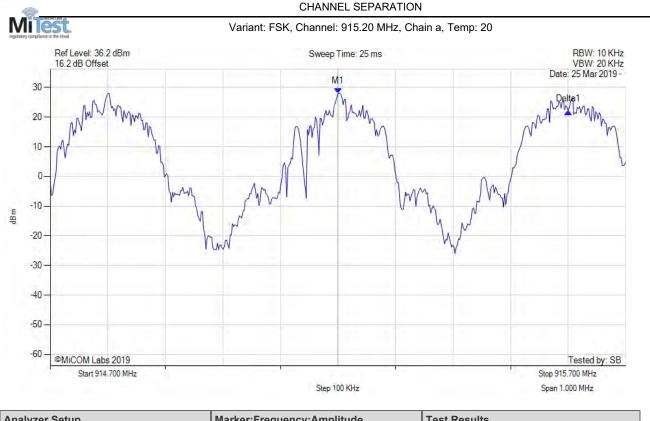
NUMBER OF HOPPING CHANNELS Mil Variant: OQPSK, Channel: 915.00 MHz, Chain a, Temp: 20 Ref Level: 36.2 dBm Sweep Time: 5 ms RBW: 100 KHz VBW: 300 KHz 16.2 dB Offset Date: 25 Mar 2019 -30 V 20 10-0--10 dBm -20 -30 -40--50 -60 -©MiCOM Labs 2019 Tested by: SB Start 910.000 MHz Stop 920.000 MHz Step 1.000 MHz Span 10.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK		Channel Frequency: 915.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = VIEW		

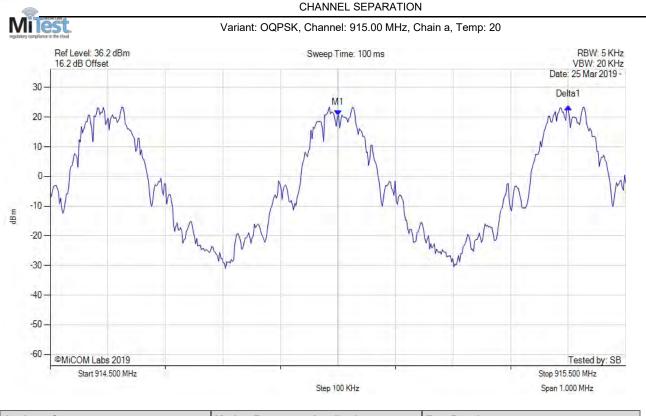


NUMBER OF HOPPING CHANNELS Mile Variant: OQPSK, Channel: 915.00 MHz, Chain a, Temp: 20 RBW: 100 KHz VBW: 200 KHz Ref Level: 36.2 dBm Sweep Time: 5 ms 16.2 dB Offset Date: 25 Mar 2019 -30 20 10-0--10 dBm -20 Wh -30 -40--50 -60 -©MiCOM Labs 2019 Tested by: SB Start 920.000 MHz Stop 928.000 MHz Step 800 KHz Span 8.000 MHz

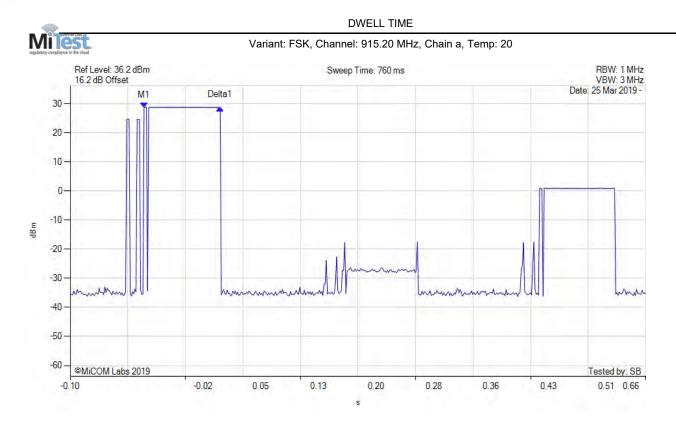
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK		Channel Frequency: 915.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = VIEW		



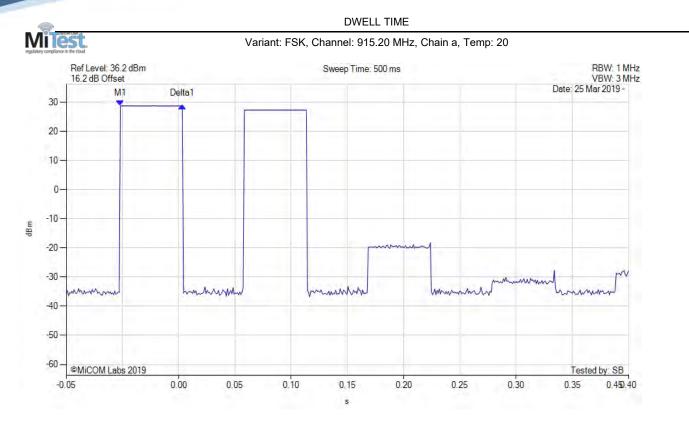
A.2.2. Channel Separation


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 915.200 MHz : 23.737 dBm	Channel Frequency: 915.20 MHz
Sweep Count = 0	Delta1 : 300 KHz : -1.176 dB	
RF Atten (dB) = 30		
Trace Mode = VIEW		

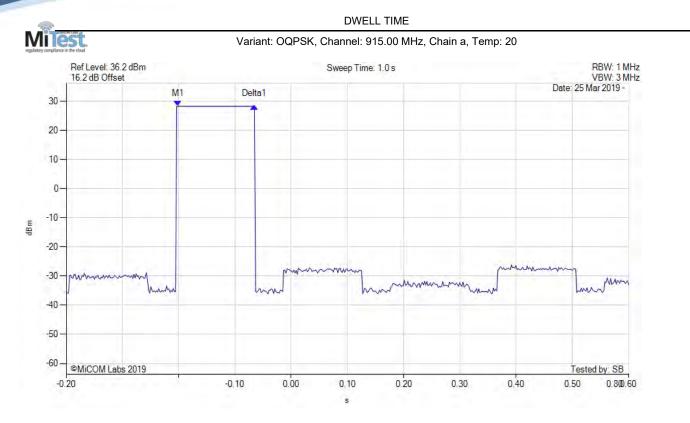
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 915.200 MHz : 28.037 dBm	Channel Frequency: 915.20 MHz
Sweep Count = 0	Delta1 : 400 KHz : -6.052 dB	
RF Atten (dB) = 30		
Trace Mode = VIEW		



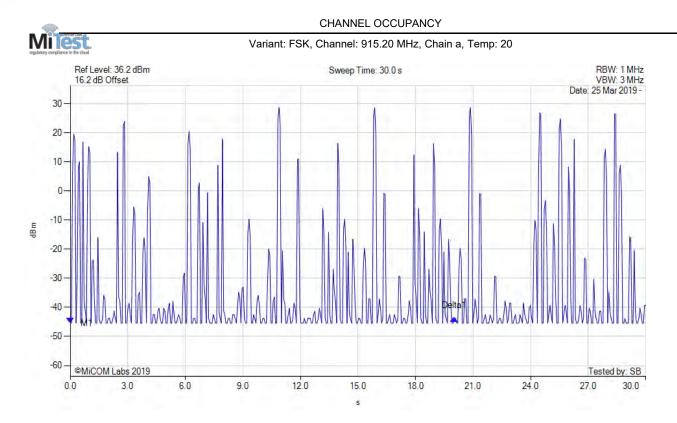
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 915.000 MHz : 20.617 dBm	Channel Frequency: 915.00 MHz
Sweep Count = 0	Delta1 : 400 KHz : 2.851 dB	
RF Atten (dB) = 30		
Trace Mode = VIEW		



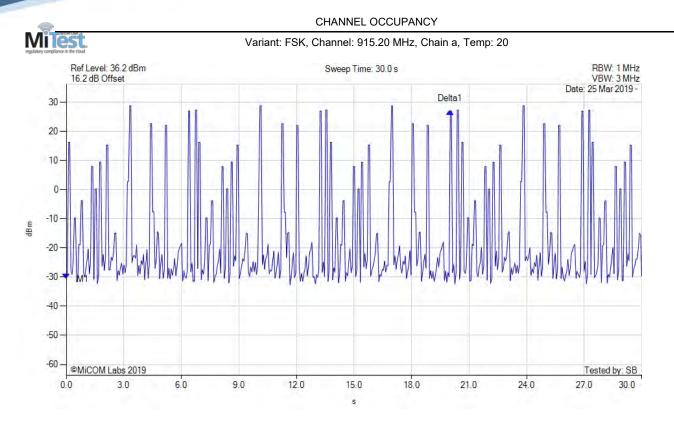
A.2.3. Dwell Time


Analyzer Setup	Marker:Time:Amplitude	Test Results
Detector = MAX PEAK	M1(915.20 MHz) : -0.003 s : 28.604 dBm	Channel Frequency: 915.20 MHz
Sweep Count = 0	Delta1(915.20 MHz) : 0.101 s : 0.085 dB	
RF Atten (dB) = 30		
Trace Mode = VIEW		

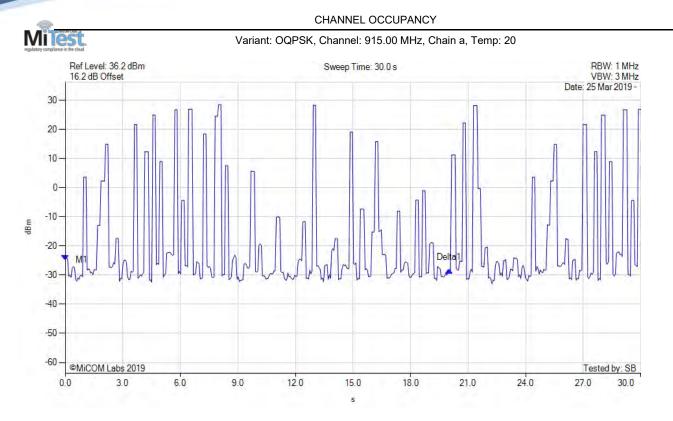
Analyzer Setup	Marker:Time:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1(915.20 MHz) : -0.002 s : 28.742 dBm Delta1(915.20 MHz) : 0.055 s : 0.000 dB	Channel Frequency: 915.20 MHz



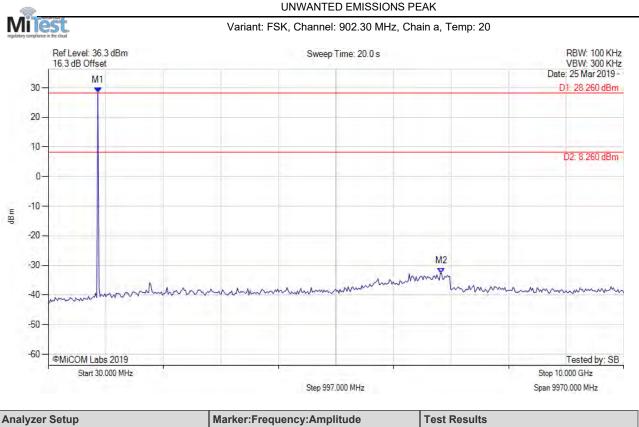
Analyzer Setup	Marker:Time:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1(915.00 MHz) : -0.002 s : 28.260 dBm Delta1(915.00 MHz) : 0.136 s : 0.000 dB	Channel Frequency: 915.00 MHz



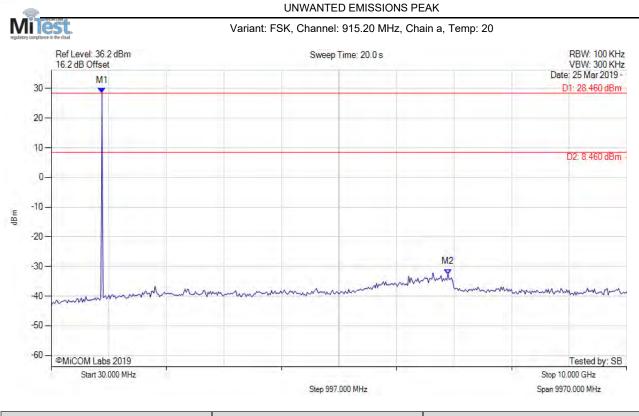
A.2.4. Channel Occupancy


Analyzer Setup	Marker:Time:Amplitude	Test Results
Detector = RMS	M1(915.20 MHz) : 0.000 s : -45.386 dBm	Channel Frequency: 915.20 MHz
Sweep Count = 0	Delta1(915.20 MHz) : 20.000 s : 1.584 dB	
RF Atten (dB) = 30		
Trace Mode = VIEW		

Analyzer Setup	Marker:Time:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1(915.20 MHz) : 0.000 s : -30.651 dBm Delta1(915.20 MHz) : 20.000 s : 57.608 dB	Channel Frequency: 915.20 MHz

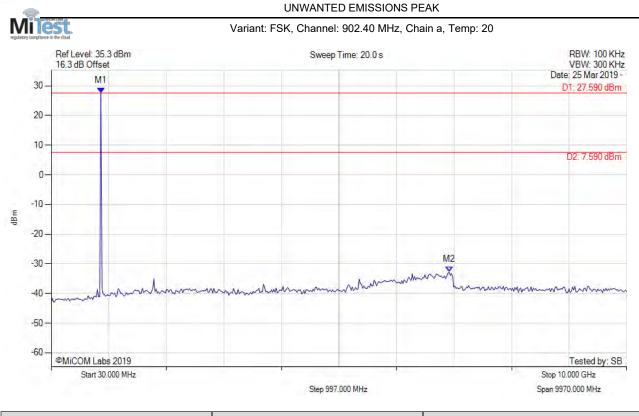

Analyzer Setup	Marker:Time:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1(915.00 MHz) : 0.000 s : -24.814 dBm Delta1(915.00 MHz) : 20.000 s : -3.386 dB	Channel Frequency: 915.00 MHz

A.3. Emissions


A.3.1. Conducted Emissions

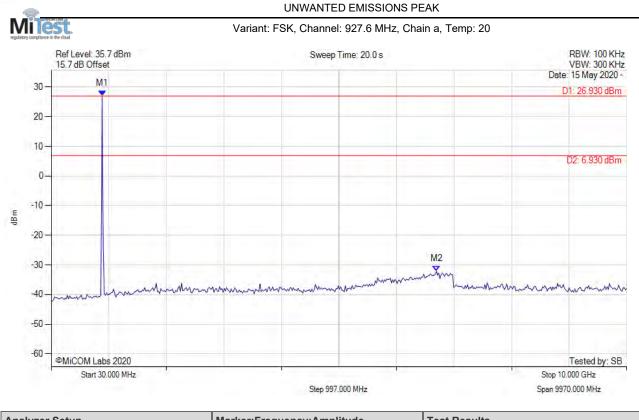
A.3.1.1. Conducted Unwanted Spurious Emissions

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 889.138 MHz : 28.263 dBm	Limit: 8.26 dBm
Sweep Count = 0	M2 : 6843.166 MHz : -32.622 dBm	Margin: -40.88 dB
RF Atten (dB) = 30		
Trace Mode = MAX HOLD		

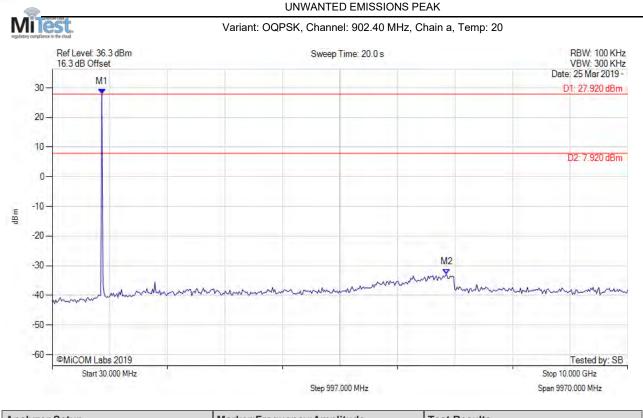

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 909.118 MHz : 28.464 dBm	Limit: 8.46 dBm
Sweep Count = 0	M2 : 6903.106 MHz : -32.661 dBm	Margin: -41.12 dB
RF Atten (dB) = 30		
Trace Mode = MAX HOLD		

UNWANTED EMISSIONS PEAK Mile Variant: FSK, Channel: 926.90 MHz, Chain a, Temp: 20 Ref Level: 35.7 dBm Sweep Time: 20.0 s RBW: 100 KHz VBW: 300 KHz 15.7 dB Offset Date: 25 Mar 2019 -30 M1 D1: 25.050 dBm 20-10 D2: 5.050 dBm 0--10 dBm -20 -M2 -30 mm -40 mount -50 -60 ©MiCOM Labs 2019 Tested by: SB Start 30.000 MHz Stop 10.000 GHz Step 997.000 MHz Span 9970.000 MHz

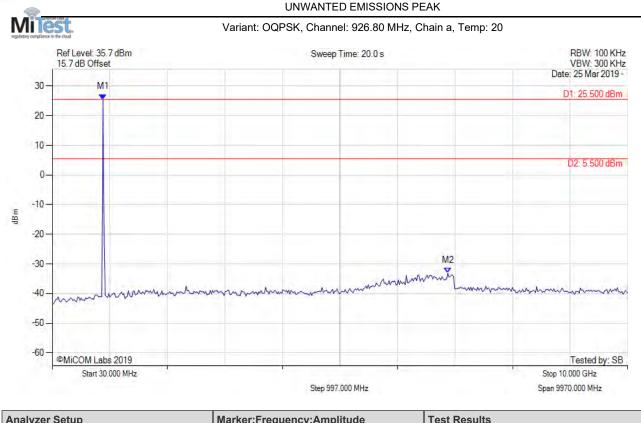
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 909.118 MHz : 25.045 dBm	Limit: 5.05 dBm
Sweep Count = 0	M2 : 6963.046 MHz : -33.600 dBm	Margin: -38.65 dB
RF Atten (dB) = 30		-
Trace Mode = MAX HOLD		


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 889.138 MHz : 27.592 dBm	Limit: 7.59 dBm
Sweep Count = 0	M2 : 6923.086 MHz : -32.769 dBm	Margin: -40.36 dB
RF Atten (dB) = 30		-
Trace Mode = MAX HOLD		

UNWANTED EMISSIONS PEAK Mile Variant: FSK, Channel: 915.20 MHz, Chain a, Temp: 20 RBW: 100 KHz VBW: 300 KHz Ref Level: 36.2 dBm Sweep Time: 20.0 s 16.2 dB Offset Date: 25 Mar 2019 -M1 30 D1: 26.790 dBm 20 10-D2: 6.790 dBm 0--10dBm -20 M2 -30 X -40--50 -60 -©MiCOM Labs 2019 Tested by: SB Start 30.000 MHz Stop 10.000 GHz Step 997.000 MHz Span 9970.000 MHz


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 909.118 MHz : 26.790 dBm	Limit: 6.79 dBm
Sweep Count = 0	M2 : 6563.447 MHz : -33.029 dBm	Margin: -39.82 dB
RF Atten (dB) = 30		-
Trace Mode = MAX HOLD		

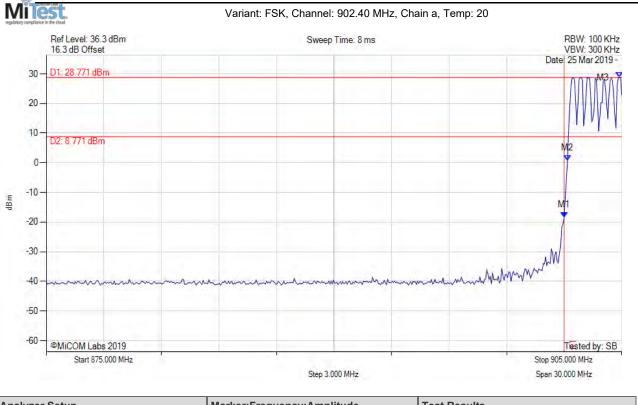
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 912.883 MHz : 26.936 dBm	Channel Frequency: 927.60 MHz
Sweep Count = 0	M2 : 6703.216 MHz : -32.113 dBm	
RF Atten (dB) = 30		
Trace Mode = MAX HOLD		


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 889.138 MHz : 27.921 dBm	Limit: 7.92 dBm
Sweep Count = 0	M2 : 6863.146 MHz : -32.927 dBm	Margin: -40.85 dB
RF Atten (dB) = 30		
Trace Mode = MAX HOLD		

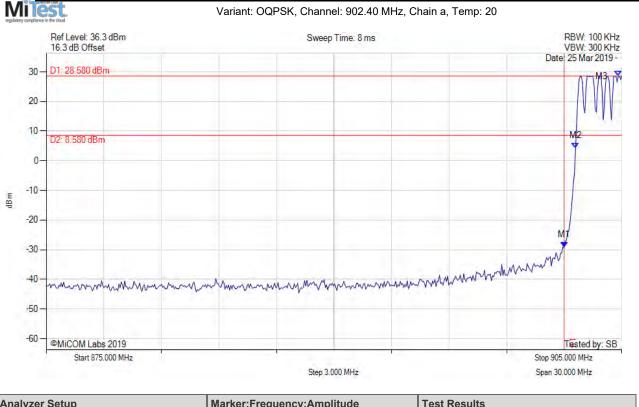
UNWANTED EMISSIONS PEAK Mile Variant: OQPSK, Channel: 915.00 MHz, Chain a, Temp: 20 RBW: 100 KHz VBW: 300 KHz Ref Level: 36.2 dBm Sweep Time: 20.0 s 16.2 dB Offset Date: 25 Mar 2019 -M1 30 D1: 26.710 dBm 20 10-D2: 6.710 dBm 0--10dBm -20 M2 -30 Xn mon much -40 -50 -60 -©MiCOM Labs 2019 Tested by: SB Start 30.000 MHz Stop 10.000 GHz Step 997.000 MHz Span 9970.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 909.118 MHz : 26.709 dBm	Limit: 6.71 dBm
Sweep Count = 0	M2 : 6623.387 MHz : -32.960 dBm	Margin: -39.67 dB
RF Atten (dB) = 30		-
Trace Mode = MAX HOLD		

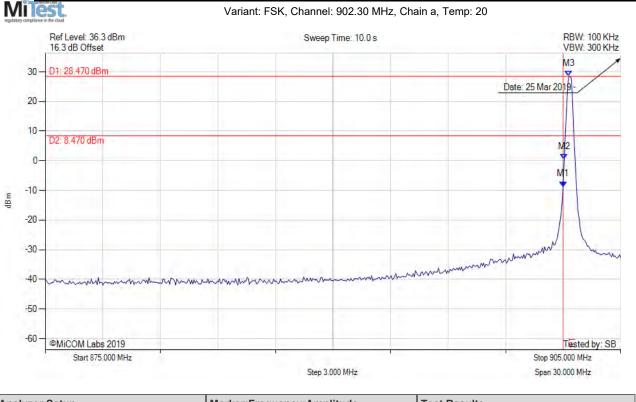
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 909.118 MHz : 25.497 dBm	Limit: 5.50 dBm
Sweep Count = 0	M2 : 6883.126 MHz : -33.132 dBm	Margin: -38.63 dB
RF Atten (dB) = 30		
Trace Mode = MAX HOLD		


A.3.1.2. Conducted Band-Edge Emissions

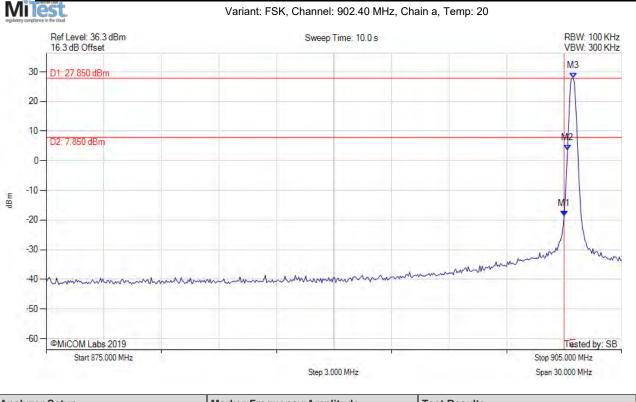
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 902.000 MHz : -11.753 dBm	Channel Frequency: 902.30 MHz
Sweep Count = 0	M2 : 902.114 MHz : 4.045 dBm	
RF Atten (dB) = 30	M3 : 902.355 MHz : 24.968 dBm	
Trace Mode = VIEW		


CONDUCTED LOW BAND-EDGE EMISSIONS (HOPPING) PEAK

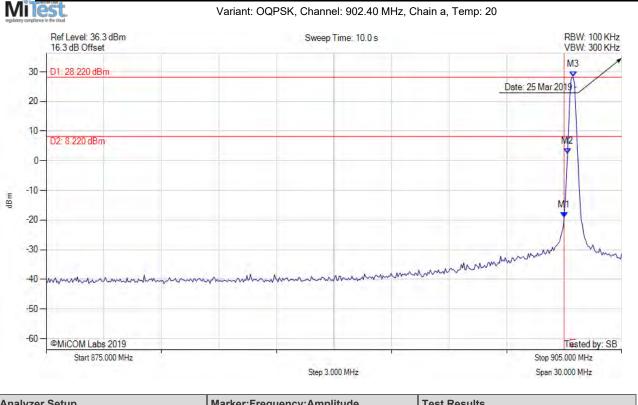
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 902.000 MHz : -18.379 dBm	Channel Frequency: 902.40 MHz
Sweep Count = 0	M2 : 902.174 MHz : 0.795 dBm	
RF Atten (dB) = 30	M3 : 904.880 MHz : 28.771 dBm	
Trace Mode = VIEW		


CONDUCTED LOW BAND-EDGE EMISSIONS (HOPPING) PEAK

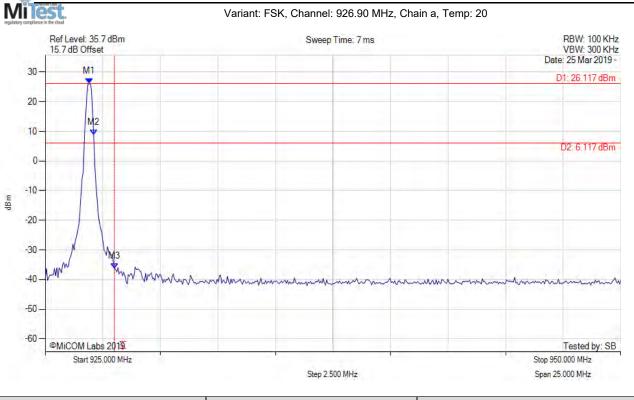
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 902.000 MHz : -29.166 dBm	Channel Frequency: 902.40 MHz
Sweep Count = 0	M2 : 902.595 MHz : 4.244 dBm	
RF Atten (dB) = 30	M3 : 904.820 MHz : 28.580 dBm	
Trace Mode = VIEW		


CONDUCTED LOW BAND-EDGE EMISSIONS (STATIC) PEAK

Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = MAX PEAK	M1 : 902.000 MHz : -8.723 dBm	Channel Frequency: 902.30 MHz	
Sweep Count = 0	M2 : 902.054 MHz : 0.514 dBm		
RF Atten (dB) = 30	M3 : 902.295 MHz : 28.470 dBm		
Trace Mode = MAX HOLD			


CONDUCTED LOW BAND-EDGE EMISSIONS (STATIC) PEAK

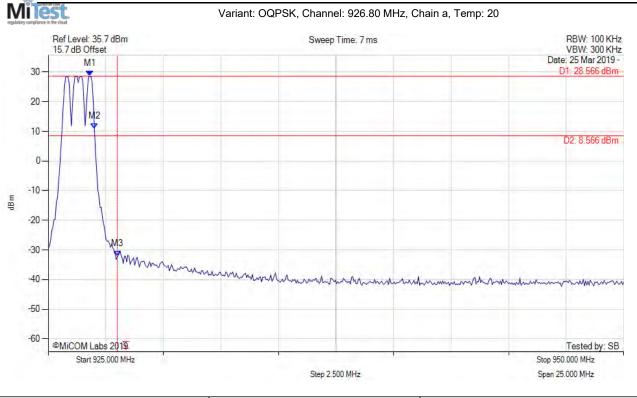
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 902.000 MHz : -18.591 dBm	Channel Frequency: 902.40 MHz
Sweep Count = 0	M2 : 902.174 MHz : 3.648 dBm	
RF Atten (dB) = 30	M3 : 902.475 MHz : 27.850 dBm	
Trace Mode = MAX HOLD		


CONDUCTED LOW BAND-EDGE EMISSIONS (STATIC) PEAK

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 902.000 MHz : -19.111 dBm	Channel Frequency: 902.40 MHz
Sweep Count = 0	M2 : 902.174 MHz : 2.444 dBm	
RF Atten (dB) = 30	M3 : 902.475 MHz : 28.222 dBm	
Trace Mode = MAX HOLD		

CONDUCTED UPPER BAND-EDGE EMISSIONS (HOPPING) PEAK

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 926.904 MHz : 26.117 dBm	Channel Frequency: 926.90 MHz
Sweep Count = 0	M2 : 927.104 MHz : 8.783 dBm	
RF Atten (dB) = 30	M3 : 928.000 MHz : -36.297 dBm	
Trace Mode = VIEW		

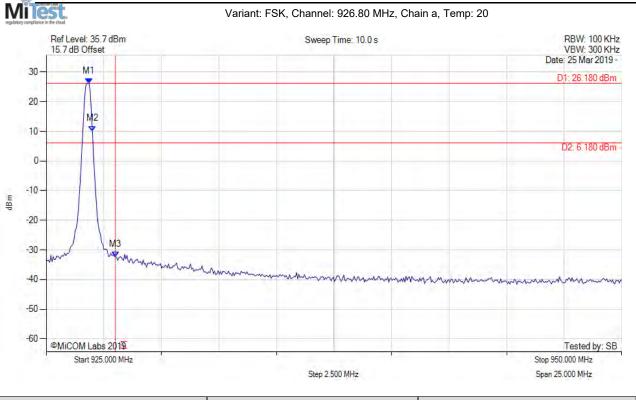


CONDUCTED UPPER BAND-EDGE EMISSIONS (HOPPING) PEAK Mile Variant: FSK, Channel: 926.80 MHz, Chain a, Temp: 20 Ref Level: 35.7 dBm 15.7 dB Offset RBW: 100 KHz Sweep Time: 7 ms VBW: 300 KHz M1 D1: 29.653 dE 30 Date: 15 May 2020 -20 10 D2: 9.650 dBm 0--10 dBm M3 -20 -30 MMMmmm Mulim -40 -50 -60-©MICOM Labs 2020 Tested by: SB Start 925.000 MHz Stop 950.000 MHz Step 2.500 MHz Span 25.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAX HOLD	M1 : 927.103 MHz : 29.800 dBm M2 : 927.754 MHz : 6.753 dBm M3 : 928.000 MHz : -20.326 dBm	Channel Frequency: 927.60 MHz

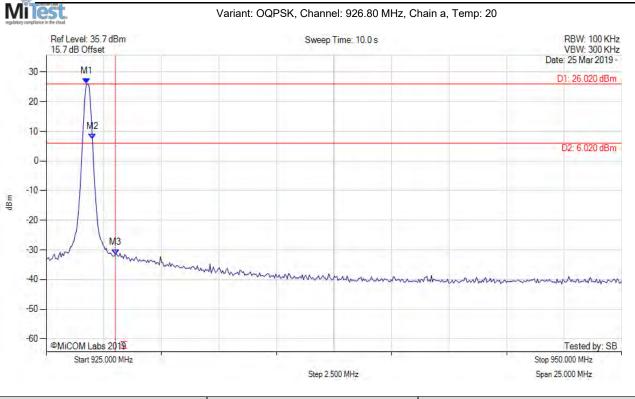
CONDUCTED UPPER BAND-EDGE EMISSIONS (HOPPING) PEAK

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 926.804 MHz : 28.566 dBm	Channel Frequency: 926.80 MHz
Sweep Count = 0	M2 : 927.004 MHz : 10.872 dBm	
RF Atten (dB) = 30	M3 : 928.000 MHz : -32.040 dBm	
Trace Mode = VIEW		



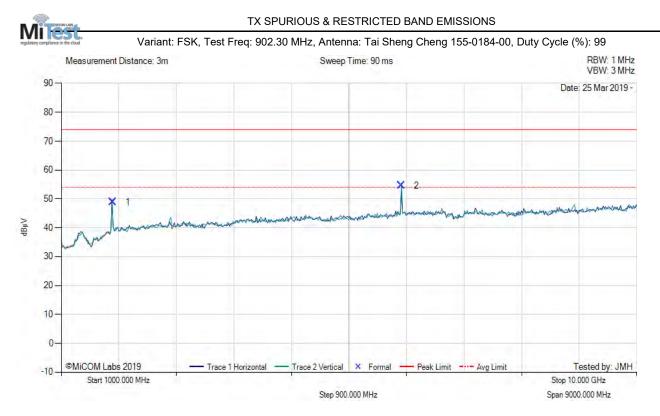
CONDUCTED UPPER BAND-EDGE EMISSIONS (STATIC) PEAK Mile Variant: FSK, Channel: 926.90 MHz, Chain a, Temp: 20 RBW: 100 KHz VBW: 300 KHz Ref Level: 35.7 dBm Sweep Time: 10.0 s 15.7 dB Offset Date: 19 May 2020 -M1 30 D1: 27.770 dBm 20 M2 10 D2: 2.380 dBm 0--10dBm M₃ -20 -30 -40 -50 -60-©MICOM Labs 2020 Tested by: SB Start 925.000 MHz Stop 950.000 MHz Step 2.500 MHz Span 25.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAX HOLD	M1 : 926.904 MHz : 25.416 dBm M2 : 927.104 MHz : 6.211 dBm M3 : 928.000 MHz : -32.420 dBm	Channel Frequency: 927.6 MHz


CONDUCTED UPPER BAND-EDGE EMISSIONS (STATIC) PEAK

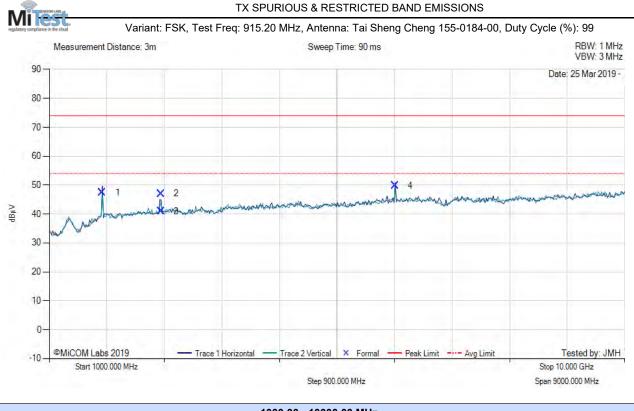
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 926.854 MHz : 26.176 dBm	Channel Frequency: 926.80 MHz
Sweep Count = 0	M2 : 927.004 MHz : 10.075 dBm	
RF Atten (dB) = 30	M3 : 928.000 MHz : -32.329 dBm	
Trace Mode = MAX HOLD		

CONDUCTED UPPER BAND-EDGE EMISSIONS (STATIC) PEAK



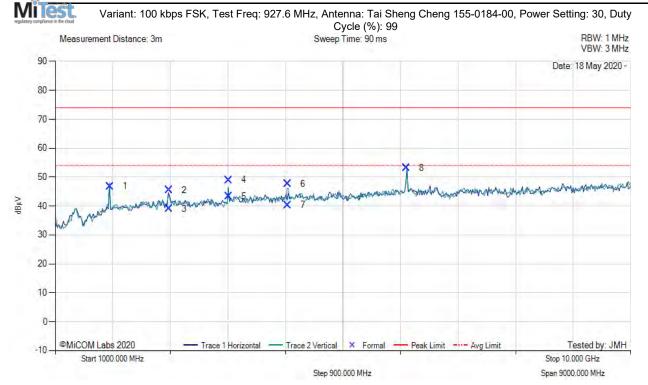
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 926.754 MHz : 26.019 dBm	Channel Frequency: 926.80 MHz
Sweep Count = 0	M2 : 927.004 MHz : 7.439 dBm	
RF Atten (dB) = 30	M3 : 928.000 MHz : -31.637 dBm	
Trace Mode = MAX HOLD		

A.3.2. Radiated Emissions


A.3.2.3. TX Spurious & Restricted Band Emissions

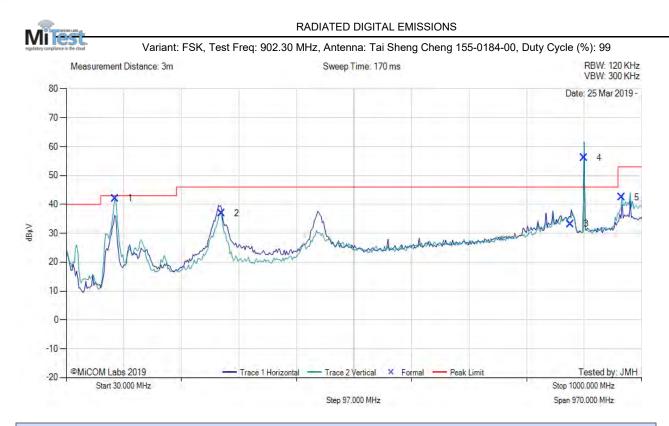
1000.00 - 10000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1804.71	64.79	-1.55	-14.44	48.80	Peak (NRB)	Horizontal	200	77			Pass
2	6316.09	66.56	-2.91	-9.12	54.53	Peak (NRB)	Vertical	200	212			Pass
		•	•			•						

Test Notes: EUT powered by DC 24 V



	1000.00 - 10000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	1830.41	62.98	-1.52	-14.03	47.43	Peak (NRB)	Horizontal	200	81			Pass	
2	2745.73	60.93	-1.91	-11.96	47.06	Max Peak	Horizontal	98	224	74.0	-26.9	Pass	
3	2745.73	54.87	-1.91	-11.96	41.00	Max Avg	Horizontal	98	224	54.0	-13.0	Pass	
4	6406.56	62.02	-2.96	-9.21	49.85	Peak (NRB)	Vertical	200	81			Pass	
Test No	est Notes: EUT powered by DC 24 V												

TX SPURIOUS & RESTRICTED BAND EMISSIONS



	1000.00 - 10000.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail		
1	1854.36	62.21	-1.56	-13.81	46.84	Peak (NRB)	Horizontal	200	19			Pass		
2	2781.81	59.36	-1.89	-11.91	45.56	Max Peak	Horizontal	177	162	74	-28.44	Pass		
3	2781.81	52.77	-1.89	-11.91	38.97	Max Avg	Horizontal	177	162	54	-15.03	Pass		
4	3708.96	62.82	-2.2	-11.63	48.99	Max Peak	Vertical	134	98	74	-25.01	Pass		
5	3708.96	57.17	-2.2	-11.63	43.34	Max Avg	Vertical	134	98	54	-10.66	Pass		
6	4635.98	62.32	-2.49	-12.24	47.59	Max Peak	Vertical	179	155	74	-26.41	Pass		
7	4635.98	55.1	-2.49	-12.24	40.37	Max Avg	Vertical	179	155	54	-13.63	Pass		
8	6490.26	65.12	-2.95	-8.94	53.23	Peak (NRB)	Horizontal	200	282			Pass		

Test Notes: EUT powered by DC 24 V

A.3.3. Digital Emissions (0.03 - 1 GHz)

30.00 - 1000.00 MHz													
N	um	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
	1	112.75	53.43	4.06	-15.40	42.09	MaxQP	Vertical	99	138	43.0	-0.9	Pass
4	2	291.54	46.84	4.80	-14.70	36.94	MaxQP	Horizontal	98	212	46.0	-9.1	Pass
	3	880.25	31.79	6.59	-5.20	33.18	MaxQP	Horizontal	98	209	46.0	-12.8	Pass
	4	902.29	54.55	6.65	-5.10	56.10	Fundamental	Horizontal	100	0			
	5	966.30	39.65	6.84	-4.00	42.49	MaxQP	Vertical	107	343	53.0	-10.5	Pass
:	34	291.54 880.25 902.29	46.84 31.79 54.55	4.80 6.59 6.65	-14.70 -5.20 -5.10	36.94 33.18 56.10	MaxQP MaxQP Fundamental	Horizontal Horizontal Horizontal	98 98 100	212 209 0	46.0 46.0)) -9.1) -12.8

Test Notes: EUT powered by DC 24 V. 900 MHz notch in front of amp to prevent overload

30.00 - 1000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	118.18	51.04	4.09	-14.80	40.33	MaxQP	Vertical	98	144	43.0	-2.7	Pass
2	293.50	45.57	4.81	-14.60	35.78	MaxQP	Vertical	132	173	46.0	-10.2	Pass
3	446.59	36.90	5.34	-11.20	31.04	MaxQP	Horizontal	101	176	46.0	-15.0	Pass
4	915.18	48.13	6.67	-4.70	50.10	Fundamental	Vertical	100	0			
5	979.17	38.00	6.88	-3.80	41.08	MaxQP	Vertical	105	281	53.0	-11.9	Pass

Test Notes: EUT powered by DC 24 V. 900 MHz notch in front of amp to prevent overload

MiTe Variant: 100 kbps FSK, Test Freq: 927.6 MHz, Antenna: Tai Sheng Cheng 155-0184-00, Power Setting: 30, Duty Cycle (%): 99 RBW: 120 KHz Measurement Distance: 3m Sweep Time: 170 ms VBW: 300 KHz 80 -Date: 18 May 2020 -70 60 50 40 And and a stand and a dBµV 30 20 10 0 -10-©MiCOM Labs 2020 Tested by: JMH Trace 1 Horizontal Trace 2 Vertical × Formal Peak Limit -20 -Start 30.000 MHz Stop 1000.000 MHz Step 97.000 MHz Span 970.000 MHz

RADIATED DIGITAL EMISSIONS

30.00 - 1000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	117.2	51.59	4.09	-14.8	40.88	MaxQP	Vertical	99	148	43	-2.12	Pass
2	291.17	41.82	4.81	-14.6	32.03	MaxQP	Vertical	98	151	46	-13.97	Pass
3	452.26	33.31	5.36	-11	27.67	MaxQP	Horizontal	194	171	46	-18.33	Pass
4	875.52	36.3	6.58	-5.2	37.68	MaxQP	Vertical	124	13	46	-8.32	Pass
5	927.94	53.3	6.72	-4.6	55.42	Fundamental	Vertical	100	0			
6	976.85	36.63	6.87	-3.9	39.6	MaxQP	Vertical	103	310	53	-13.4	Pass

Test Notes: EUT powered by DC 24 V. 900 MHz notch in front of amp to prevent overload

575 Boulder Court Pleasanton, California 94566, USA Tel: +1 (925) 462 0304 Fax: +1 (925) 462 0306 www.micomlabs.com