EMISSIONS TEST REPORT FOR A LOW POWER TRANSMITTER

I. GENERAL INFORMATION

Requirement:	FCC
Test Requirements:	FCC Part 15
Applicant:	Silver Spring Networks
	575 Broadway Street
	Redwood City, CA 94063
FCC ID:	OWS-NIC514
IC:	5975A-NIC514
Model No.:	340-040304
Add External Antenna:	Amphenol monopole with integral cable (22ft RG174)
	900 MHz operation only

II. DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)

The Silver Spring Networks (SSN) NIC514 is a radio module for electric power meter communications use. The board incorporates a 900 MHz frequency hopping i210 Mesh radio and a 2.4GHz 802.15.4 Zigbee Home Area Network (HAN radio.

The product has been certified with an internal dual band antenna. The board has been modified to make provision for connecting an optional external antenna. The modification consists of the addition of a diplexer and an antenna switch.

III. TEST DATES AND TEST LOCATION

Testing was performed on various dates between 13-23 October 2009. 900 MHz and 2.4 GHz radiated emissions tests were performed at:

Compliance Certification Services 47173 Benicia Street Fremont, CA 94538

Antenna port conducted tests were performed at Silver Spring Networks.

M.M. Cohen____

T.N. Cokenias EMC Consultant/Agent for Silver Spring Networks

23 January 2010

15.203 Antenna connector requirement

The EUT has a new antenna port connector for an optional external antenna.

Antenna description	Mfr.	Model No.	Gain
Internal dual band antenna	SSN	n/a	4 dBi at 915 MHz 1 dBi at 2.4 GHz
External Monopole whip antenna	Amphenol	n/a	5 dBi at 915 MHz

TEST PROCEDURES

All tests were performed in accordance with the applicable procedures called out in the following documents, unless otherwise noted:

FCC 47CFR15

RSS-210 Issue 7: Low power license exempt radio frequency devices (July 2007) RSS-212: Test Facilities and Test Methods for Radio Equipment

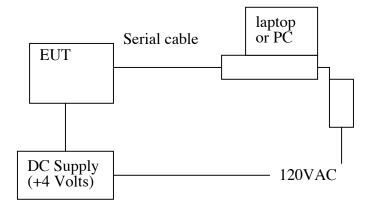
ANSI C63.4 – 2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

Tests were performed at three frequencies:

900 MHz FHSS

Channel 0 (LOW) – 902.3 MHz Channel 43 (MID) -915.2 MHz Channel 82 (HIFH) – 926.9 MHz

Test Equipment

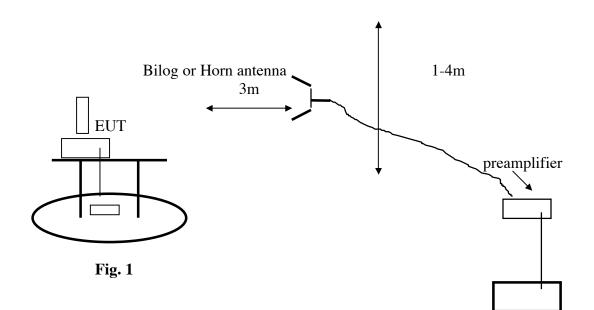

Compliance Certification Services:

TEST EQUIPMENT LIST								
Description	Manufacturer	Model	Asset Number	Cal Due				
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	01/05/10				
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	01/14/10				
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	12/16/09				
Antenna, Horn, 18 GHz	EMCO	3115	C00945	01/29/10				
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	02/04/10				
EMI Test Receiver, 30 MHz	R & S	ESHS 20	N02396	08/06/09				
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	10/29/09				
LISN, 30 MHz	Solar	8012-50-R-24-BNC	N02481	10/29/09				

Silver Spring Networks:

Equipment	Mfr	Model	Serial No.	Cal Date
Spectrum analyzer	Agilent	E44053	MY45113391	07/23/10
Spectrum analyzer	Agilent	EXA	MY48030147	07/23/10
Spectrum Analyzer	HP	8562B	2712A00113	09/25/10

Test Set-up Diagram



Support Equipment

Equipment	Mfr	Model	Asset No.
DC Power Supply	Agilent	E3610A	2844
Laptop PC	Dell	PP01L	TW-0791UH1280-
			OC9-6558
AC/DC adapter	CUI Inc.	DSA-60W-20	2607HB

FREQUENCY HOPPING SPREAD SPECTRUM RADIO EMISSIONS

Silver Spring Networks FCC ID: OWS-NIC5514 Model: 340-040304 **TEST RESULTS Radiated Test Set-up, 30 MHz - 9.3 GHz**

Test Procedures

Radiated emissions generated by the transmitter portion of the EUT were measured.

1. The EUT was placed on a wooden table resting on a turntable on the test site. The search antenna was placed 3m from the EUT. The EUT antenna was mounted in the with the EUT TX antenna pointed directly to the search antenna.

2. The turntable was slowly rotated to locate the direction of maximum emission at each emission falling in the restricted bands of 15.205.

- 3. Emissions were investigated to the 10th harmonic of the fundamental.
 - 4. Once maximum direction was determined, the search antenna was raised and lowered in both vertical and horizontal polarizations. The maximum readings so obtained are recorded in the data listed below.

Test Results: Worst-case results are presented. Refer to data sheets below. Restricted band emissions meet 54 dBuV/m. Other undesired emissions from the transmitter meet the -20 dBc requirement in 15.247(d).

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505 (1)	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	
13.36 - 13.41	322 - 335.4		

15.205 Restricted Frequency Bands

15.209 General Field Strength Limits

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

Radiated Emissions Above 1 GHz

Page 7 of 21

High Frequency Measurement Compliance Certification Services, Fremont 5m Chamber

•

Company: Silver Springs Networks Project: 09U12834 Date: 10/13/09 Test Engineer: Doug Anderson Configuration: EUT with External Antenna and Support Console PC Mode: Normal Test Equipment: Horn 1-18GHz Pre-amplifer 1-26GHz Pre-amplifer 26-40GHz Horn > 18GHz T145 Agilent 3008A005(🖵 T59; S/N: 3245 @3m --Hi Frequency Cables 3' cable 22807700 20' cable 22807500 12' cable 22807600 HPF

	able 2	2807700		able 2		000 +	20' cal 20' cab		807500	HP	HPF F_1.5GHz	₹ ₹	eject Filte	RI Ave	ak Measurements 3W=VBW=1MHz rage Measurements =1MHz ; VBW=10Hz
f GHz	Dist (m)	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes (V/H)
Low Chan	nel: 902.3	MHz													
2.707	3.0	50.4	46.8	29.1	4.1	-35.2	0.0	0.6	49.0	45.4	74	54	-25.0	-8.6	v
3.609	3.0	43.0	30.2	31.3	4.8	-34.9	0.0	0.6	44.8	32.0	74	54	-29.2	-22.0	v
4.512	3.0	43.6	35.2	32.5	5.6	-34.8	0.0	0.6	47.5	39.1	74	54	-26.5	-14.9	V
5.414	3.0	44.4	37.1	33.4	6.2	-34.9	0.0	0.5	49.7	42.4	74	54	-24.3	-11.6	v
8.120	3.0	48.5	41.6	36.2	7.7	-34.6	0.0	0.7	58.5	51.7	74	54	-15.5	-2.3	V
9.023	3.0	41.9	29.6	36.8	8.2	-34.8	0.0	0.7	52.8	40.5	74	54	-21.2	-13.5	V
2.707	3.0	50.2	46.6	29.1	4.1	-35.2	0.0	0.6	48.9	45.3	74	54	-25.1	-8.7	н
4.512	3.0	43.3	31.5	32.5	5.6	-35.2	0.0	0.6	40.9	35.4	74	54	-25.1	-18.6	H
5.414	3.0	42.4	29.6	33.4	6.2	-34.9	0.0	0.5	47.7	34.9	74	54	-26.3	-19.1	Н
8.120	3.0	44.1	33.6	36.2	7.7	-34.6	0.0	0.7	54.1	43.6	74	54	-19.9	-10.4	Н
	1.01														
Middle Ch	annel: 91:	5.2MHz													
2.746	3.0	50.9	47.5	29.3	4.1	-35.2	0.0	0.6	49.6	46.3	74	54	-24.4	-7.7	v
4.576	3.0	46.2	40.2	32.6	5.6	-34.8	0.0	0.6	50.2	44.1	74	54	-23.8	-9.9	v
8.237	3.0	48.0	41.7	36.3	7.8	-34.6	0.0	0.7	58.1	51.9	74	54	-15.9	-2.1	v
2.746	3.0	49.9	45.7	29.3	4.1	-35.2	0.0	0.6	48.6	44.5	74	54	-25.4	-9.5	Н
4.576	3.0	44.3	36.3	32.6	5.6	-34.8	0.0	0.6	48.2	40.2	74	54	-25.8	-13.8	Н
8.237	3.0	44.6	35.2	36.3	7.8	-34.6	0.0	0.7	54.8	45.4	74	54	-19.2	-8.6	Н
High Chan	nel: 926.9	MHz													
2.781	3.0	50.0 42.4	46.2	29.4	4.2	-35.2	0.0	0.6	48.9 44.5	45.1 32.2	74 74	54 54	-25.1	-8.9 -21.8	V V
3.708 4.635	3.0	42.4	30.1 40.4	31.5 32.6	4.9 5.7	-34.9 -34.8	0.0	0.6	44.5	32.2 44.4	74	54	-29.5 -24.1	-21.8	<u>v</u> v
4.035 8.342	3.0	43.9	31.9	36.4	7.8	-34.6	0.0	0.0	52.8	42.2	74	54	-24.1	-9.0	v
							0.0				· · ·	L			r
2.781	3.0	50.4	46.7	29.4	4.2	-35.2	0.0	0.6	49.3	45.6	74	54	-24.7	-8.4	Н
4.635	3.0	43.1	34.2	32.6	5.7	-34.8	0.0	0.6	47.1	38.2	74	54	-26.9	-15.8	Н
8.342	3.0	43.3	31.4	36.4	7.8	-34.6	0.0	0.7	53.6	41.6	74	54	-20.4	-12.4	Н
Rev. 11.10.		1		<u> </u>	<u> </u>			<u> </u>			1	1	1		
	f	Measuremen	nt Frequency			Amp	Preamp G					Avg Lim		ield Strength	
	Dist	Distance to	Antenna			D Corr	Distance (Correct	to 3 meters			Pk Lim	Peak Field	Strength Lin	nit
	Read	Analyzer Re	eading			Avg			rength @ 3			Avg Mar		Average Lir	
	AF	Antenna Fac				Peak			Field Streng			Pk Mar		Peak Limit	
	CL	Cable Loss				HPF	High Pass		. iou buolig	,		• A 19100		- can Dinifit	
		Cable L088					111211 1 455	, i nici							

Radiated Emissions Below 1 GHZ

All radio emissions below 1GHz, except for the fundamental were more than 20 dB below limit.

PEAK OUTPUT POWER

PEAK POWER LIMIT

\$15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

\$15.247 (b) (2) For frequency hopping systems operating in the 902-928 MHz band, employing at least 50 hopping channels: 1 watt; and employing less than 50 hopping channels, but at least 25 hopping channels: 0.25 watt.

15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is 4 dBi, therefore the power limit is 30 dBm.

TEST PROCEDURE

The transmitter output was connected to a spectrum analyzer and the analyzer bandwidth was set to a value greater than the 20 dB bandwidth of the EUT.

Note: Power measurements were made at the external antenna connector port on the radio board.

RESULTS

No non-compliance noted:

Channel	Frequency	P out
Low	902.3	29.01
Mid	914.9	28.94
High	926.9	28.76

OUTPUT POWER LOW CHANNEL

Agilent Spectrum Ana	lyzer - Swept SA						
<mark>∞ ∟ 50 Ω</mark> Marker 1 902.2	9000000 MI	AC Z	SENSE:INT		Log-Pwr	02:04:18 PM Oct 23, 2009 TRACE 1 2 3 4 5 6 TYPE M	Save As
	Input: RF P	NO: Fast 🕟 Trig: F	ree Run 30 dB	Avg Hold: Ext Gain:		DET PNNNN	
10 dB/div Ref 34	4.30 dBm				MI	kr1 902.29 MHz 29.012 dBm	Save
24.3							File/Folder Lis
14.3							
4.30							File name
5.70							
15.7							Save As type
25.7	and the second				Mar Maria		
35.7	And a state of the						🍏 Up On Leve
45.7							🚙 Create Nev
55.7							Folde
							Cance
Center 902.300 M Res BW 1.0 MH	AHZ Z	#VBW 3.0 MI	Ηz		Sweep	Span 10.00 MHz 1.00 ms (1001 pts)	
SG					STATUS	5	

OUTPUT POWER MID CHANNEL

OUTPUT POWER HIGH CHANNEL

Agilent Spectrum Analyzer		AC SENSE:INT	ALIGNAUTO	02:05:48 PM Oct 23, 2009	
arker 1 926.8600			Avg Type: Log-Pwr Avg Hold:>100/100 Ext Gain: -11.3 dB	TRACE 123456 TYPE MWWWW DET P N N N N N	Save As
dB/div Ref 34.30	dBm		Mk	r1 926.86 MHz 28.757 dBm	Sav
4.3					File/Folde Li
.30					Filenam
.70					Save A typ
5.7 5.7 prostrational and the state of the s	and the owner of the owner owner of the owner owne			ware for a for the state of the	👌 Up Or Lev
5.7					Create Ne Fold
enter 926.900 MHz Res BW 1.0 MHz	#VBM	/ 3.0 MHz	Sweep 7	Span 10.00 MHz I.00 ms (1001 pts)	Canc

MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)					
(A) Limits for Occupational/Controlled Exposures									
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6					
(B) Limits	for General Populati	on/Uncontrolled Exp	posure						
0.3–1.34 1.34–30	614 824 <i>/</i> f	1.63 2.19/f	*(100) *(180/f ²)	30 30					

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
30–300	27.5	0.073	0.2	30	
300–1500 1500–100,000			f/1500 1.0	30 30	

f = frequency in MHz * = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-pational/controlled exposure also apply in situations when an individual is transient through a location where occu-pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

exposure or can not exercise control over their exposure.

Silver Spring Networks FCC ID: OWS-NIC5514 Model: 340-040304

CALCULATIONS

Given

$$E = \sqrt{(30 * P * G)} / d$$

and

$$S = E^{2}/3770$$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

- d = Distance in meters
- S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and d(cm) = 100 * d(m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cmP = Power in mWG = Numeric antenna gain $S = Power Density in mW/cm^2$

Substituting the logarithmic form of power and gain using:

 $P(mW) = 10 \wedge (P(dBm) / 10)$ and $G (numeric) = 10 \wedge (G (dBi) / 10)$ yields $d = 0.282 * 10 \wedge ((P + G) / 20) / \sqrt{S}$

Equation (1)

where

d = MPE distance in cm P = Power in dBmG = Antenna Gain in dBi $S = Power Density Limit in mW/cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance.

LIMITS

From §1.1310 Table 1 (B), S = 0.6 mW/cm^2

RESULTS

No non-compliance noted:

	Joinphan	ice noteu	֥							
Silver Spring N	letworks									
FCC ID: OWS-										
IC: 5975A- N	IC514									
Utility Meter V	VLAN Transcei	ver	2.4 GHz			Calculate mW/cm	2 here. Enter fr	equency in MHz	•	
RF Hazard Dist	tonoo Coloulati					Calculation of Limit	to from 1 1210 T	able 1		
KF Hazaru Dis	Lance Calculati								Controlled	Uncontrolled
									Ave 6 min	Ave 30 min
mW/cm2 from	Table1	0.60	(E: 61 V/m)			F(MHz)	Actual F, MHz		Occ, mW/c2	Gen, mW/cm2
mw/cm2 from		0.60	(E: 61 V/m)			0.3-3	O.5		100.0	100.0
Max RF Power	TV Antonno	MPE distance	S, mW/cm@	Comment		3.0 - 30.0	5		180.0	36.0
				Comment			55		1.0	0.2
P, dBm	G, dBi	cm	at 20 cm			30.0-300				
		10.0				300-1500	902		3.0	0.60
29.0	5.0	18.3	0.50			1500-100000	5555		5.0	1.0
						Enter P(mW)	Equivalent dBm	Enter dBm	Equivalent Wat	te
										1
										-
			1							
Basis of Calcu	lations:					64	18.1	<u>18.1</u>	64.6	
E^2/3770 = S	mW/cm2									+
E, V/m = (Pwa		5/d meters								
d = ((Pwatts*G	(*30)/3770*S))^0.5	Pwatts*Ggain = 1	0^(PdBm-30+G	dBi)/10)					
S@20cm = 20			- Hutto oguni -		(12),/ 10)					
NOTE: For mo	bile or fixed lo	cation transmi	tters. minimum se	paration distan	ce is for FCC	compliance is 20 cr	n .			
			distance is less				7			
			1							1
			1							1
			1							
			1							
			1							1
			1			1	1		1	1

MPE Distance: 18.3 cm

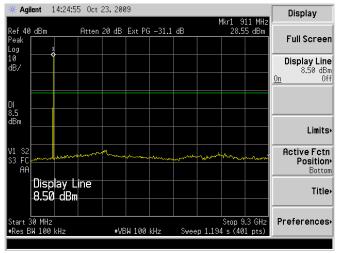
NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

CONDUCTED SPURIOUS EMISSIONS

LIMITS

\$15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in \$15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in \$15.209(a) (see \$15.205(c)).

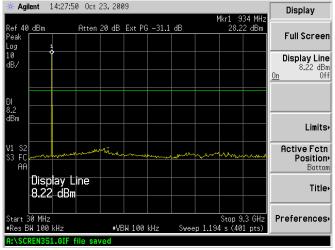
TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

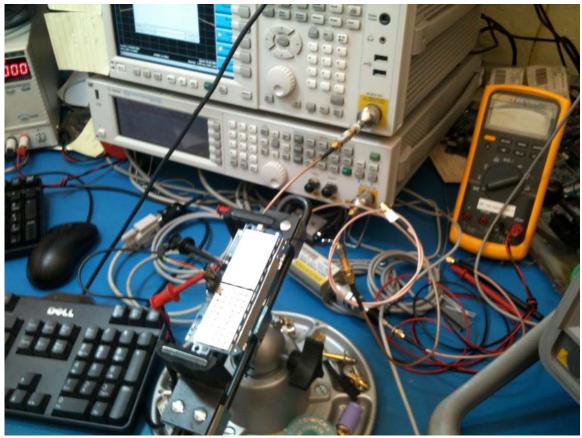
The spectrum from 30 MHz to 10 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

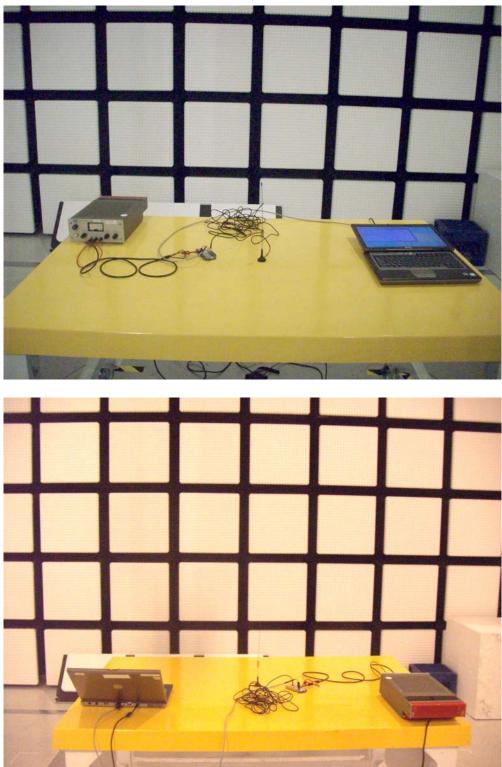
No non-compliance noted:


SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL


🔆 Agilent 🛛 14:2	26:10 Oct 2	3, 2009						Display
Ref 40 dBm		20 dB Ext	DC 21.1	-ID	Þ		11 MHz 5 dBm	
Peak	Htten a		<u>PG -31.1</u>	aB		27.5	5 dBm	Full Screen
10 dB/								Display Line 7.55 dBm
								<u>On</u> Off
DI								
dBm								Limits
V1 S2								Active Fctn
V1 S2 S3 FC	and a star and a star and a star a	hand		Juna	~~~~	Vindyn	and the second state	Position Bottom
Display	/ Line							
7.55 d	Bm							Title∙
Start 30 MHz #Res BW 100 kHz				Śwas	n 1 19/		.3 GHz	Preferences.
<pre>#Res BW 100 kHz #VBW 100 kHz Sweep 1.194 s (401 pts) #R:\SCREN350.GIF file saved</pre>								

SPURIOUS EMISSIONS, HIGH CHANNEL



SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP, SILVER SPRING NETWORKS

RADIATED RF MEASUREMENT SETUP, CCS

END OF REPORT

Report Revision History

Revision No.	Revision Description	Pages Revised	Revised by	Date
-	Original Issue		T. Cokenias	01/23/2010