MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

			. ,	
Frequency range (MHz)	Electric field Magnetic field strength strength (V/m) (A/m)		Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	hits for Occupational	I/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6
(B) Limits	for General Populati	on/Uncontrolled Exp	posure	
0.3–1.34 1.34–30	614 824 <i>/</i> f	1.63 2.19/f	*(100) *(180/f ²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
30–300 300–1500	27.5	0.073	0.2 f/1500	30 30	
1500-100,000			1.0	30	

f = frequency in MHz
* = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-pational/controlled limits apply provided he or she is made aware of the potential for exposure.
NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Silver Spring Networks FCC ID: OWS-NIC5514 Model: 340-040304

CALCULATIONS

Given

$$E = \sqrt{(30 * P * G)} / d$$

and

$$S = E^{2}/3770$$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

- d = Distance in meters
- S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and d(cm) = 100 * d(m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

P (mW) = 10 ^ (P (dBm) / 10) and G (numeric) = 10 ^ (G (dBi) / 10) $d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$

Equation (1)

where

yields

d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi S = Power Density Limit in mW/cm^2

Equation (1) and the measured peak power is used to calculate the MPE distance.

LIMITS

From §1.1310 Table 1 (B), S = 0.6 mW/cm^2

RESULTS

No non-compliance noted:

non non	compila		*•							
Silver Spring	Networks									
FCC ID: OWS	NICE14									
IC: 5975A- N										
IC: 5975A- N										
Utility Meter	WLAN Transce	iver	2.4 GHz			Calculate mW/cm	2 here. Enter fi	equency in MHz	:	
RF Hazard Dis	tance Calculat	ion				Calculation of Limi	1 ts from 1.1310 T	able 1		
									Controlled	Uncontrolled
									Ave 6 min	Ave 30 min
mW/cm2 from	n Table1:	0.60	(E: 61 V/m)			F(MHz)	Actual F, MHz		Occ, mW/c2	Gen, mW/cm2
						0.3-3	0.5		100.0	100.0
Max RF Power	TX Antenna	MPE distance	S, mW/cm@	Comment		3.0 - 30.0	5		180.0	36.0
P, dBm	G, dBi	cm	at 20 cm			30.0-300	55		1.0	0.2
						300-1500	902		3.0	0.60
29.0	3.0	14.5	0.32			1500-100000	5555		5.0	1.0
						Enter P(mW)	Equivalent dBm	Enter dBm	Equivalent Wat	ts
Basis of Calcu	lationa.					64	10.1	18.1	64.6	
Basis of Calcu	liations:					64	18.1	18.1	64.6	
E^2/3770 = S	6, mW/cm2									
E, V/m = (Pwa	tts*Ggain*30)	^.5/d, meters								
	G*30)/3770*S		Pwatts*Ggain = '	10^(PdBm-30+0	GdBi)/10)					
S@20cm = 20	log (MPE dist/	20cm)								
				eparation distar	nce is for FCC	compliance is 20 ci	ή,			
ever	if calculations	indicate MPE	distance is less							

MPE Distance: 14.5 cm

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.