EMISSIONS TEST REPORT FOR A LOW POWER TRANSMITTER

I. GENERAL INFORMATION

Requirement: FCC

Test Requirements: FCC Part 15

Applicant: Silver Spring Networks

575 Broadway Street Redwood City, CA 94063

FCC ID: OWS-NIC511 IC: 5975A-NIC511

Model No.: NIC311x

Add External Antennas: WP Wireless "Flex" Antenna (900MHz/2.4 GHz dual band)

II. DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)

The Silver Spring Networks (SSN) NIC514 is a radio module for electric power meter communications use. The board incorporates a 900 MHz frequency hopping i210 Mesh radio.

The product has been certified with an internal custom sheet metal antenna. The board has been modified to make provision for connecting an optional external antenna. The modification consists of the addition of a diplexer and an antenna switch.

III. TEST DATES AND TEST LOCATION

Testing was performed on various dates between 22 October – 23 November 2009. 900 MHz radiated emissions tests were performed at:

Compliance Certification Services 47173 Benicia Street Fremont, CA 94538

T.M. Cohen

Antenna port conducted tests were performed at Silver Spring Networks.

T.N. Cokenias

28 January 2010

EMC Consultant/Agent for Silver Spring Networks

Model: NIC311x

15.203 Antenna connector requirement

The EUT has an internal antenna and an external antenna port.

Antenna description	Mfr.	Model No.	Gain
Internal antenna	SSN	n/a	4 dBi at 915 MHz
(original antenna)			
Flex Antenna	WP	WPIANTUGMLR120006A1	3 dBi at 915 MHz
(new antenna)	Wireless		

TEST PROCEDURES

All tests were performed in accordance with the applicable procedures called out in the following documents, unless otherwise noted:

FCC 47CFR15

RSS-210 Issue 7: Low power license exempt radio frequency devices (July 2007)

RSS-212: Test Facilities and Test Methods for Radio Equipment

ANSI C63.4 – 2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

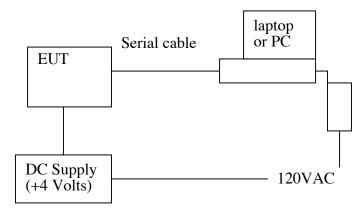
Test were performed at three frequencies:

900 MHz FHSS

Channel 0 (LOW) – 902.3 MHz Channel 43 (MID) -915.2 MHz Channel 82 (HIFH) – 926.9 MHz

Model: NIC311x

Test Equipment

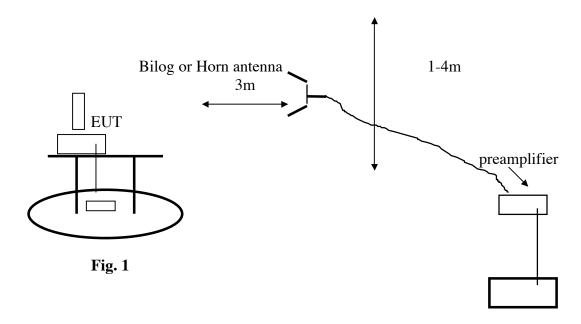

Compliance Certification Services:

TEST EQUIPMENT LIST							
Description	Manufacturer	Model	Asset	Cal Date	Cal Due		
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01179	08/24/09	08/24/10		
Antenna, Horn, 18 GHz	EMCO	3115	C00945	01/29/09	01/29/10		
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	02/04/09	02/04/10		
Reject Filter, 2.4-2.5 GHz	Micro-Tronics	BRM50702	N02685	CNR	CNR		

Silver Spring Networks:

Equipment	Mfr	Model	Serial No.	Cal Date
Spectrum analyzer	Agilent	E44053	MY45113391	07/23/10
Spectrum analyzer	Agilent	EXA	MY48030147	07/23/10
Spectrum Analyzer	HP	8562B	2712A00113	09/25/10

Test Set-up Diagram


Support Equipment

Equipment	Mfr	Model	Asset No.	
DC Power Supply	Agilent	E3610A	2844	
Laptop PC	Dell	PP01L	TW-0791UH1280-	
			OC9-6558	
AC/DC adapter	CUI Inc.	DSA-60W-20	2607HB	

FREQUENCY HOPPING SPREAD SPECTRUM RADIO EMISSIONS

TEST RESULTS

Radiated Test Set-up, 30 MHz - 9.3 GHz

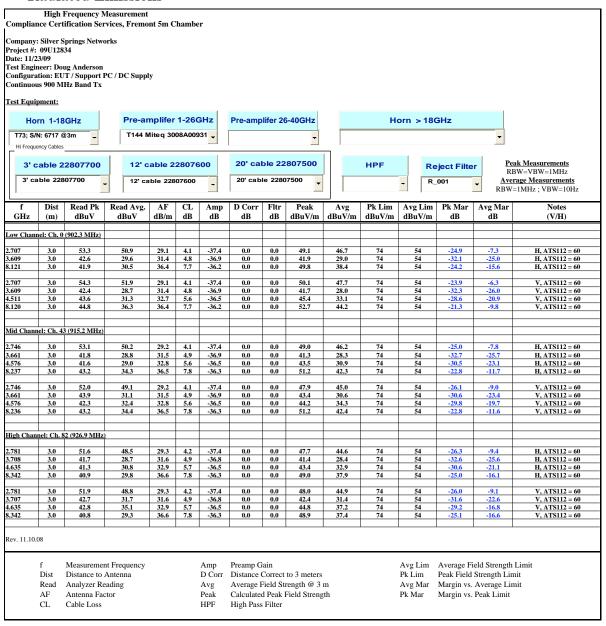
Test Procedures

Radiated emissions generated by the transmitter portion of the EUT were measured.

- 1. The EUT was placed on a wooden table resting on a turntable on the test site. The search antenna was placed 3m from the EUT. The EUT antenna was mounted in the with the EUT TX antenna pointed directly to the search antenna.
- 2. The turntable was slowly rotated to locate the direction of maximum emission at each emission falling in the restricted bands of 15.205.
- 3. Emissions were investigated to the 10th harmonic of the fundamental.
 - 4. Once maximum direction was determined, the search antenna was raised and lowered in both vertical and horizontal polarizations. The maximum readings so obtained are recorded in the data listed below.

Test Results: Worst-case results are presented. Refer to data sheets below. Restricted band emissions meet 54 dBuV/m. Other undesired emissions from the transmitter meet the -20 dBc requirement in 15.247(d).

Model: NIC311x


15.205 Restricted Frequency Bands

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505 (1)	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	
13.36 - 13.41	322 - 335.4		

15.209 General Field Strength Limits

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)		
0.009 - 0.490	2400/F (kHz)	300		
0.490 - 1.705	24000/F (kHz)	30		
1.705 - 30.0	30	30		
30 - 88	100 **	3		
88 - 216	150 **	3		
216 - 960	200 **	3		
Above 960	500	3		

Radiated Emissions

Radiated Emissions below 1 GHz

All emissions were more than 20 dB below the limits.

PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

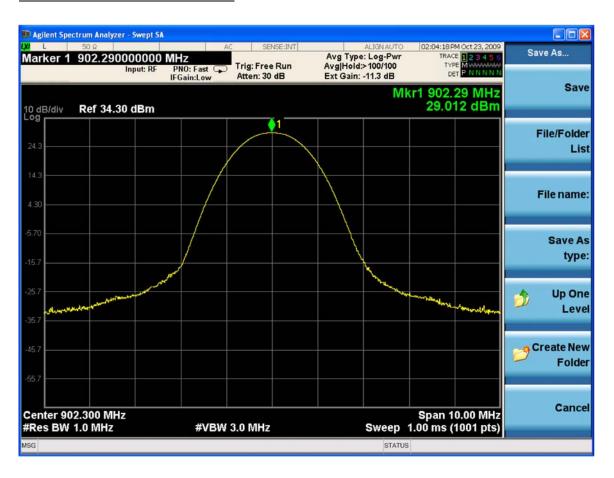
§15.247 (b) (2) For frequency hopping systems operating in the 902-928 MHz band, employing at least 50 hopping channels: 1 watt; and employing less than 50 hopping channels, but at least 25 hopping channels: 0.25 watt.

§15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is below 6 dBi, therefore the power limit is 30 dBm.

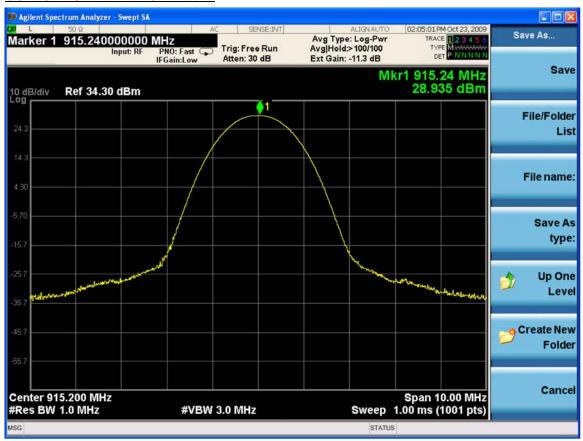
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer and the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.


Note: Power measurements were at external antenna connector port on the radio board.

RESULTS

No non-compliance noted:


Channel	Frequency	P out
Low	902.3	29.01
Mid	914.9	28.94
High	926.9	28.76

OUTPUT POWER LOW CHANNEL


Model: NIC311x

OUTPUT POWER MID CHANNEL

Model: NIC311x

OUTPUT POWER HIGH CHANNEL

MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)			Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	I/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842# 61.4	1.63 4.89# 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6
(B) Limits	for General Populati	on/Uncontrolled Exp	posure	
0.3–1.34	614 824 <i>f</i> f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30	

f = frequency in MHz

* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

and

 $S = E ^2 / 3770$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

$$d = \sqrt{((30 * P * G) / (3770 * S))}$$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and

d(cm) = 100 * d(m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$

 $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power Density in mW/cm^2$

Substituting the logarithmic form of power and gain using:

 $P(mW) = 10 \land (P(dBm) / 10)$ and

 $G \text{ (numeric)} = 10 ^ (G \text{ (dBi)} / 10)$

yields

 $d = 0.282 * 10 \land ((P + G) / 20) / \sqrt{S}$ Equation (1)

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

 $S = Power Density Limit in mW/cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance.

LIMITS

From $\S1.1310$ Table 1 (B), S = 0.6 mW/cm²

RESULTS

No non-compliance noted:

NO HOH-	compiian	ice noted	l.							
Silver Spring I	Networks									
FCC ID: OWS-	NIC514									
IC: 5975A- N										
Utility Meter 1	WLAN Transceiv	ver	2.4 GHz			Calculate mW/cm	2 here. Enter fr	eauency in MHz	:	
RF Hazard Dis	tance Calculation	on				Calculation of Limi	ts from 1.1310 T	able 1		
									Controlled	Uncontrolled
									Ave 6 min	Ave 30 min
mW/cm2 fron	n Table1:	0.60	(E: 61 V/m)			F(MHz)	Actual F, MHz		Occ, mW/c2	Gen, mW/cm2
			<u> </u>			0.3-3	0.5		100.0	100.0
Max RF Power	TX Antenna	MPE distance	S, mW/cm@	Comment		3.0 - 30.0	5		180.0	36.0
P, dBm	G, dBi	cm	at 20 cm			30.0-300	55		1.0	0.2
						300-1500	902		3.0	0.60
29.0	3.0	14.5	0.32			1500-100000	5555		5.0	1.0
						Enter P(mW)	Equivalent dBm	Enter dBm	Equivalent Wat	ts
Basis of Calcu	lations:					64	18.1	18.1	64.6	
$E^2/3770 = S$, mW/cm2									
E, V/m = (Pwa)	itts*Ggain*30)^	.5/d, meters								
d = ((Pwatts*0	G*30)/3770*S))^0.5	Pwatts*Ggain =	10^(PdBm-30+G	dBi)/10)					
	log (MPE dist/2									
NOTE: For me	obile or fixed lo	cation transmi	itters, minimum s	separation distan	ce is for FCC	compliance is 20 ci	nh,			
			distance is less							

MPE Distance: 14.5 cm

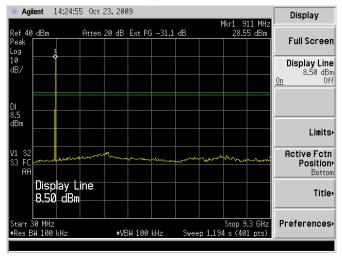
NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

CONDUCTED SPURIOUS EMISSIONS

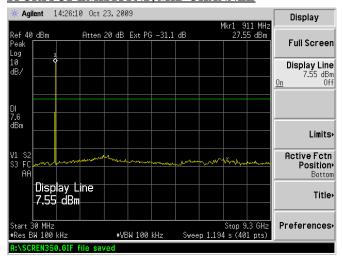
LIMITS

§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

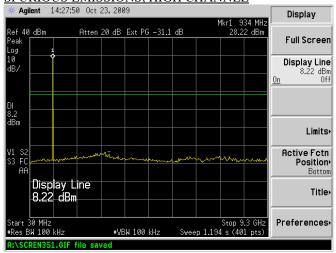
TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

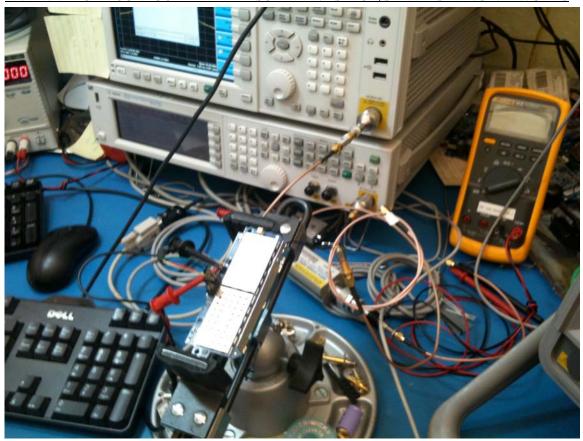
The spectrum from 30 MHz to 10 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS

No non-compliance noted:


SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL



SPURIOUS EMISSIONS, HIGH CHANNEL

SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP, SILVER SPRING NETWORKS

Model: NIC311x

RADIATED RF MEASUREMENT SETUP, CCS

END OF REPORT

Report Revision History

	Revision	Revision Description	Pages	Revised by	Date
	No.		Revised		
ĺ	-	Original Issue		T. Cokenias	01/28/2010