MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field Magnetic field strength strength (V/m) (A/m)		Power density (mW/cm²)	Averaging time (minutes)	
(A) Lim	its for Occupational	/Controlled Exposu	res		
0.3–3.0 3.0–30	614 1842/ī	1.63 4.89/f	*(100) *(900/f²)	6	
30–300 300–1500	61.4	0.163	1.0 f/300	6	
1500–100,000			5	6	
(B) Limits	for General Populati	on/Uncontrolled Exp	posure		
0.3–1.34 1.34–30	614 824 <i>/</i> f	1.63 2.19/f	*(100) *(180/f ²)	30 30	

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30	

f = frequency in MHz * = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-pational/controlled exposure also apply in situations when an individual is transient through a location where occu-pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

exposure or can not exercise control over their exposure.

Silver Spring Networks FCC ID: OWS-NIC5514 Model: 340-040304

CALCULATIONS

Given

$$E = \sqrt{(30 * P * G)} / d$$

and

$$S = E^{2}/3770$$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

- d = Distance in meters
- S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and d(cm) = 100 * d(m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cmP = Power in mWG = Numeric antenna gain $S = Power Density in mW/cm^2$

Substituting the logarithmic form of power and gain using:

 $P(mW) = 10 \wedge (P(dBm) / 10)$ and $G (numeric) = 10 \wedge (G (dBi) / 10)$ yields $d = 0.282 * 10 \wedge ((P + G) / 20) / \sqrt{S}$

Equation (1)

where

d = MPE distance in cm P = Power in dBmG = Antenna Gain in dBi $S = Power Density Limit in mW/cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance.

LIMITS

From §1.1310 Table 1 (B), S = 0.6 mW/cm^2

RESULTS

No non-compliance noted:

	1									
Silver Spring I	Networks									
FCC ID: OWS	NIC514									
IC: 5975A- N	IC514									
Utility Meter \	WLAN Transcei	iver	2.4 GHz			Calculate mW/cm	2 here. Enter f	requency in MHz:		
RF Hazard Dis	tance Calculati	ion				Calculation of Limit	ts from 1.1310 T	able 1		
									Controlled	Uncontrolled
									Ave 6 min	Ave 30 min
mW/cm2 from	n Table1:	0.60	(E: 61 V/m)			F(MHz)	Actual F, MHz		Occ, mW/c2	Gen, mW/cm2
				-		0.3-3	0.5		100.0	100.0
Max RF Power	TX Antenna	MPE distance	S, mW/cm@	Comment		3.0 - 30.0	5		180.0	36.0
P, dBm	G, dBi	cm	at 20 cm			30.0-300	55		1.0	0.2
						300-1500	902		3.0	0.60
29.0	5.0	18.3	0.50			1500-100000	5555		5.0	1.0
						Enter P(mW)	Equivalent dBm	Enter dBm	Equivalent Wat	ts
Basis of Calcu	lations:					64	18.1	<u>18.1</u>	64.6	
$E^{2/3770} = S$, mW/cm2								<u> </u>	+
E, V/m = (Pwa	tts*Ggain*30)/	^.5/d, meters								
d = ((Pwatts*0	330)/3770*S))^0.5	Pwatts*Ggain = 1	10^(PdBm-30+G	dBi)/10)					
S@20cm = 20	log (MPE dist/	20cm)								
NOTE: For me	obile or fixed is	ocation transm	tters, minimum s	eparation distan	ce is for FCC	compliance is 20 cr	η,			
ever	if calculations	Indicate MPE	distance is less							
									<u> </u>	+
									<u> </u>	
									 	+
	1	1	1	1	1		1	1	1	1

MPE Distance: 18.3 cm

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.