MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TAble 1-Limits for Maximum Permissible Exposure (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIbLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A / m)	Power density (mW/cm)	Averaging time (minutes)
30-300 ...	27.5	0.073	0.2	30
300-1500	f/1500	30
1500-100,000	1.0	30

$\mathrm{f}=$ frequency in MHz
= Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for oocupationaVcontrolled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.
NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

CALCULATIONS

Given

$$
\mathrm{E}=\sqrt{ }(30 * \mathrm{P} * \mathrm{G}) / \mathrm{d}
$$

and

$$
S=E^{\wedge} 2 / 3770
$$

where
$\mathrm{E}=$ Field Strength in Volts/meter
$\mathrm{P}=$ Power in Watts
$\mathrm{G}=$ Numeric antenna gain
$\mathrm{d}=$ Distance in meters
S = Power Density in milliwatts/square centimeter
Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:
$\mathrm{d}=\sqrt{ }((30 * \mathrm{P} * \mathrm{G}) /(3770 * \mathrm{~S}))$
Changing to units of Power to mW and Distance to cm , using:
$P(\mathrm{~mW})=P(\mathrm{~W}) / 1000$ and
$\mathrm{d}(\mathrm{cm})=100 * \mathrm{~d}(\mathrm{~m})$
yields
$\mathrm{d}=100 * \sqrt{ }((30 *(\mathrm{P} / 1000) * \mathrm{G}) /(3770 * \mathrm{~S}))$
$\mathrm{d}=0.282 * \sqrt{ }(\mathrm{P} * \mathrm{G} / \mathrm{S})$
where
$\mathrm{d}=$ distance in cm
$\mathrm{P}=$ Power in mW
$\mathrm{G}=$ Numeric antenna gain
$\mathrm{S}=$ Power Density in $\mathrm{mW} / \mathrm{cm}^{\wedge} 2$
Substituting the logarithmic form of power and gain using:
$\mathrm{P}(\mathrm{mW})=10^{\wedge}(\mathrm{P}(\mathrm{dBm}) / 10)$ and
$\mathrm{G}($ numeric $)=10^{\wedge}(\mathrm{G}(\mathrm{dBi}) / 10)$
yields
$\mathrm{d}=0.282 * 10^{\wedge}((\mathrm{P}+\mathrm{G}) / 20) / \sqrt{ } \mathrm{S}$
Equation (1)
where
$\mathrm{d}=$ MPE distance in cm
$\mathrm{P}=$ Power in dBm
$\mathrm{G}=$ Antenna Gain in dBi
$\mathrm{S}=$ Power Density Limit in $\mathrm{mW} / \mathrm{cm}^{\wedge} 2$
Equation (1) and the measured peak power is used to calculate the MPE distance.

FCC ID: OWS-NIC5511
Model: 340-040301

LIMITS

From §1.1310 Table 1 (B), $\mathrm{S}=0.6 \mathrm{~mW} / \mathrm{cm}^{\wedge} 2$

RESULTS

No non-compliance noted:

Power Density Limit $\left(\mathbf{m W} / \mathbf{c m}^{\wedge} \mathbf{2}\right)$	Output Power (dBm)	Antenna Gain (dBi)	S, mW/cm2 at 20cm
0.6	29.86	4.00	0.31

MPE Distance: 17.95 cm
NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm , even if calculations indicate that the MPE distance would be less.

