

For: ITRON NETWORKED SOLUTIONS, INC.

Model Name:

NIC 511-NA1-0312

Product Description:

The MicroAP 5 is a unique product with cellular connectivity that supports both cellular and RF Mesh communications simultaneously.

FCC ID: OWS-NIC511-LTE IC ID: 5975A-NIC511LTE

Applied Rules and Standards: 47 CFR Part 15.247 (DTS) RSS-247 Issue 2 (DTSs) & RSS-Gen Issue 5

REPORT #: EMC_ITRO1_049_21001_FCC_15.247_DTS_ATT_Rev1

DATE: 2021-11-05

A2LA Accredited

IC recognized # 3462B

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

Phone: + 1 (408) 586 6200 • Fax: + 1 (408) 586 6299 • E-mail: Contact@cetecom.com • <u>http://www.cetecom.com</u> *CETECOM* Inc. is a Delaware Corporation with Corporation number: 2905571

© Copyright by CETECOM

TABLE OF CONTENTS

1		ASSESSMENT	3			
2		ADMINISTRATIVE DATA				
	2.1 2.2 2.3	2 IDENTIFICATION OF THE CLIENT	4			
3	EQUIPMENT UNDER TEST (EUT)					
	3.1 3.2 3.3 3.4 3.5	 EUT SAMPLE DETAILS	5 6 6			
4		SUBJECT OF INVESTIGATION	7			
5		MEASUREMENT RESULTS SUMMARY	7			
6		MEASUREMENT UNCERTAINTY	8			
	6.1 6.2					
7		MEASUREMENT PROCEDURES	9			
	7.1 7.2 7.3	2 Power Line Conducted Measurement Procedure	11			
8		TEST RESULT DATA	12			
	8.1 8.2 8.3	2 RADIATED TRANSMITTER SPURIOUS EMISSIONS AND RESTRICTED BANDS	17			
9		TEST SETUP PHOTOS	32			
10)	TEST EQUIPMENT AND ANCILLARIES USED FOR TESTING	32			
11		HISTORY	33			

Signature

1 <u>Assessment</u>

Date

The following device was evaluated against the applicable criteria specified in FCC rules Parts 15.247 of Title 47 of the Code of Federal Regulations and the relevant ISED Canada standard RSS-247.

Based on 'NOTE (3)' in the operational description of the EUT 'Functional Description (OWS-NIC511-LTE)_11-4-2021-1.pdf "900 MHz mesh radio identical for all models"

No deviations were ascertained.

Company	Description	Model #
ITRON NETWORKED SOLUTIONS, INC.	The MicroAP 5 is a unique product with cellular connectivity that supports both cellular and RF Mesh communications simultaneously.	NIC 511-NA1-0312

Responsible for Testing Laboratory:

		Kevin Wang					
2021-11-05	Compliance	(EMC Lab Manager)					
Date	Section	Name	Signature				
Responsible for	the Report:						
		Issa W Ghanma					
2021-11-05	Compliance	(Sr. EMC Engineer)					

Name

The test results of this test report relate exclusively to the test item specified in Section3.

Section

CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM Inc. USA.

2 Administrative Data

2.1 Identification of the Testing Laboratory Issuing the EMC Test Report

Company Name:	CETECOM Inc.		
Department:	Compliance		
Street Address:	411 Dixon Landing Road		
City/Zip Code	Milpitas, CA 95035		
Country	USA		
Telephone:	+1 (408) 586 6200		
Fax:	+1 (408) 586 6299		
EMC Lab Manager:	Kevin Wang		
Responsible Project Leader:	Rami Saman		

2.2 Identification of the Client

Client's Name:	ITRON NETWORKED SOLUTIONS, INC.	
Street Address:	230 W Tasman Avenue	
City/Zip Code	San Jose, CA 95134	
Country	USA	

2.3 Identification of the Manufacturer

Manufacturer's Name:	
Manufacturers Address:	Same as Client
City/Zip Code	
Country	

3 Equipment Under Test (EUT)

3.1 EUT Specifications

Model No:	NIC 511-NA1-0312			
HW Version :	09			
SW Version :	5.2.0			
FCC-ID :	OWS-NIC511-LTE			
IC-ID :	5975A-NIC511LTE			
Product Description:	The MicroAP 5 is a unique product with cellular connectivity that supports both cellular and RF Mesh communications simultaneously. It leverages cellular communications for backhaul connectivity and uses RF Mesh communications to connect with other nearby Itron Networked Solutions, Inc. devices.			
Frequency Range / number				
of channels:	Center to center: 903.2 MHz (ch 0) – 926 MHz (ch 19), 20 Channels			
Antenna Information as	Omni-Directional Antenna			
declared:	Max Gain: -4.4 dBi			
Measured Peak output Powers:	26.26 dBm			
Power Supply/ Rated	Streetlight controller(Luminator): 120V (Low) / 277V (Max) AC			
Operating Voltage Range:	Luminator output to EUT: 3.6V (Low) / 4.4V (Max) DC			
Operating Temperature	-40° to 65° C			
Range				
Other Radios included in	Celluar:			
the device:	• (4G) 2, 4, 5, 12, 13			
Sample Revision	□Prototype Unit; ■Production Unit; □Pre-Production			

3.2 EUT Sample details

EUT #	Model Number	HW Version	SW Version	MAC Address	Comments
1	NIC 511-SV1-0312	08	5.2.0	00:13:50:05:01:40:FE:24	RF Conducted output power
2	NIC 511-NA1-0312	09	5.2.0	00:13:50:05:01:5B:83:95	Radiated spurious emissions

3.3 Mode of Operation details

Mode of Operation	Description of Operating modes	Additional Information			
Op. 1	900MHz Mesh	The radio of the EUT was configured to a fixed channel transmission with highest possible duty cycle (≥ 98%) using software (CATT) that is not available to the end user. The measurement equipment was connected to the 50 ohm RF port of the EUT.			
Op. 2	900MHz Mesh + LTE 2	The radio of the EUT was configured to a fixed channel transmission with highest possible duty cycle (≥ 98%) using software (CATT) that is not available to the end user. The internal antennae was connected.			

Test Sample Configuration 3.4

EUT Set-up #	Combination of AE used for test set up	Comments	
1	EUT#1	ISM radio was configured to: Mode: OFDM Data Rate: 2.4 Mb/s Max Power settings: +27 dBm Transmit mode: Continuous TX Hopping: No Channel(s): CH0(903.2MHz), CH9(914MHz), CH19(926MHz)	
2	EUT#2	ISM radio was configured to: Mode : OFDM Data Rate: : 2.4 Mb/s Max Power settings: 27 dBm Transmit mode : Continuous TX Hopping : No Channel(s) : CH0(903.2MHz), CH9(914MHz), CH19(926MHz)	

3.5 Justification for Worst Case Mode of Operation

During the testing process, the EUT was tested with transmitter sets on Low, Mid, High channels, highest duty cycle, and the maximum output power, simultaneously with the cellular radio transmitting at the highest output power LTE band 2 representing the worst case scenario.

For radiated measurements,

- All data in this report show the worst case of ISM radio, transmitting at the highest output power mode
- All data in this report shows the worst case between horizontal and vertical antenna polarizations and for all orientations of the EUT.

4 Subject of Investigation

The objective of the measurements done by CETECOM Inc. was to assess the performance of the EUT according to the relevant requirements specified in FCC rules Part 15.247 of Title 47 of the Code of Federal Regulations and Radio Standard Specification RSS-247 of ISED Canada.

This test report is to support a request for new equipment authorization under the

- FCC ID: OWS-NIC511-LTE
- IC ID: 5975A-NIC511LTE

Testing procedures are based on 558074 D01 15.247 Meas Guidance v05r02 – "GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES" - April 2, 2019, by the Federal Communications Commission, Office of Engineering and Technology, Laboratory Division.

5 Measurement Results Summary

Test Specification	Test Case	Temperature and Voltage Conditions	Mode	Pass	NA	NP	Result
§15.247(a)(2) RSS-247 5.2(a)			-				Note 1
§15.247(e) RSS-247 5.2(b) Power Spectral Density		Nominal	-				Note 1
§15.247(b)(3) RSS-247 5.4(d)	Maximum Conducted Output Power and EIRP	Nominal	Op. 1				Complies
§15.247(d) RSS-247 5.5	Band edge compliance Unrestricted Band Edges	Nominal	-				Note 1
§15.247; 15.209; 15.205 RSS-Gen 8.9; 8.10	Band edge compliance Restricted Band Edges	Nominal	-				Note 1
§15.247(d); §15.209 RSS-Gen 6.13	TX Spurious emissions-Radiated	Nominal	Op. 2				Complies
§15.207(a) RSS Gen 8.8	AC Conducted Emissions	Nominal	Op. 2				Complies

Note 1: NA= Not Applicable; NP= Not Performed.

Note2: Leveraged from module certification report # SSNT135-U8_Conducted Rev B, FCC / IC ID: OWS-NIC511-LTE / 5975A-NIC511LTE

6 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus, with 95% confidence interval (in dB delta to result), based on a coverage factor k=1.

Radiated measurement

9 kHz to 30 MHz 30 MHz to 1000 MHz 1 GHz to 40 GHz	±2.5 dB (Magnetic Loop Antenna) ±2.0 dB (Biconilog Antenna) ±2.3 dB (Horn Antenna)
Conducted measurement	
150 kHz to 30 MHz	±0.7 dB (LISN)
RF conducted measurement	±0.5 dB

According to TR 102 273 a multiplicative propagation of error is assumed for RF measurement systems. For this reason the RMS method is applied to dB values and not to linear values as appropriate for additive propagation of error. Also used: http://physics.nist.gov/cuu/Uncertainty/typeb.html. The above calculated uncertainties apply to direct application of the Substitution method. The Substitution method is always used when the EUT comes closer than 3 dB to the limit.

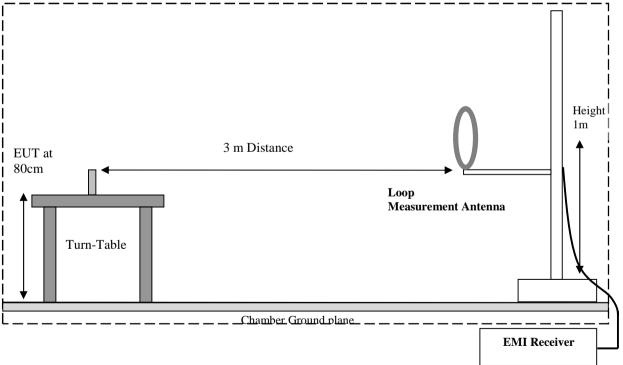
6.1 Environmental Conditions During Testing:

The following environmental conditions were maintained during the course of testing:

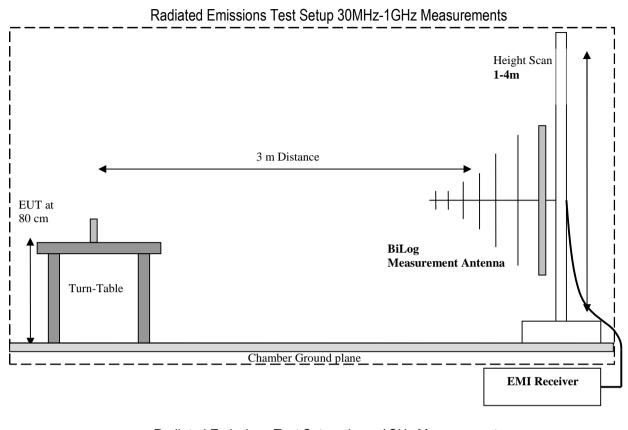
- Ambient Temperature: 20-25°C
- Relative humidity: 40-60%

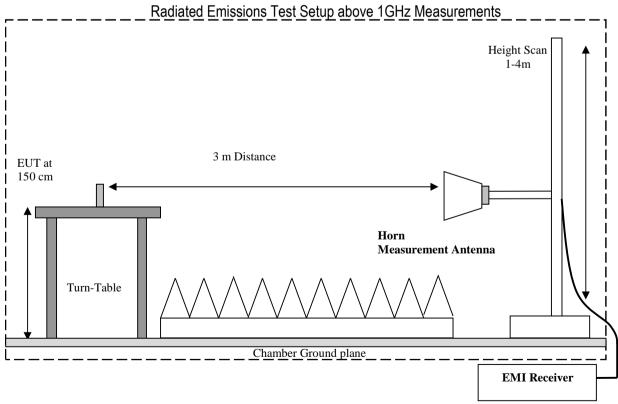
6.2 Dates of Testing:

6/7/2021 - 11/3/2021



7 Measurement Procedures


7.1 Radiated Measurement


The radiated measurement is performed according to ANSI C63.10 (2013)

- The exploratory measurement is accomplished by running a matrix of 16 sweeps over the required frequency range
 with R&S Test-SW EMC32 for 4 positions of the turntable, two orthogonal positions of the EUT and both antenna
 polarizations. This procedure exceeds the requirement of the above standards to cover the 3 orthogonal axis of the
 EUT. A max peak detector is utilized during the exploratory measurement. The Test-SW creates an overall maximum
 trace for all 12 sweeps and saves the settings for each point of this trace. The maximum trace is part of the test report.
- The 10 highest emissions are selected with an automatic algorithm of EMC32 searching for peaks in the noise floor and ensuring that broadband signals are not selected multiple times.
- The maxima are then put through the final measurement and again maximized in a 90deg range of the turntable, fine search in frequency domain and height scan between 1m and 4m.
- The above procedure is repeated for all possible ways of power supply to EUT and for all supported modulations.
- In case there are no emissions above noise floor level only the maximum trace is reported as described above.
- The results are split up into up to 4 frequency ranges due to antenna bandwidth restrictions. A magnetic loop is used from 9 kHz to 30 MHz, a Biconilog antenna is used from 30 MHz to 1 GHz, and two different horn antennas are used to cover frequencies up to 40 GHz.

Radiated Emissions Test Setup below 30MHz Measurements

7.1.1 Sample Calculations for Field Strength Measurements

Field Strength is calculated from the Spectrum Analyzer/ Receiver readings, taking into account the following parameters:

- 1. Measured reading in dBµV
- 2. Cable Loss between the receiving antenna and SA in dB and
- 3. Antenna Factor in dB/m

All radiated measurement plots in this report are taken from a test SW that calculates the Field Strength based on the following equation:

FS (dB μ V/m) = Measured Value on SA (dB μ V) + Cable Loss (dB) + Antenna Factor (dB/m)

Example:

Frequency	Measured SA	Cable Loss	Antenna Factor Correction	Field Strength Result
(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)
1000	80.5	3.5	14	

7.2 Power Line Conducted Measurement Procedure

AC Power Line conducted emissions measurements performed according to: ANSI C63.4 (2014)

7.3 RF Conducted Measurement Procedure

Testing procedures are based on 558074 D01 15.247 Meas Guidance v05r02 – "GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES" - April 2, 2019, by the Federal Communications Commission, Office of Engineering and Technology, Laboratory Division.

- Connect the equipment as shown in the above diagram.
- Adjust the settings of the SA (Rohde-Schwarz Spectrum Analyzer) to connect the EUT at the required mode of test.
- Measurements are to be performed with the EUT set to the low, middle and high channels and for worst case modulation schemes.

8 Test Result Data

8.1 Maximum peak conducted output power

8.1.1 Measurement according to FCC 558074 D01 15.247 Meas Guidance v05r02

Spectrum Analyzer settings:

- RBW ≥ DTS bandwidth
- VBW \ge 3 x RBW
- Span ≥ 3 x RBW
- Sweep = Auto couple
- Detector function = Peak
- Trace = Max hold
- Use peak marker function to determine the peak amplitude level

8.1.2 Limits:

Maximum Peak Conducted Output Power:

FCC §15.247:

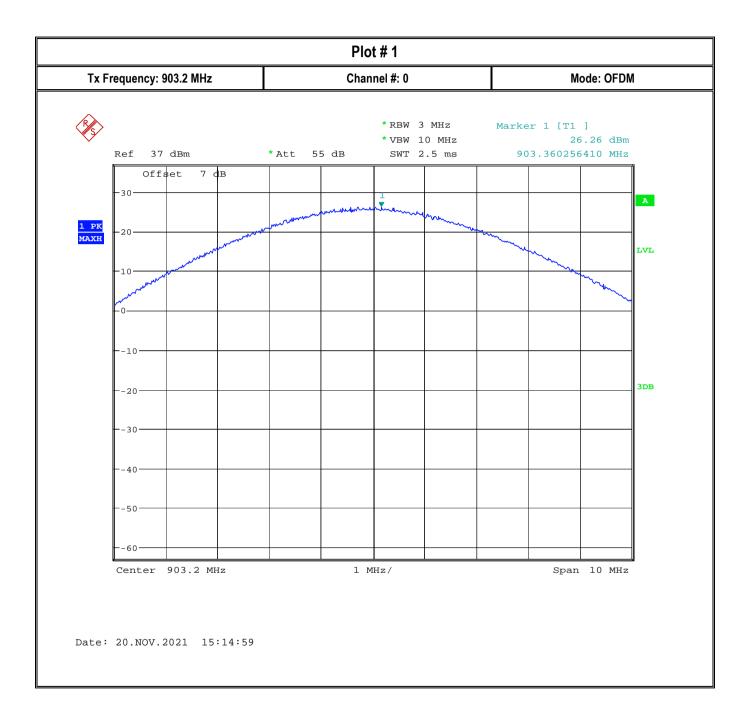
- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:
 - (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

IC RSS-247 5.4:

- (d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).
 - As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

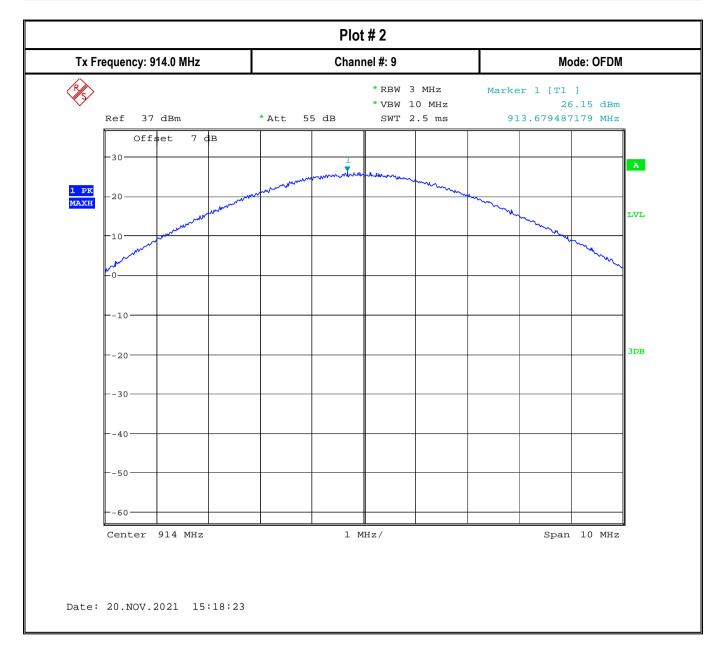
8.1.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input	Antenna Gain
23.8°C	1	Op.1	120 V AC	-4.4 dBi

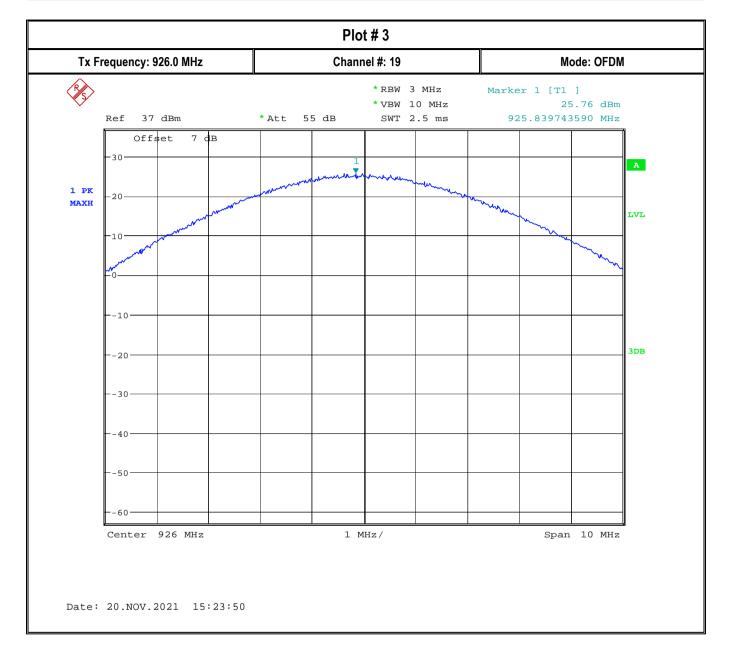

8.1.4 Measurement result:

Plot #	EUT operating mode	Channel #	TX Frequency (MHz)		sured ower		lucted mit	Calcı E.I.F			E.I.R.P mit	Result
	moue		(11112)	W	dBm	W	dBm	W	dBm	W dBm		
1		0	903.2	0.42	26.26	1	30	0.15	21.86	4	36	Pass
2	Op.1	9	914.0	0.41	26.15	1	30	0.15	21.75	4	36	Pass
3		19	926.0	0.38	25.76	1	30	0.14	21.36	4	36	Pass

1: E.I.R.P = Measured PK power + Antenna Gain


Test Report #:	EMC_ITRO1_049_21001_FCC_15.24	47_DTS_ATT_Rev1	FCC ID: OWS-NIC511-LTE	Celecom
Date of Report	2021-11-05	Page 14 of 33	IC ID: 5975A-NIC511LTE	

8.1.5 Measurement Plots:



FCC ID: OWS-NIC511-LTE IC ID: 5975A-NIC511LTE

8.2 Radiated Transmitter Spurious Emissions and Restricted Bands

8.2.1 Measurement according to ANSI C63.10 (2013)

Spectrum Analyzer Settings:

- Frequency = 9 KHz 30 MHz
- RBW = 9 KHz
- Detector: Peak
- Frequency = 30 MHz 1 GHz
- Detector = Peak / Quasi-Peak
- RBW= 120 KHz (<1GHz)
- Frequency > 1 GHz
- Detector = Peak / Average
- RBW = 1 MHz
- Radiated spurious emissions shall be measured for the transmit frequencies, transmit power, and data rate for the lowest, middle and highest channel in each frequency band of operation and for the highest gain antenna for each antenna type, and using the appropriate parameters and test requirements.
- The highest (or worst-case) data rate shall be recorded for each measurement.
- For testing frequencies below 30 MHz at distance other than the specified in the standard, the limit conversion is calculated by using the FCC materials for the ANSI 63 committee issued on January, 27 1991.

8.2.2 Limits:

FCC §15.247

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

FCC §15.209 & RSS-Gen 8.9

• Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency of emission (MHz)	Field strength (µV/m)	Measurement Distance (m)	Field strength @ 3m (dBµV/m)
0.009–0.490	2400/F(kHz) /	300	-
0.490–1.705	24000/F(kHz) /	30	-
1.705–30.0	30 / (29.5)	30	-
30–88	100	3	40 dBµV/m
88–216	150	3	43.5 dBµV/m
216–960	200	3	46 dBµV/m
Above 960	500	3	54 dBµV/m

FCC §15.205 & RSS-Gen 8.10

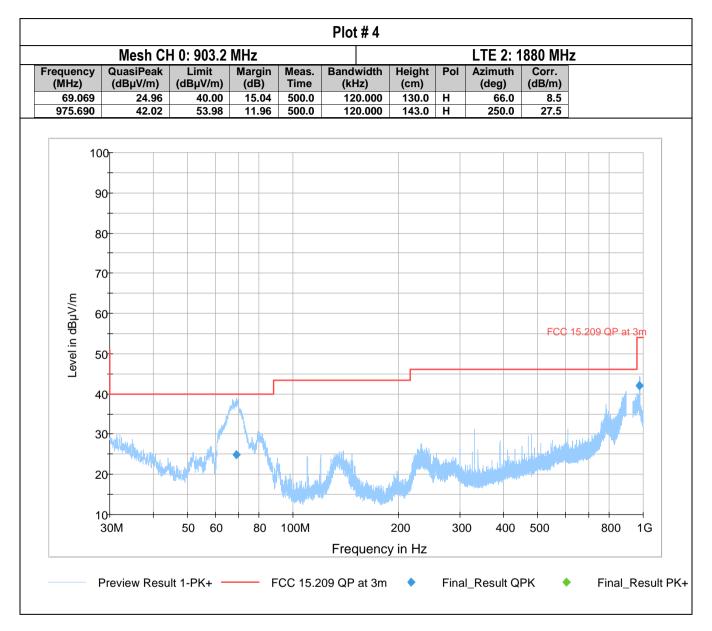
• Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

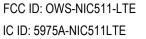
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

• Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

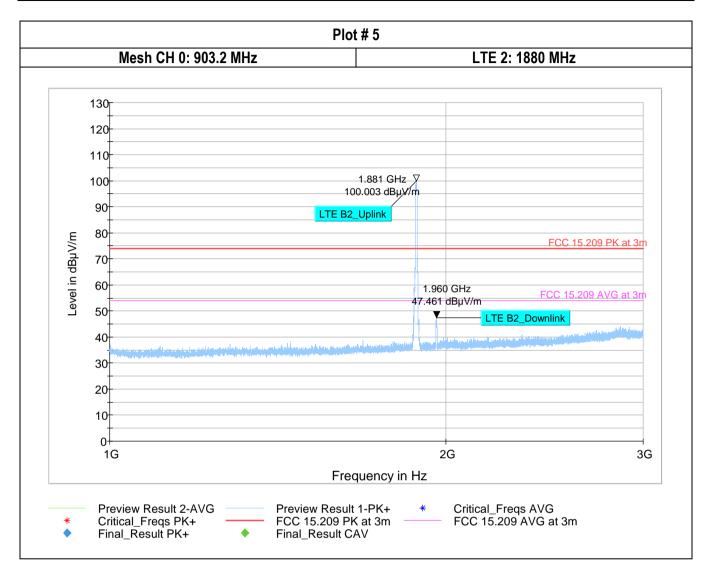
*PEAK LIMIT= 74 dBµV/m *AVG. LIMIT= 54 dBµV/m

8.2.3 Test conditions and setup:

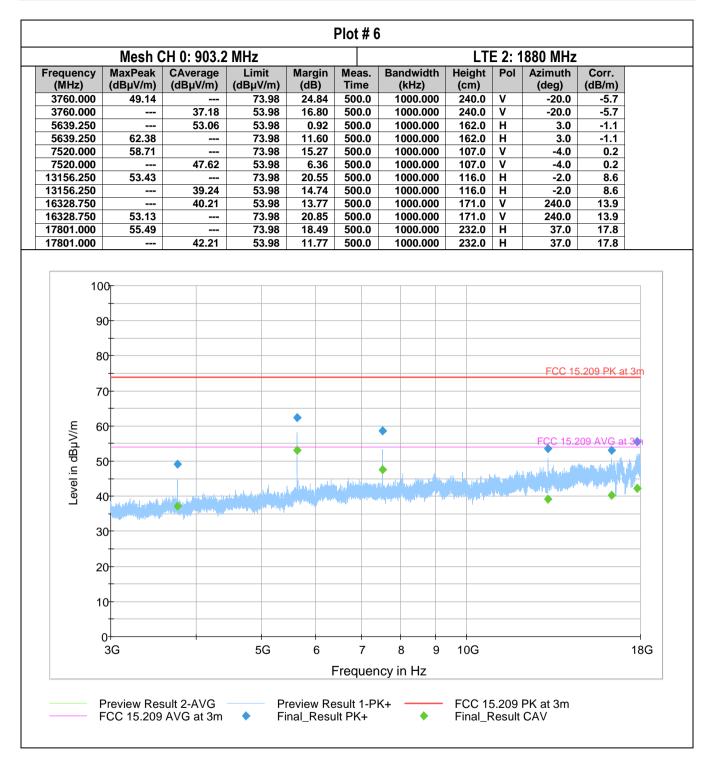

Ambient Temperature EUT operating mode		EUT operating mode				
	23° C	Op. 2	120 VAC			

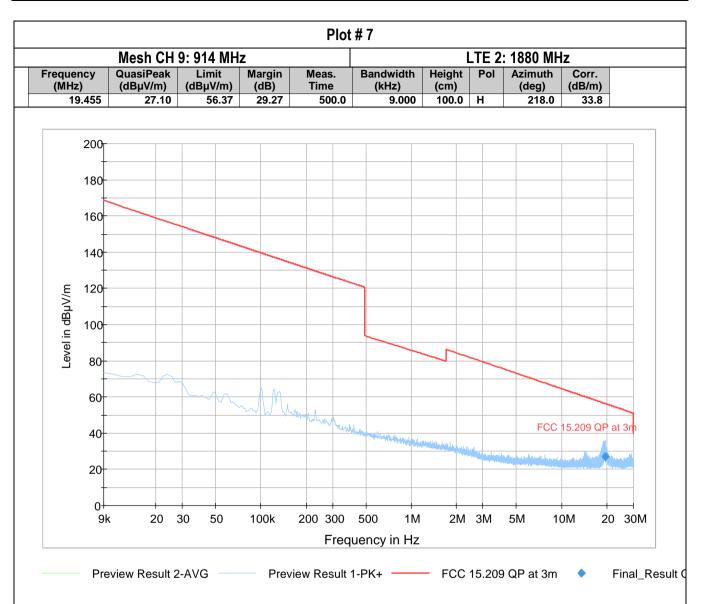

8.2.4 Measurement result:

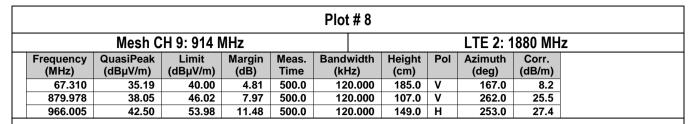
Plot #	Channel #	EUT Set-up #	Scan Frequency	Result
4-7	0	2	30 MHz – 18 GHz	Pass
8-10	9	2	9 kHz – 18 GHz	Pass
11-13	19	2	30 MHz – 18 GHz	Pass

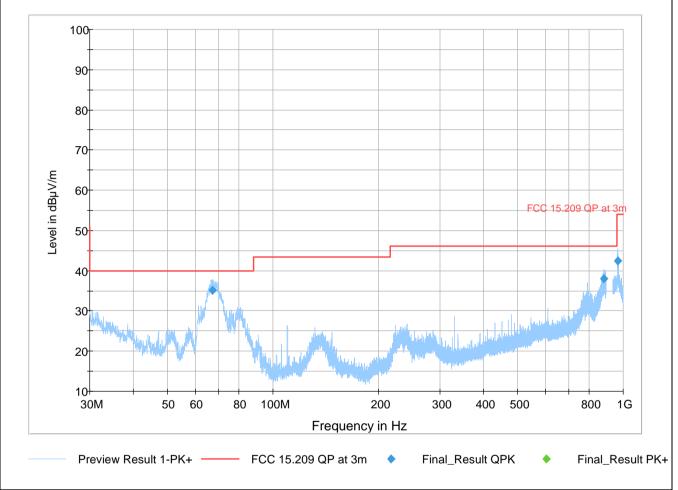


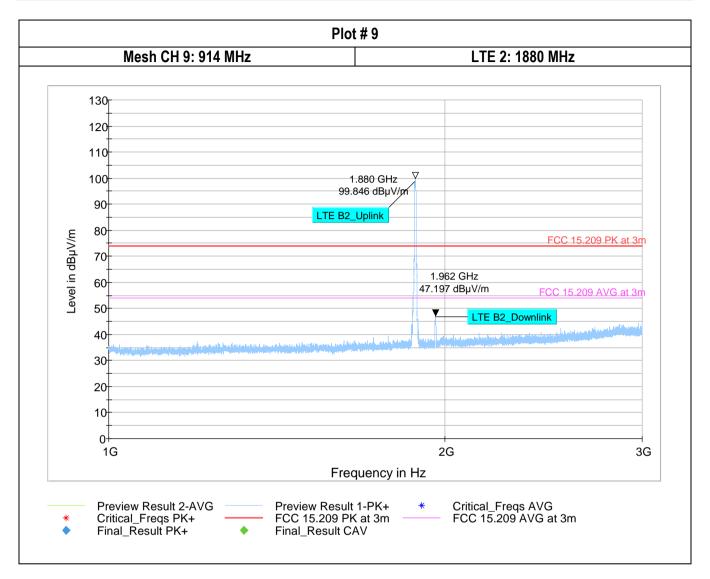
8.2.5 Measurement Plots:

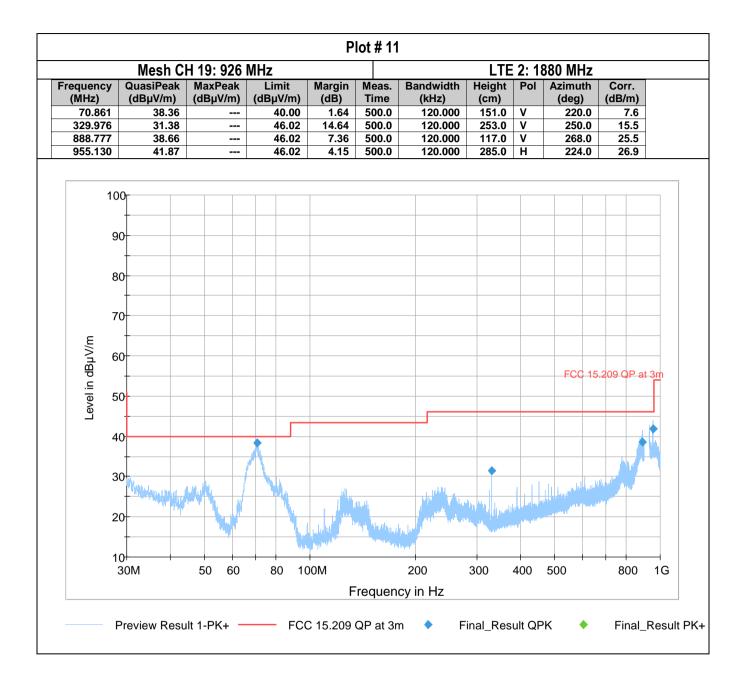


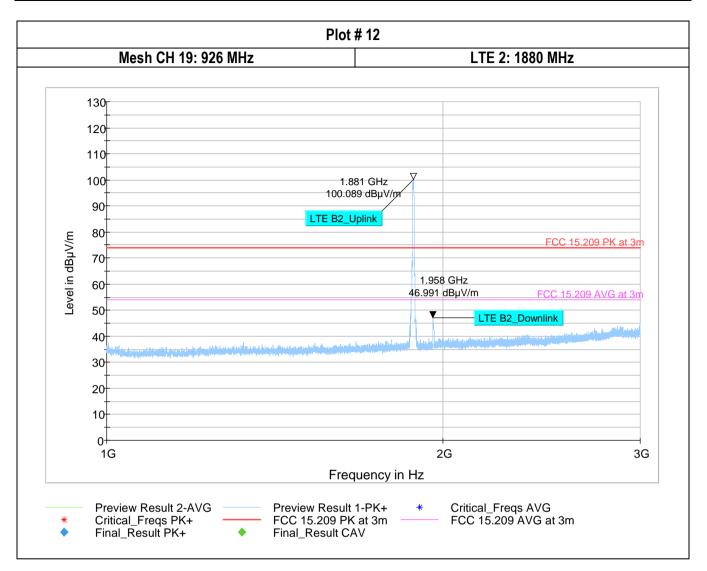


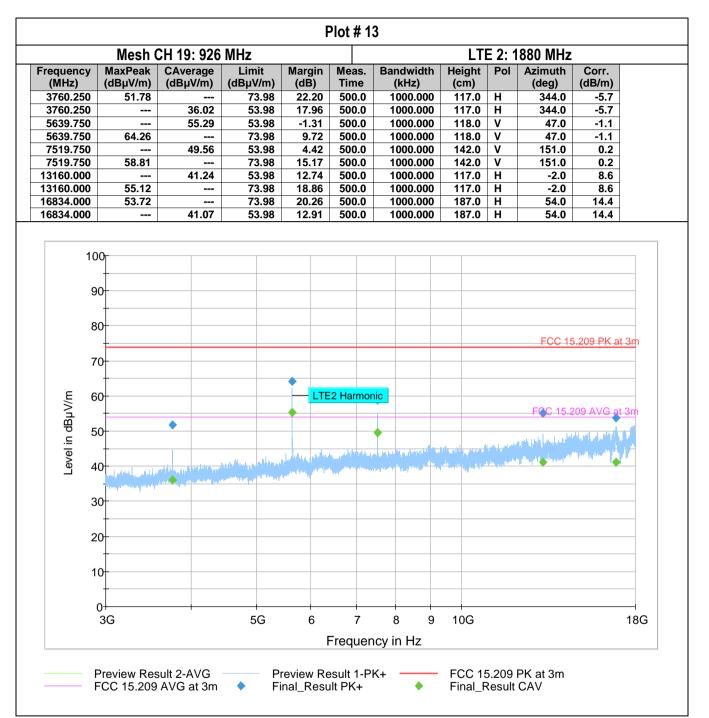





C celecom






E

					Plot # 1	U					
	Me	sh CH 9: 9	14 MHz					LTE	2: 1880 M	Hz	
requency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	
3760.000	53.70		73.98	20.28	500.0	1000.000	233.0	۷	40.0	-5.7	
3760.000		42.17	53.98	11.80	500.0	1000.000	233.0	V	40.0	-5.7	
5639.750	64.78		73.98	9.20	500.0	1000.000	118.0	V	49.0	-1.1	
5639.750		55.77	53.98	-1.79	500.0	1000.000	118.0	V	49.0	-1.1	
7522.250	57.90	45.55	73.98 53.98	16.08 8.43	500.0	1000.000	143.0 143.0	V V	151.0 151.0	0.2	
13160.750		45.55	53.98	13.72	500.0 500.0	<u>1000.000</u> 1000.000	143.0	H	-3.0	0.2 8.5	
13160.750	53.82	40.20	73.98	20.16	500.0	1000.000	107.0	н	-3.0	8.5	
16845.250	53.70		73.98	20.28	500.0	1000.000	161.0	V	44.0	14.4	
16845.250		41.35	53.98	12.62	500.0	1000.000	161.0	v	44.0	14.4	
_evel in dBμV/m	90 80 70 60 50				E2 Harmol				FCC 15	15.209 PK a	<u>t-3m</u>
Lev	40		andra <mark>a a a a a a a a a a a a a a a a a a </mark>					مىرىر كاللىلەر		ne drafa i	
	30										
	20										
	10										
	0										
	3G		5G	6	7	8 9	10G				18G
				-	Freque	ency in Hz					
,		esult 2-AVG 9 AVG at 3r		Preview F Final Res		⊃K+			9 PK at 3m It CAV		

8.3 AC Power Line Conducted Emissions

8.3.1 Measurement according to ANSI C63.4

Analyzer Settings:

- RBW = 9 KHz (CISPR Bandwidth)
- Detector: Peak / Average for Pre-scan
- Quasi-Peak/Average for Final Measurements

8.3.2 Limits: §15.207 & RSS-Gen 8.8

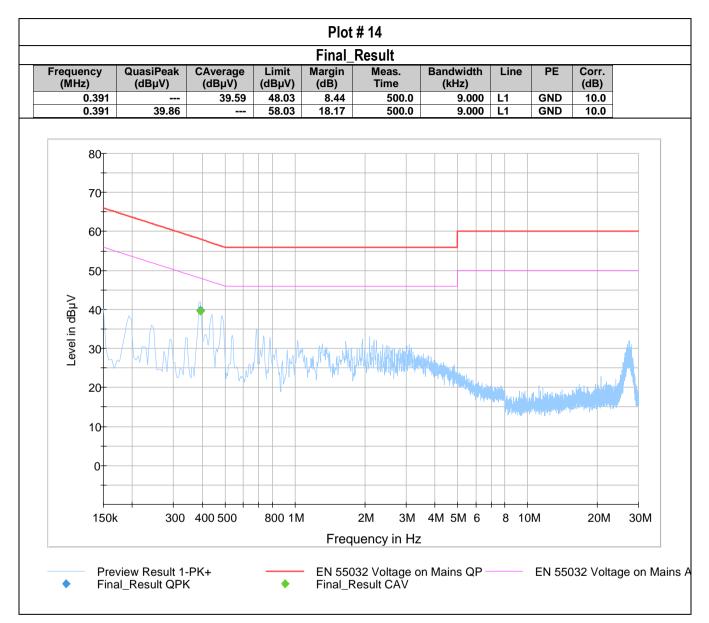
FCC §15.207(a) & RSS-Gen 8.8

Except as shown in paragraphs (b) and (c) of this section of the CFR, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table (1), as measured using a 50 µH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between frequency ranges.

Frequency of emission (MHz)	Conducted limit (dBµV)		
	Quasi-peak	Average 56 to 46* 46	
0.15–0.5	66 to 56*	56 to 46*	
0.5–5	56	46	
5–30	60	50	

*Decreases with the logarithm of the frequency.

8.3.3 Test conditions and setup:


Ambient Temperature (C)	Power line (L1, L2, L3, N)	Power Input
22	Line & Neutral	120V / 60 Hz

8.3.4 Measurement Result:

Plot #	ot # Port EUT Set-Up #:		EUT operating mode	Scan Frequency	Result
14	AC Mains	2	Op. 2	150 kHz – 30 MHz	Pass

8.3.5 Measurement Plots:

9 Test setup photos

Setup photos are included in supporting file name: "EMC_ITRO1_049_21001_FCC_ISED_ATT_Setup_Photos.pdf"

10 Test Equipment And Ancillaries Used For Testing

Equipment Name/Type	Manufacturer	Model	Serial #	Calibration Cycle	Last Calibration Date
Active Loop Antenna	ETS Lindgren	6507	161344	2 Years	10/30/2020
Biconilog Antenna	ETS Lindgren	3142E	166067	2 Years	03/12/2020
Horn Antenna	ETS Lindgren	3115	35114	2 Years	10/10/2020
Horn Antenna	ETS Lindgren	3117-PA	215984	2 Years	01/31/2021
Horn Antenna	ETS Lindgren	3116	00070497	2 Years	11/23/2020
Spectrum Analyzer	R&S	ESU40	100251	2 Years	09/13/2021
LISN	FCC	FCC-LISN-50-25-2-08	08014	2 Years	08/31/2021
Thermometer Humidity Monitor	Dickson	TM320	5280063	2 Years	11/02/2020

Note:

1. Equipment used meets the measurement uncertainty requirements as required per applicable standards for 95% confidence levels.

Calibration due dates, unless defined specifically, falls on the last day of the month. Items indicated "N/A" for cal status either do not specifically require calibration or is internally characterized before use.

Test Report #:	EMC_ITRO1_049_21001_FCC_15.2	47_DTS_ATT_Rev1	FCC ID: OWS-NIC511-LTE	Celecom
Date of Report	2021-11-05	Page 33 of 33	IC ID: 5975A-NIC511LTE	

11 <u>History</u>

Date	Template Revision	Changes to report	Prepared by
2021-09-30	EMC_ITRO1_049_21001_FCC_15.247_DTS_ATT	Initial Version	Issa W Ghanma
2021-11-05	EMC_ITRO1_049_21001_FCC_15.247_DTS_ATT_Rev1	 Section 1: Add client declaration Section 3.1: Replace "Max. declared output Powers" with "Measured Peak output powers" Section 3.2: Add EUT Sample details for the EUT used for RF conducted output power measurement. (EUT#1) Section 3.3: Add Mode of operation details for the EUT used for RF conducted output power measurement. (Op.1) Section 3.4: Add Test Sample configuration for the EUT used for RF conducted output power. (EUT Set-up # 1) Section 3.5: Add Low, and High channels to the statement. Section 5: 	Issa W Ghanma

<<< The End >>>