

Test of: MicroAP 5 To: FCC CFR 47 Part 15.247 (DTS) & IC RSS-247 (2400 – 2483.5 MHz)

Report No.: SSNT135-U3_Conducted Rev A

TEST REPORT ADDENDUM - CONDUCTED

Issue Date: 1st February 2017

Master Document Number	Addendum Reports		
SSNT125 LI2 Montor	SSNT135-U3_Conducted		
SSNT135-U3_Master	SSNT135-U3_Radiated		

This report is only valid in conjunction with the reports listed in the above table. Together these reports address the requirements for the type of device operating under the standard as listed.

Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:2 of 50

Table of Contents

1. MEASUREMENT AND PRESENTATION OF TEST DATA	3
2. TEST RESULTS	
2.1. 6 dB & 99% Bandwidth	4
2.2. Conducted Output Power	
2.3. Power Spectral Density	11
2.4. Emissions	
2.4.1. Conducted Emissions	14
2.4.1.1. Conducted Spurious Emissions	14
2.4.1.2. Conducted Band-Edge Emissions	17
Conducted Low Band-Edge Emissions	17
Conducted High Band-Edge Emissions	19
A. APPENDIX - GRAPHICAL IMAGES	21
A.1. 6 dB & 99% Bandwidth	
A.2. Power Spectral Density	28
A.3. Emissions	40
A.3.1. Conducted Emissions	
A.3.1.1. Conducted Spurious Emissions	40
A.3.1.2. Conducted Band-Edge Emissions	46
Conducted Low Band-Edge Emissions	46
Conducted High Band-Edge Emissions	48

Serial #: Page:

Title: Silver Spring Networks MicroAP 5 To: FCC CFR 47 Part 15.247 (DTS) & IC RSS-247 SSNT135-U3 Conducted Rev A **Issue Date:** 1st February 2017 3 of 50

1. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by MiTest. MiTest is an automated test system developed by MiCOM Labs. MiTest is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:4 of 50

2. TEST RESULTS

2.1. 6 dB & 99% Bandwidth

Conducted Test Conditions for 6 dB and 99% Bandwidth						
Standard:	FCC CFR 47:15.247	CC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5				
Test Heading:	6 dB and 99 % Bandwidth	32 - 45				
Standard Section(s):	15.247 (a)(2) Pressure (mBars): 999 - 1001					
Reference Document(s):	See Normative References					

Test Procedure for 6 dB and 99% Bandwidth Measurement

The bandwidth at 6 dB and 99 % was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits for 6 dB and 99% Bandwidth

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(2) Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	2.4 Mbps	Duty Cycle (%):	99
Data Rate:	2.40 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:	None		

Test Measurement Results

Test	M	easured 6 dB I	Bandwidth (MH	łz)	6 dB Bandy	width (MHz)	Limit	Lowest
Frequency		Poi	Port(s)			6 dB Bandwidth (MHz)		
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
2401.2	<u>1.098</u>				1.098	1.098	≥500.0	-0.60
2440.8	<u>1.089</u>				1.089	1.089	≥500.0	-0.59
2476.8	<u>1.107</u>				1.107	1.107	≥500.0	-0.61

Test		Measured 99% E	Bandwidth (MHz)	Maximum 99%	
Frequency		Port(s)				
MHz	а	b	С	d	Bandwidth (MHz)	
2401.2	<u>1.327</u>				1.327	
2440.8	<u>1.331</u>				1.331	
2476.8	<u>1.309</u>				1.309	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	: WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	250 kbps OQPSK	Duty Cycle (%):	99
Data Rate:	250.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:	None		

Test Measurement Results

Test	M	easured 6 dB I	Bandwidth (MH	łz)	6 dB Bandy	width (MHz)	Limit	Lowest
Frequency		Poi	rt(s)				Linin	Margin
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
2405.0	<u>1.610</u>				1.610	1.610	≥500.0	-1.11
2440.0	<u>1.603</u>				1.603	1.603	≥500.0	-1.10
2480.0	<u>1.590</u>				1.590	1.590	≥500.0	-1.09

Test	Measured 99% Bandwidth (MHz) Maximum 99%					
Frequency		Port(s)				
MHz	а	b	С	d	Bandwidth (MHz)	
2405.0	<u>2.212</u>				2.212	
2440.0	<u>2.212</u>				2.212	
2480.0	<u>2.212</u>				2.212	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

2.2. Conducted Output Power

Co	nducted Test Conditions for Fu	ndamental Emission Output Pov	ver
Standard:	FCC CFR 47:15.247	Ambient Temp. (ºC):	24.0 - 27.5
Test Heading:	Output Power	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.247 (b) & (c)	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		
In the case of average power me	Emission Output Power Measurer asurements an average power ser	nsor was utilized.	
For peak power measurements the bandwidth.	he spectrum analyzer built-in powe	er function was used to integrate p	eak power over the 20 dB
	bient conditions at nominal voltage asured, summed (Σ) and reported.		d with multiple antenna ports i.e
Test configuration and setup use Supporting Information Calculated Power = A + G + Y+ 1	d for the measurement was per the	e Conducted Test Set-up specified	d in this document.
A = Total Power [10*Log10 (10 ^{a/1} G = Antenna Gain Y = Beamforming Gain x = Duty Cycle (average power m	,- ,-		
Limits for Fundamental Emissi (b) The maximum peak conducte systems:	on Output Power d output power of the intentional ra	adiator shall not exceed the follow	ing for non-frequency hopping
power measurement, comp power. Maximum Conducte elements averaged across level. Power must be summ during which the transmitter	al modulation in the 902-928 MHz a liance with the one Watt limit can led Output Power is defined as the f all symbols in the signaling alphab hed across all antennas and anten r is off or is transmitting at a reduc hods), the maximum conducted ou	be based on a measurement of the total transmit power delivered to a et when the transmitter is operatin na elements. The average must no ed power level. If multiple modes of	e maximum conducted output Il antennas and antenna Ig at its maximum power control ot include any time intervals of operation are possible (e.g.,
gains that do not exceed 6 greater than 6 dBi are used	ower limit specified in paragraph (I dBi. Except as shown in paragraph I, the conducted output power from section, as appropriate, by the am	n (c) of this section, if transmitting the intentional radiator shall be re	antennas of directional gain educed below the stated values
employ transmitting a		er than 6 dBi provided the maximu	um conducted output power of
multipoint systems, or information. The oper	nt operation, as used in paragraph nnidirectional applications, and mu ator of the spread spectrum or dig d, the installer is responsible for er	ultiple co-located intentional radiational radiation to the second state of the second	ors transmitting the same r or, if the equipment is

personnel. All changes will be noted in the Document History section of the report.

Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:8 of 50

operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

(2) In addition to the provisions in paragraphs (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:

(i) Different information must be transmitted to each receiver.

(ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:

(A) The directional gain shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.

(B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.

(iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section and the provent of the power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB.

(iv) Transmitters that emit a single directional beam shall operate under the provisions of paragraph (c)(1) of this section.

Equipment Configuration for Peak Output Power

Variant:	2.4 Mbps	Duty Cycle (%):	99.0
Data Rate:	2.40 MBit/s	Antenna Gain (dBi):	0.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:	None		

Test Measurement Results

Test	N	leasured Outp	ut Power (dBn	n)	Calculated Total Power	Limit	Margin	
Frequency		Port(s)			Σ Port(s)	Liiiit	Maryin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	3
2401.2	27.16				27.16	30.00	-2.84	18.00
2440.8	27.14				27.14	30.00	-2.86	18.00
2476.8	26.79				26.79	30.00	-3.21	18.00

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-01 MEASURING RF OUTPUT POWER

 Measurement Uncertainty:
 ±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Equipment Configuration for Peak Output Power

Variant:	250 kbps OQPSK	Duty Cycle (%):	99.0
Data Rate:	250.00 KBit/s	Antenna Gain (dBi):	0.00
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:	None		

Test Measurement Results

Test	N	leasured Outp	ut Power (dBn	n)	Calculated Total Power	Limit	Morrin	
Frequency		Por	rt(s)		Σ Port(s)	Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	
2405.0	24.58				24.58	30.00	-5.42	15.00
2440.0	24.16				24.16	30.00	-5.84	15.00
2480.0	4.21				4.21	30.00	-25.79	10.00

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-01 MEASURING RF OUTPUT POWER

 Measurement Uncertainty:
 ±1.33 dB

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

2.3. Power Spectral Density

Conducted Test Conditions for Power Spectral Density						
Standard:	CC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5					
Test Heading:	Power Spectral Density	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.247 (e)	15.247 (e) Pressure (mBars): 999 - 1001				
Reference Document(s):	See Normative References					

Test Procedure for Power Spectral Density

The transmitter output was connected to a spectrum analyzer and the measured made in a 3 kHz resolution bandwidth using the analyzer auto-coupled sweep-time. A peak value was found over the full emission bandwidth and the spectrum downloaded for post processing purposes.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. The Peak Power Spectral Density is the highest level found across the emission bandwidth. With multiple antenna port measurements the numerical analyzer data from each port is summed (å) and a link to this additional graphic is provided.

Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Measure and sum the spectra across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs. Consistency is maintained for any device with multiple transmitter outputs to be certain the individual outputs are all aligned with the same span and same number of points. In this instance, the linear power spectrum value within the first spectral bin of output 0 is summed with that in the first spectral bin of output 1, and the first spectral bin of output 2, and so on up to the Nth output to obtain the true value for the first frequency bin of the summed spectrum. The summed spectrum value for each frequency bin is computed in this fashion. These summed spectral values were post processed and the resulting numerical and graphical data presented.

NOTE:

It may be observed that the spectrum in some antenna port plots break the limit line however this in itself does NOT constitute a failure. In all cases a spectrum summation plot is provided in order to prove compliance. A failure occurs only after the summation of all spectrum plots have been summed and are found to be greater than the limit line.

Supporting Information

Calculated Power = A + 10 log (1/x) dBm A = Total Power Spectral Density [10 Log10 ($10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10}$)] x = Duty Cycle

Limits Power Spectral Density

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Equipment	Configuration	for Dowor	Spectral	Doneity - Poak
Equipment	Conliguration	for Power	Spectral	Density - Peak

Variant:	2.4 Mbps	Duty Cycle (%):	99.0
Data Rate:	2.40 MBit/s	Antenna Gain (dBi):	0.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	СС
Engineering Test Notes:	None		

Test Measurement Results							
Test	Ν		red Power Spectral Density			Limit	Margin
Frequency		Port(s) (d	Bm/3KHz)		Summation		
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB
2401.2	<u>6.569</u>				<u>6.569</u>	8.0	-1.4
2440.8	<u>5.782</u>				<u>5.782</u>	8.0	-2.2
2476.8	<u>4.131</u>				<u>4.131</u>	8.0	-3.9

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Power Spectral Density - Peak

Variant:	250 kbps OQPSK	Duty Cycle (%):	99.0
Data Rate:	250.00 KBit/s	Antenna Gain (dBi):	0.00
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:	None		

Test Measurement Results

Test	N	Measured Power Spectral Density				Amplitude		
Frequency		Port(s) (d	Bm/3KHz)	Summation Limit Margin				
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB	
2405.0	<u>6.799</u>				<u>6.799</u>	8.0	-1.2	
2440.0	<u>6.856</u>				<u>6.856</u>	8.0	-1.1	
2480.0	<u>-15.111</u>				<u>-15.111</u>	8.0	-23.1	

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-03 MEASURING RF SPECTRUM MASK

 Measurement Uncertainty:
 ±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:14 of 50

2.4. Emissions

2.4.1. Conducted Emissions

2.4.1.1. Conducted Spurious Emissions

Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions						
Standard:	CC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5					
Test Heading:	Max Unwanted Emission Levels	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.247 (d)	15.247 (d) Pressure (mBars): 999 - 1001				
Reference Document(s):	See Normative References					

Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

Transmitter Conducted Spurious and Band-Edge emissions were measured at a limit of 30 dBc (average detector) or 20 dBc (peak detector) below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in transmit mode of operation at the appropriate centre frequency closest to the band-edge. Emissions were maximized during the measurement and limits derived from the peak spectral power and drawn on each plot.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits Transmitter Conducted Spurious and Band-Edge Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Equipment Configuration fo	r Transmitter Conduct	ed Sourious Emissions

Variant:	2.4 Mbps	Duty Cycle (%):	99
Data Rate:	2.40 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:	None		

Test Measurement Results

Frequency		Transmitter Conducted Spurious Emissions (dBm)						
Range	P	Port a Port b		Po	rt c	Po	rt d	
MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
30.0 - 26000.0	<u>-40.453</u>	-1.00						
30.0 - 26000.0	<u>-39.717</u>	-2.00						
30.0 - 26000.0	<u>-40.028</u>	-2.00						
3	MHz 30.0 - 26000.0 30.0 - 26000.0	MHz SE 30.0 - 26000.0 -40.453 30.0 - 26000.0 -39.717	MHz SE Limit 30.0 - 26000.0 -40.453 -1.00 30.0 - 26000.0 -39.717 -2.00	MHz SE Limit SE 30.0 - 26000.0 -40.453 -1.00 30.0 - 26000.0 -39.717 -2.00	MHz SE Limit SE Limit 30.0 - 26000.0 -40.453 -1.00 30.0 - 26000.0 -39.717 -2.00	MHz SE Limit SE Limit SE 30.0 - 26000.0 -40.453 -1.00 30.0 - 26000.0 -39.717 -2.00	MHz SE Limit SE Limi	MHz SE Limit SE Limit SE Limit SE 30.0 - 26000.0 -40.453 -1.00

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Confid	uration for Trans	mitter Conduct	ted Spurious	s Emissions

Variant:	250 kbps OQPSK	Duty Cycle (%):	99
Data Rate:	250.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OQPSK	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:	None		

Test Measurement Results

Test	Frequency		Transmitter Conducted Spurious Emissions (dBm)							
Frequency	Range	Port a		ta Port b		Po	rt c	Po	rt d	
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit	
2405.0	30.0 - 26000.0	<u>-40.388</u>	-1.00							
2440.0	30.0 - 26000.0	<u>-40.362</u>	-2.00							
2480.0	30.0 - 26000.0	<u>-40.014</u>	-22.00							

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Note: click the links in the above matrix to view the graphical image (plot).

2.4.1.2. Conducted Band-Edge Emissions

Conducted Low Band-Edge Emissions

Equipment Configuration for Conducted Low Band-Edge Emissions - Peak

Variant:	2.4 Mbps	Duty Cycle (%):	99.0
Data Rate:	2.40 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	СС
Engineering Test Notes:	None		

Test Measurement Results

Channel	2401.2 MHz					
Frequency:	2401.2 101112					
Band-Edge	2400.0 MHz					
Frequency:	2400.0 10112					
Test Frequency Range:	2350.0 - 2405.0 MHz					
	Band	Edge Markers and	Limit	Revise	ed Limit	Margin
Port(s)	M1 Amplitude (dBm) Plot Limit (dBm) M2 Frequency (MHz) (dBm) (M2 Frequency (MHz) (dBm) (M2 Frequency (MHz) (M2 Frequency) (M2 Frequency (MHz) (M2 Frequency) (M2 Frequ					(MHz)
а	<u>-2.10</u>	2.00	2400.40			-0.400

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS			
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Conducted Low Band-Edge Emissions - Peak

Variant:	250 kbps OQPSK	Duty Cycle (%):	99.0
Data Rate:	250.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	СС
Engineering Test Notes:	None		

Test Measurement Results

Channel	2405.0 MHz					
Frequency:	2403.0 101112					
Band-Edge	2400.0 MHz					
Frequency:	2400.0 101112					
Test Frequency Range:	2350.0 - 2405.0 MHz					
	Band	Band-Edge Markers and Limit Revised Limit Margin				
Port(s)	M1 Amplitude (dBm) Plot Limit (dBm) M2 Frequency (MHz) Amplitude (dBm) M2A Frequency (MHz) (MHz)			(MHz)		
а	<u>-33.53</u>	-1.00	2403.70			-3.700

Traceability to Industry Recognized Test Methodologies		
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS	
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB	

Note: click the links in the above matrix to view the graphical image (plot).

Conducted High Band-Edge Emissions

Equipment Configuration for Cor	ducted High Band-Edge Emissions - Peak

Variant:	2.4 Mbps	Duty Cycle (%):	99.0
Data Rate:	2.40 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:	None		

Test Measurement Results

Channel Frequency:	2476.8 MHz					
Band-Edge Frequency:	2483.5 MHz	2483.5 MHz				
Test Frequency Range:	2470.0 - 2533.0 M	2470.0 - 2533.0 MHz				
	Band-Edge Markers and Limit Revised Limit Margin					
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
Port(s)	M3 Amplitude			Amplitude	M2A Frequency	

Traceability to industry Recognized Test Methodologies			
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS		
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB		

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Conducted High Band-Edge Emissions - Peak

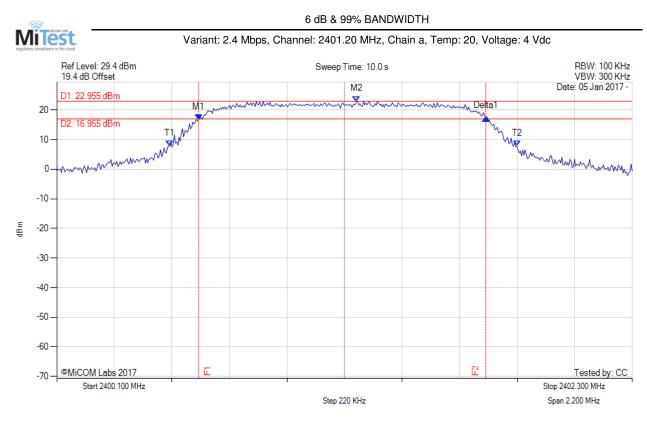
Variant:	250 kbps OQPSK	Duty Cycle (%):	99.0
Data Rate:	250.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	СС
Engineering Test Notes:	None		

Test Measurement Results

Channel	2480.0 MHz					
Frequency:						
Band-Edge Frequency:	2483.5 MHz	2483 5 MHz				
Test Frequency Range:	2470.0 - 2533.0 MHz					
	Band	Band-Edge Markers and Limit Revised Limit Margin			Margin	
Port(s)	M3 Amplitude (dBm) Plot Limit (dBm) M2 Frequency (MHz) Amplitude (dBm) M2A Frequency (MHz)			(MHz)		
а	<u>-46.15</u>	-21.00	2481.20			-2.300

Traceability to Industry Recognized Test Methodologies		
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS	
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB	

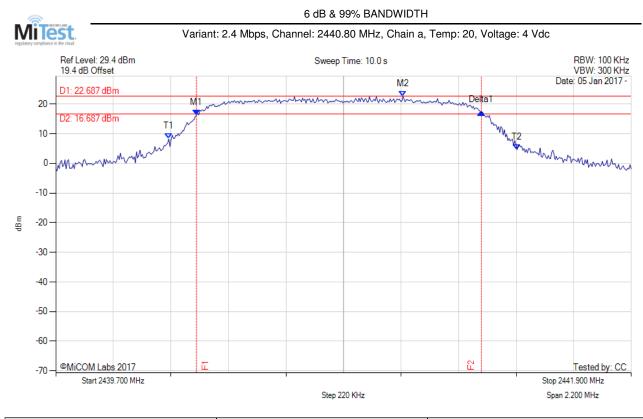
Note: click the links in the above matrix to view the graphical image (plot).


Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:21 of 50

A. APPENDIX - GRAPHICAL IMAGES

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

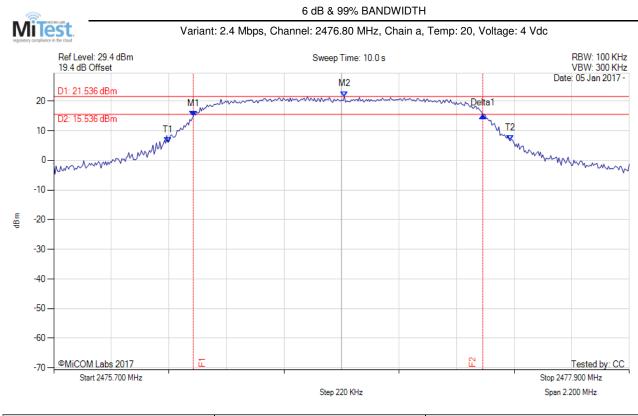
A.1. 6 dB & 99% Bandwidth


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 2400.642 MHz : 16.709 dBm M2 : 2401.246 MHz : 22.955 dBm Delta1 : 1.098 MHz : 0.466 dB T1 : 2400.532 MHz : 7.814 dBm T2 : 2401.859 MHz : 7.777 dBm OBW : 1.327 MHz	Measured 6 dB Bandwidth: 1.098 MHz Limit: ≥500.0 kHz Margin: -0.60 MHz

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

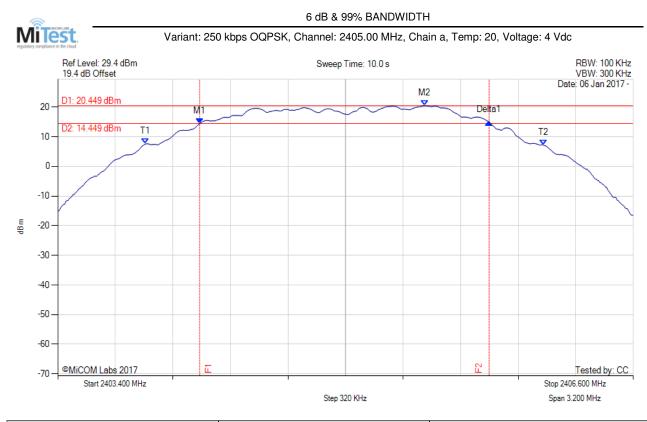
Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:23 of 50



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 2440.238 MHz : 16.268 dBm M2 : 2441.027 MHz : 22.687 dBm Delta1 : 1.089 MHz : 0.877 dB T1 : 2440.132 MHz : 8.243 dBm T2 : 2441.464 MHz : 4.607 dBm OBW : 1.331 MHz	Measured 6 dB Bandwidth: 1.089 MHz Limit: ≥500.0 kHz Margin: -0.59 MHz

back to matrix

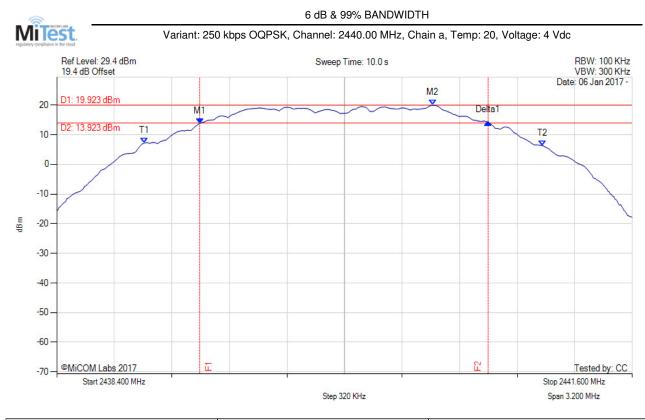
Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:24 of 50



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 2476.233 MHz : 14.859 dBm M2 : 2476.811 MHz : 21.536 dBm Delta1 : 1.107 MHz : 0.181 dB T1 : 2476.136 MHz : 6.093 dBm T2 : 2477.446 MHz : 6.606 dBm OBW : 1.309 MHz	Measured 6 dB Bandwidth: 1.107 MHz Limit: ≥500.0 kHz Margin: -0.61 MHz

back to matrix

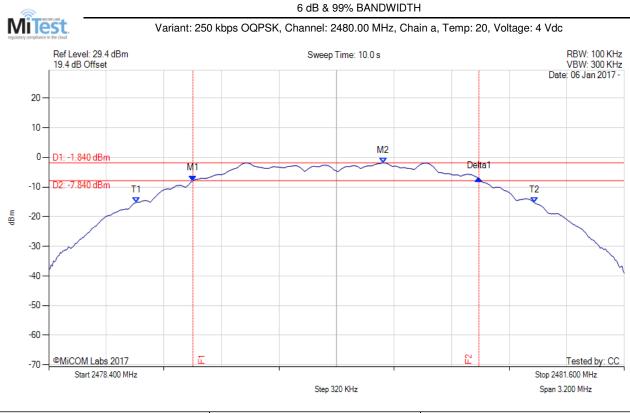
Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:25 of 50



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1 : 2404.189 MHz : 14.360 dBm M2 : 2405.439 MHz : 20.449 dBm Delta1 : 1.610 MHz : 0.551 dB T1 : 2403.887 MHz : 7.541 dBm T2 : 2406.100 MHz : 7.212 dBm OBW : 2.212 MHz	Measured 6 dB Bandwidth: 1.610 MHz Limit: ≥500.0 kHz Margin: -1.11 MHz

back to matrix

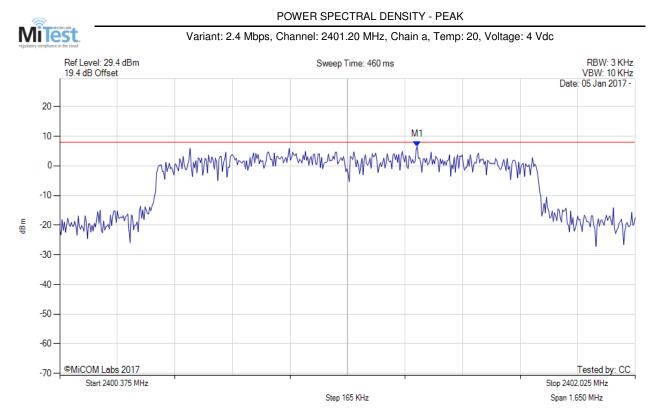
Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:26 of 50



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2439.195 MHz : 13.801 dBm	Measured 6 dB Bandwidth: 1.603 MHz
Sweep Count = 0	M2 : 2440.491 MHz : 19.923 dBm	Limit: ≥500.0 kHz
RF Atten (dB) = 20	Delta1 : 1.603 MHz : 0.407 dB	Margin: -1.10 MHz
Trace Mode = MAX HOLD	T1 : 2438.887 MHz : 7.185 dBm	
	T2 : 2441.100 MHz : 6.305 dBm	
	OBW : 2.212 MHz	

back to matrix

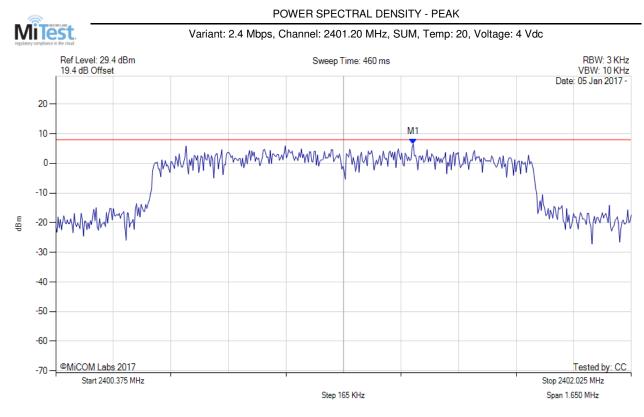
Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:27 of 50



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 2479.202 MHz : -7.915 dBm M2 : 2480.260 MHz : -1.844 dBm Delta1 : 1.590 MHz : 0.763 dB T1 : 2478.887 MHz : -15.222 dBm T2 : 2481.100 MHz : -15.259 dBm OBW : 2.212 MHz	Measured 6 dB Bandwidth: 1.590 MHz Limit: ≥500.0 kHz Margin: -1.09 MHz

back to matrix

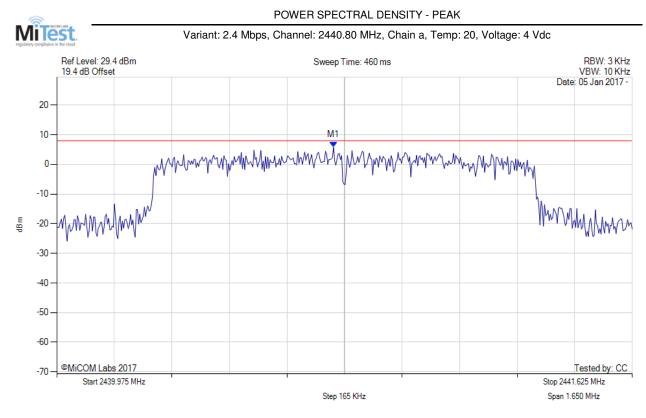
A.2. Power Spectral Density



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0	M1 : 2401.400 MHz : 6.569 dBm	Limit: ≤ 8.000 dBm Margin: -1.43 dB
RF Atten (dB) = 20		Margin 1.45 db
Trace Mode = VIEW		

back to matrix

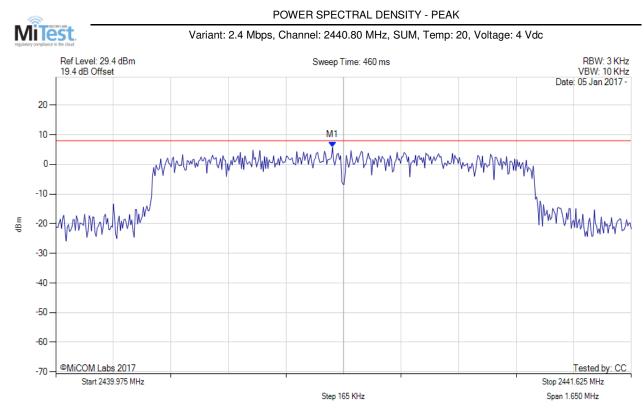
Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:29 of 50



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2401.400 MHz : 6.569 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0		Margin: -1.4 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

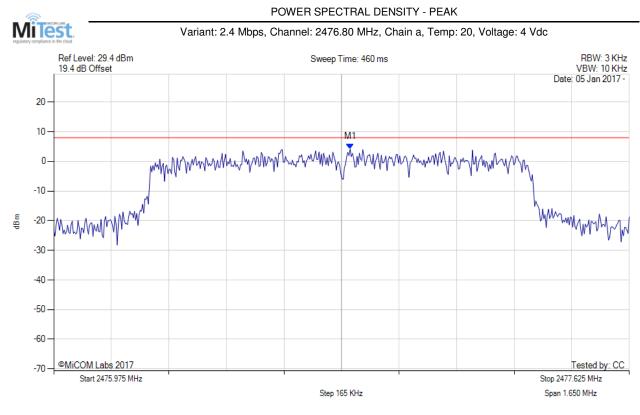
Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:30 of 50


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2440.769 MHz : 5.782 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		Margin: -2.22 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

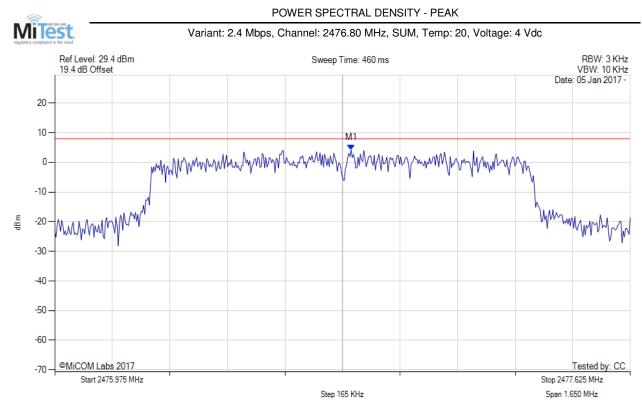
Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:31 of 50



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2440.769 MHz : 5.782 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0		Margin: -2.2 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:32 of 50



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2476.825 MHz : 4.131 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		Margin: -3.87 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

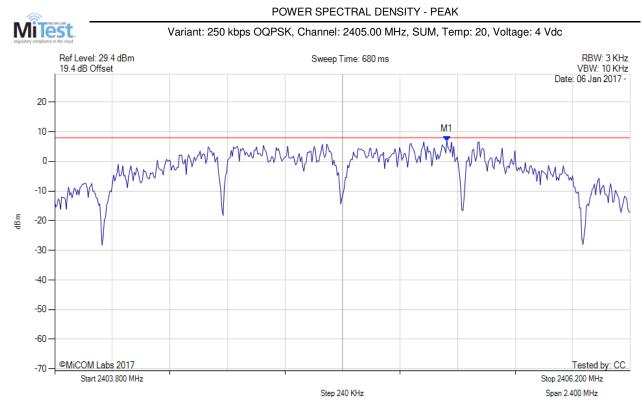
Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:33 of 50

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2476.825 MHz : 4.131 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0		Margin: -3.9 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

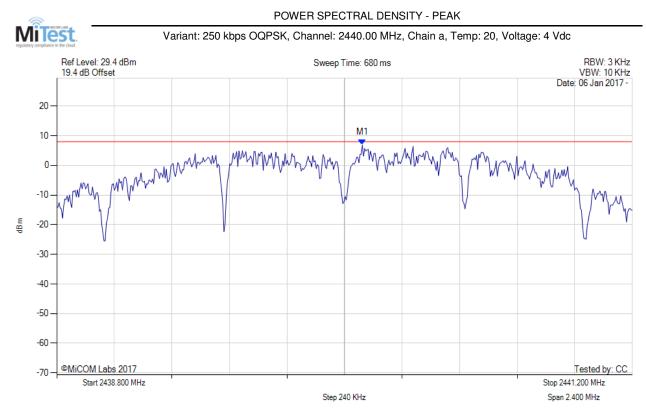
Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:34 of 50


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2405.435 MHz : 6.799 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0 RF Atten (dB) = 20		Margin: -1.20 dB
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

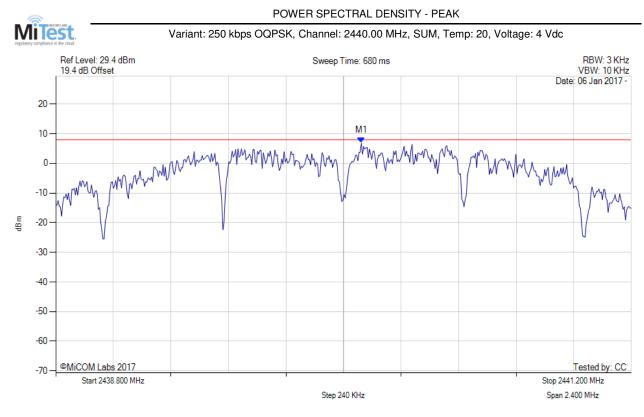
Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:35 of 50


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW		Limit: ≤ 8.0 dBm Margin: -1.2 dB

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

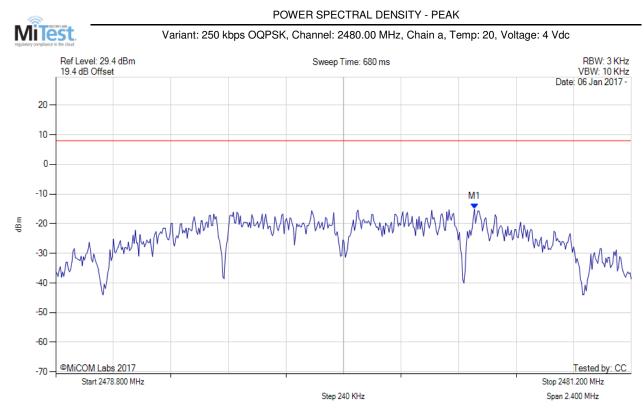
Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:36 of 50


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2440.075 MHz : 6.856 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		Margin: -1.14 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

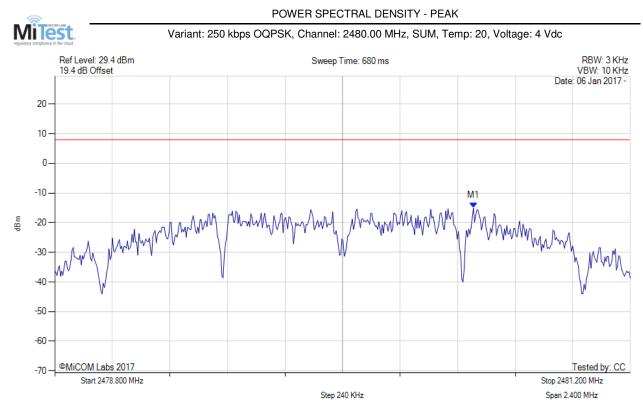
Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:37 of 50


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2440.075 MHz : 6.856 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0		Margin: -1.1 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:38 of 50


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2480.546 MHz : -15.111 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		Margin: 23.11 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

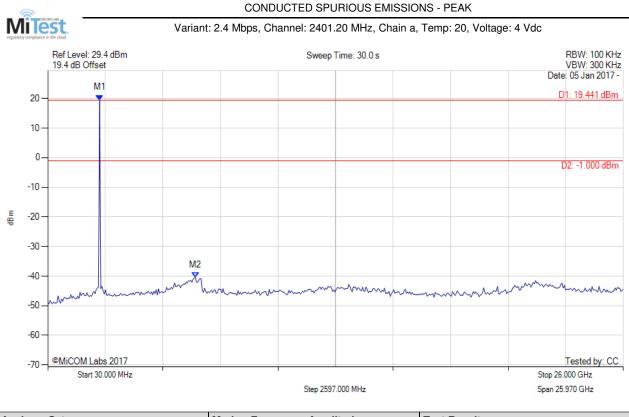
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:39 of 50

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW		Limit: ≤ 8.0 dBm Margin: -23.1 dB

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

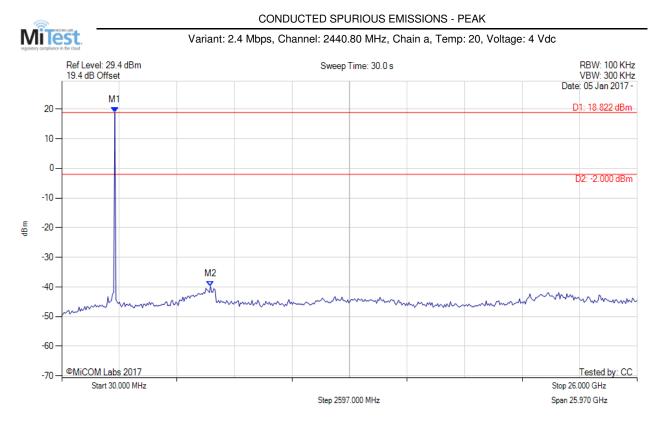


Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:40 of 50

A.3. Emissions

A.3.1. Conducted Emissions

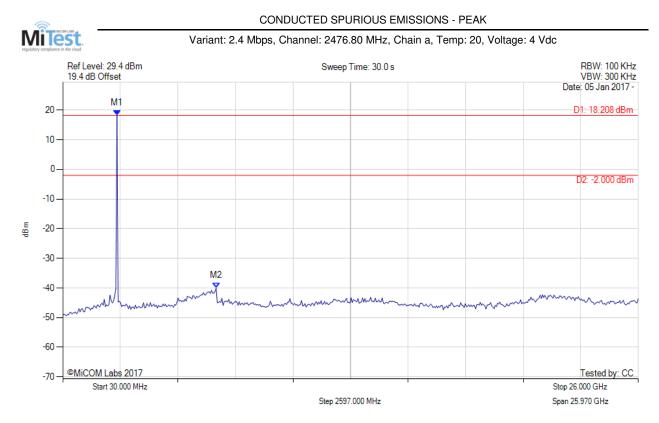
A.3.1.1. Conducted Spurious Emissions


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2371.984 MHz : 19.441 dBm	Limit: -1.00 dBm
Sweep Count = 0	M2 : 6691.643 MHz : -40.453 dBm	Margin: -39.45 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

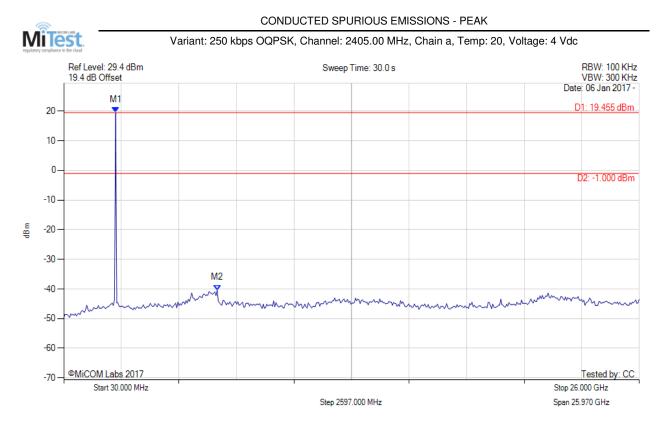
Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:41 of 50


Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = MAX PEAK	M1 : 2424.028 MHz : 18.822 dBm	Limit: -2.00 dBm	
Sweep Count = 0	M2 : 6743.687 MHz : -39.717 dBm	Margin: -37.72 dB	
RF Atten (dB) = 20			
Trace Mode = VIEW			

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

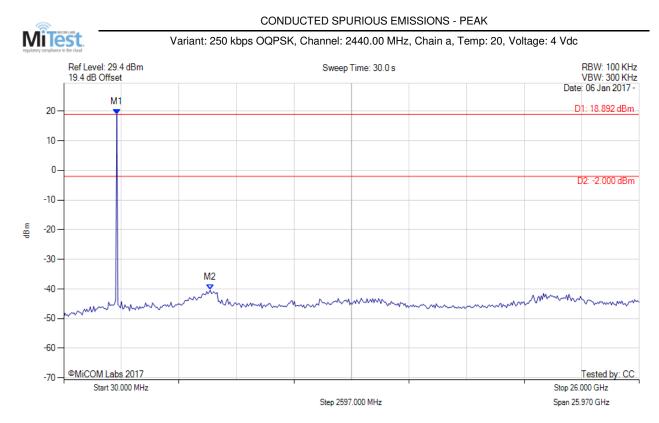
Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:42 of 50


Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = MAX PEAK	M1 : 2476.072 MHz : 18.208 dBm	Limit: -2.00 dBm	
Sweep Count = 0	M2 : 6951.864 MHz : -40.028 dBm	Margin: -38.03 dB	
RF Atten (dB) = 20			
Trace Mode = VIEW			

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

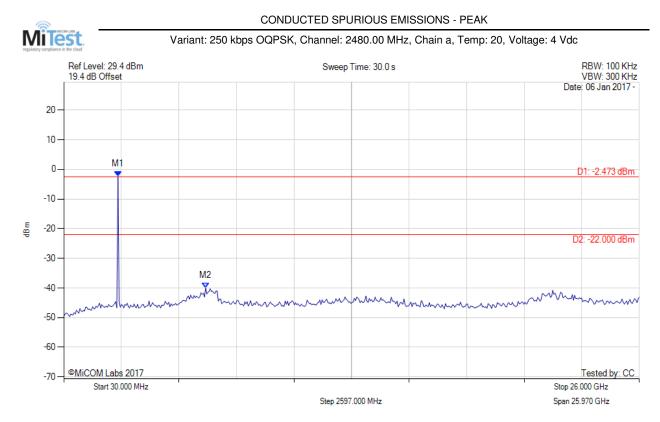
Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:43 of 50


Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = MAX PEAK	M1 : 2371.984 MHz : 19.455 dBm	Limit: -1.00 dBm	
Sweep Count = 0	M2 : 6951.864 MHz : -40.388 dBm	Margin: -39.39 dB	
RF Atten (dB) = 20		-	
Trace Mode = VIEW			

back to matrix

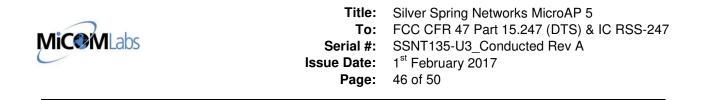
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:44 of 50

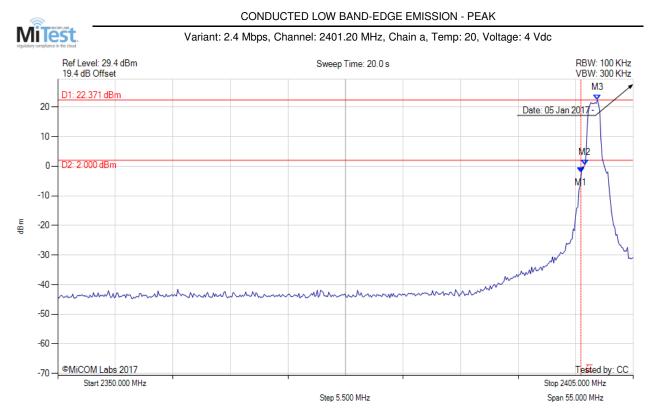

Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = MAX PEAK	M1 : 2424.028 MHz : 18.892 dBm	Limit: -2.00 dBm	
Sweep Count = 0	M2 : 6639.599 MHz : -40.362 dBm	Margin: -38.36 dB	
RF Atten (dB) = 20			
Trace Mode = VIEW			

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:45 of 50

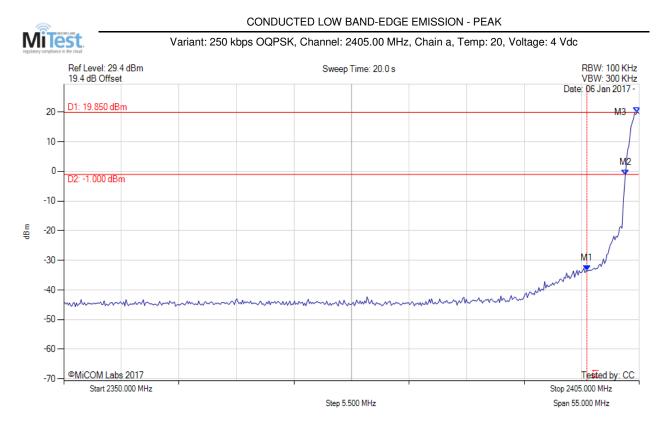
Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = MAX PEAK	M1 : 2476.072 MHz : -2.473 dBm	Limit: -22.00 dBm	
Sweep Count = 0	M2 : 6431.423 MHz : -40.014 dBm	Margin: -18.01 dB	
RF Atten (dB) = 20			
Trace Mode = VIEW			


back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

A.3.1.2. Conducted Band-Edge Emissions

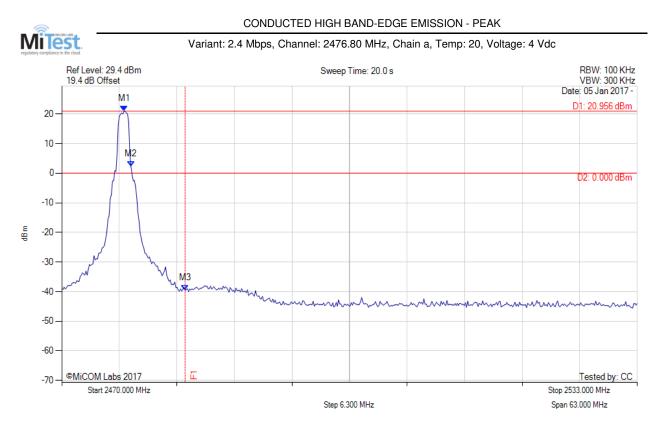
Conducted Low Band-Edge Emissions


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2400.000 MHz : -2.103 dBm	Channel Frequency: 2401.20 MHz
Sweep Count = 0	M2 : 2400.371 MHz : 0.482 dBm	
RF Atten (dB) = 20	M3 : 2401.583 MHz : 22.371 dBm	
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

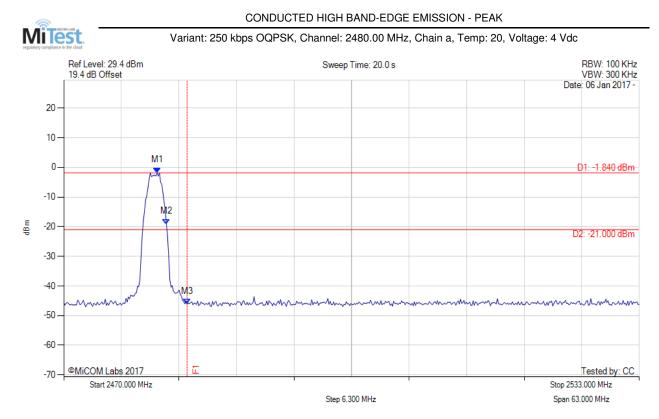
Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:47 of 50


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2400.000 MHz : -33.528 dBm	Channel Frequency: 2405.00 MHz
Sweep Count = 0	M2 : 2403.677 MHz : -1.153 dBm	
RF Atten (dB) = 20	M3 : 2404.780 MHz : 19.850 dBm	
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Conducted High Band-Edge Emissions


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2476.818 MHz : 20.956 dBm	Channel Frequency: 2476.80 MHz
Sweep Count = 0	M2 : 2477.575 MHz : 2.199 dBm	
RF Atten (dB) = 20	M3 : 2483.500 MHz : -39.501 dBm	
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:Silver Spring Networks MicroAP 5To:FCC CFR 47 Part 15.247 (DTS) & IC RSS-247Serial #:SSNT135-U3_Conducted Rev AIssue Date:1st February 2017Page:49 of 50

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2480.226 MHz : -1.840 dBm	Channel Frequency: 2480.00 MHz
Sweep Count = 0	M2 : 2481.236 MHz : -19.111 dBm	
RF Atten (dB) = 20	M3 : 2483.500 MHz : -46.146 dBm	
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

575 Boulder Court Pleasanton, California 94566, USA Tel: +1 (925) 462 0304 Fax: +1 (925) 462 0306 www.micomlabs.com