

ADDENDUM COMPLIANCE TEST REPORT

FCC CFR 47 Part 15 Subpart C 15.247 & ISED RSS-247

Report No.: ITRO51-U5 Rev A

Company: Itron Networked Solutions, Inc.

Model: NIC 511-0603

ADDENDUM COMPLIANCE TEST REPORT

Company Name: Itron Networked Solutions, Inc.

Model Name: NIC 511-0603

To: FCC CFR 47 Part 15 Subpart C 15.247 & ISED RSS-247

Test Report Serial No.: ITRO51-U5 Rev A

Originally tested under program: ITRO01-U2 Rev A (May 2018), see Document History

This report supersedes: NONE

Applicant: Itron Networked Solutions, Inc. 230 W Tasman Dr. San Jose, California 95134 USA

Issue Date: 11th January 2023

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Table of Contents

1. ACCREDITATION, LISTINGS & RECOGNITION	4
1.1. TESTING ACCREDITATION	4
1.2. RECOGNITION	5
1.3. PRODUCT CERTIFICATION	6
2. DOCUMENT HISTORY	7
3. TEST RESULT CERTIFICATE	8
4. REFERENCES AND MEASUREMENT UNCERTAINTY	9
4.1. Normative References	9
4.2. Test and Uncertainty Procedure	. 10
5. PRODUCT DETAILS AND TEST CONFIGURATIONS	. 11
5.1. Technical Details	. 11
5.2. Scope Of Test Program	. 12
5.3. Equipment Model(s) and Serial Number(s)	. 13
5.4. Antenna Details	. 13
5.5. Cabling and I/O Ports	. 13
5.6. Test Configurations	. 13
5.7. Equipment Modifications	. 14
5.8. Deviations from the Test Standard	. 14
6. TEST SUMMARY	.15
7. TEST EQUIPMENT CONFIGURATION(S)	.16
7.1. Conducted RF	.16
7.2. Radiated Emissions	.18
7.2. Radiated Emissions	. 18 . 21
7.2. Radiated Emissions	. 18 . 21 . 21
7.2. Radiated Emissions	. 18 . 21 . 21 . 22
7.2. Radiated Emissions 8. TEST RESULTS 8.1. 20 dB & 99% Bandwidth 8.1.1. Mode 53 8.1.2. Mode 62	. 18 . 21 . 22 . 22 . 26
7.2. Radiated Emissions	. 18 . 21 . 22 . 26 . 30
7.2. Radiated Emissions 8. TEST RESULTS 8.1. 20 dB & 99% Bandwidth 8.1.1. Mode 53 8.1.2. Mode 62 8.1.3. Mode 61 8.1.4. Mode 12	. 18 . 21 . 22 . 26 . 30 . 34
7.2. Radiated Emissions 8. TEST RESULTS 8.1. 20 dB & 99% Bandwidth 8.1.1. Mode 53 8.1.2. Mode 62 8.1.3. Mode 61 8.1.4. Mode 12 8.2. Frequency Hopping Tests	18 21 22 26 30 34 38
7.2. Radiated Emissions 8. TEST RESULTS 8.1. 20 dB & 99% Bandwidth 8.1.1. Mode 53 8.1.2. Mode 62 8.1.3. Mode 61 8.1.4. Mode 12 8.2. Frequency Hopping Tests 8.2.1. Mode 53	18 21 22 26 30 34 38 39
7.2. Radiated Emissions 8. TEST RESULTS 8.1. 20 dB & 99% Bandwidth 8.1.1. Mode 53 8.1.2. Mode 62 8.1.3. Mode 61 8.1.4. Mode 12 8.2. Frequency Hopping Tests 8.2.1. Mode 53 8.2.2. Mode 62	18 21 22 26 30 34 38 38 39 42
7.2. Radiated Emissions 8. TEST RESULTS. 8.1. 20 dB & 99% Bandwidth 8.1.1. Mode 53. 8.1.2. Mode 62. 8.1.3. Mode 61. 8.1.4. Mode 12. 8.2. Frequency Hopping Tests. 8.2.1. Mode 53. 8.2.2. Mode 62. 8.2.3. Mode 61.	18 21 22 26 30 34 38 39 42 45
7.2. Radiated Emissions 8. TEST RESULTS 8.1. 20 dB & 99% Bandwidth 8.1.1. Mode 53 8.1.2. Mode 62 8.1.3. Mode 61 8.1.4. Mode 12 8.2. Frequency Hopping Tests 8.2.1. Mode 53 8.2.2. Mode 62 8.2.3. Mode 61 8.2.4. Mode 12	18 21 22 26 30 34 38 39 42 45 48
7.2. Radiated Emissions 8. TEST RESULTS 8.1. 20 dB & 99% Bandwidth 8.1.1. Mode 53. 8.1.2. Mode 62. 8.1.3. Mode 61. 8.1.4. Mode 12. 8.2. Frequency Hopping Tests 8.2.1. Mode 53. 8.2.2. Mode 62. 8.2.3. Mode 61. 8.2.4. Mode 12. 8.3. Output Power	18 21 22 26 30 34 38 39 42 45 48 51
7.2. Radiated Emissions 8. TEST RESULTS 8.1. 20 dB & 99% Bandwidth 8.1.1. Mode 53 8.1.2. Mode 62 8.1.3. Mode 61 8.1.4. Mode 12 8.2. Frequency Hopping Tests 8.2.1. Mode 53 8.2.2. Mode 62 8.2.3. Mode 61 8.2.4. Mode 12 8.3. Output Power 8.3.1. Mode 53	18 21 22 26 30 34 38 39 42 45 48 51 52
7.2. Radiated Emissions 8. TEST RESULTS 8.1. 20 dB & 99% Bandwidth 8.1. 1. Mode 53 8.1.2. Mode 62 8.1.3. Mode 61 8.1.4. Mode 12 8.2. Frequency Hopping Tests 8.2.1. Mode 53 8.2.2. Mode 62 8.3. Output Power 8.3. Output Power 8.3. 1. Mode 53 8.3. 2. Mode 61	18 21 22 26 30 34 38 39 42 45 48 51 52 53
7.2. Radiated Emissions 8. TEST RESULTS 8.1. 20 dB & 99% Bandwidth 8.1.1. Mode 53 8.1.2. Mode 62 8.1.3. Mode 61 8.1.4. Mode 12 8.2. Frequency Hopping Tests 8.2.1. Mode 53 8.2.2. Mode 62 8.2.3. Mode 61 8.2.4. Mode 12 8.3. Output Power 8.3.1. Mode 53 8.3.2. Mode 61	18 21 22 26 30 34 38 39 42 51 52 53 54
7.2. Radiated Emissions 8. TEST RESULTS 8.1. 20 dB & 99% Bandwidth 8.1.1. Mode 53 8.1.2. Mode 62 8.1.3. Mode 61 8.1.4. Mode 12 8.2. Frequency Hopping Tests 8.2.1. Mode 53 8.2.2. Mode 62 8.3.3. Mode 61 8.2.4. Mode 12 8.3.0 utput Power 8.3.1. Mode 53 8.3.2. Mode 61 8.3.4. Mode 12	18 21 22 26 30 34 38 39 42 51 52 53 54 55
7.2. Radiated Emissions 8. TEST RESULTS 8.1. 20 dB & 99% Bandwidth 8.1.1. Mode 53 8.1.2. Mode 62 8.1.3. Mode 61 8.1.4. Mode 12 8.2. Frequency Hopping Tests 8.2.1. Mode 53 8.2.2. Mode 62 8.2.3. Mode 61 8.2.4. Mode 12 8.3.0 utput Power 8.3.1. Mode 53 8.3.2. Mode 61 8.3.3. Mode 61 8.3.4. Mode 12 8.3.4. Mode 12	18 21 22 26 30 34 38 39 42 53 54 55 55 56

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2017. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

1.2. RECOGNITION

MiCOM Labs, Inc is widely recognized for its wireless testing and certification capabilities. In addition to being recognized for Testing and Certification under Phase 2 Mutual Recognition Agreements (MRA) with Canada, Europe, United Kingdom and Japan, our international recognition includes Conformity Assessment Body (CAB) designation status under agreements with Asia Pacific (APEC) MRA Phase 1 countries giving acceptance of MiCOM Labs test reports. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	MRA Phase	Identification No.			
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Test Firm Designation#: US1084			
Canada	Industry Canada (ISED)	FCB	APEC MRA 2	US0159 ISED#: 4143A			
Japan	MIC (Ministry of Internal Affairs and Communication) Japan Approvals Institute for Telecommunication Equipment (JATE)	САВ	Japan MRA 2	RCB 210			
	VCCI			A-0012			
Europe	European Commission	NB	EU MRA 2	NB 2280			
United Kingdom	Department for Business, Energy & Industrial Strategy (BEIS)	AB	UK MRA 2	AB 2280			
Mexico	Instituto Federal de Telecomunicaciones (IFT)	CAB	Mexico MRA 1	US0159			
Australia	Australian Communications and Media Authority (ACMA)						
Hong Kong	Office of the Telecommunication Authority (OFTA)						
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	045		1180150			
Singapore	Infocomm Development Authority (IDA)	CAD		030159			
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)						
Vietnam	Ministry of Communication (MIC)						
TCB – Telecomn	TCB – Telecommunications Certification Bodies (TCB)						

FCB - Foreign Certification Body

CAB – Conformity Assessment Body

NB – Notified Body

AB – Approved Body

MRA – Mutual Recognition Agreement

MRA PhasePhase I - recognition for product testing

Phase II – recognition for both product testing and certification

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-02.pdf

Accredited Product Certification Body

A2LA has accredited

MiCOM LABS Pleasanton, CA

neusunion, CA

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065:2012 Requirements for bodies certifying products, processes and services. This product certification body also meets the A2LA R322 – Specific Requirements – Notified Body Accreditation Requirements and A2LA R308 - Specific Requirements - ISO-IEC 17065 - Telecommunication Certification Body Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a management system.

Presented this 14th day of January 2022

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2381.02 Valid to November 30, 2023

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation.

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 UK – Approved Body (AB), AB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

2. DOCUMENT HISTORY

Document History					
Revision	Date	Comments			
Draft	14 th December 2022	Draft for Review			
Rev A 11 th January 2023		Initial Release			
Original test program: ITRO01-U2 Rev A					
Rev A 9 th May 2018		Initial Release			

3. TEST RESULT CERTIFICATE

Manufacturer: Itron Networked Solutions, Inc. 230 W Tasman Dr. San Jose California 95134 USA

Model: NIC 511-0603

Equipment Type: Network Interface Card

S/N's: 0013500501550FE2

Test Date(s): 12th December 2022

Tested By: MiCOM Labs, Inc. 575 Boulder Court Pleasanton, California 94566 USA

Telephone: +1 925 462 0304

Fax: +1 925 462 0306

Website: www.micomlabs.com

STANDARD(S)

FCC CFR 47 Part 15 Subpart C 15.247 & ISED RSS-247

TEST RESULTS

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.

2. Details of test methods used have been recorded and kept on file by the laboratory.

3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs, Inc.

Gordon Hurst President & CEO MiCOM Labs, Inc.

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
I	KDB 558074 D01 v05r02	Apr 2019	Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices operating under section 15.247 of the FCC Rules.
п	A2LA	22nd June 2022	R105 - Requirement's When Making Reference to A2LA Accreditation Status
	ANSI C63.10	2020	American National Standard for Testing Unlicensed Wireless Devices
IV	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
V	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
VI	FCC 47 CFR Part 15, Subpart B	Nov 2017	Title 47: Telecommunication PART 15—RADIO FREQUENCY DEVICES, SubPart B; Unintentional Radiators
VII	FCC 47 CFR Part 15.247	Apr 2020	Radio Frequency Devices; Subpart C – Intentional Radiators
VIII	FCC Public Notice DA 00-705	Mar 2000	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems
IX	ICES-003	Issue 7; Oct 2020	Information Technology Equipment (Including Digital Apparatus)
х	M 3003	EDITION 4 Oct 2019	Expression of Uncertainty and Confidence in Measurements
XI	RSS-247 Issue 2	Feb 2017	Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices
XII	RSS-Gen Issue 5	Amendment 1,2 (Feb 2021)	General Requirements for Compliance of Radio Apparatus. With Amendments 1: March 2019 and 2: Feb 2021.
XIII	FCC 47 CFR Part 2.1033	May 2021	FCC requirements and rules regarding photographs and test setup diagrams.

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

Details	Details Description				
Purpose:	Test of the Itron Networked Solutions, Inc NIC 511-0603 FCC Part 15.247 & ISED RSS-247				
Applicant:	Itron Networked Solutions, Inc.				
	230 W Tasman Dr.				
	San Jose California 95134 USA				
Manufacturer:	Itron Networked Solutions, Inc.				
Laboratory performing the tests:	MiCOM Labs, Inc.				
	575 Boulder Court				
	Pleasanton California 94566 USA				
I est report reference number:	ITRO51-U5 NIC 511 Draft				
Date EUT received:	28th - 29th November 2022				
Standard(s) applied:	FCC Part 15.247 & ISED RSS-247				
Dates of test (from - to):	12th December 2022				
No of Units Tested:	1				
Type of Equipment:	Plug in Radio Device				
Product Family Name:	NIC 511-0603				
Model(s):	NIC 511-0603				
Location for use:	Indoor/Outdoor				
Declared Frequency Range(s):	902 - 928 MHz				
Primary function of equipment:	Plug in Radio Device				
Secondary function of equipment:	Not Provided				
Type of Modulation:	FHSS				
EUT Modes of Operation:	2FSK, OQPSK				
Declared Nominal Output Power (Ave):	+30 dBm				
Transmit/Receive Operation:	Transceiver - Full Duplex				
Rated Input Voltage and Current:	4Vdc				
Operating Temperature Range:	Declared Range -40°C to +85°C				
ITU Emission Designator:	2FSK 85KF1D				
	OQPSK 120KF1D				
	OQPSK 240KF1D				
Equipment Dimensions:	110mm x 45mm x 15mm				
Weight:	50g				
Hardware Rev:	173-0870-00				
Software Rev:	5.4.0				

5.2. Scope Of Test Program

Itron Networked Solutions, Inc NIC 511-0603

The scope of the test program was to test the Itron Networked Solutions, Inc NIC 511-0603, Plug in Radio Device configurations in the frequency ranges 902 - 928 MHz; for compliance against the following specification:

FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Radio Frequency Devices; Subpart C – Intentional Radiators

Industry Canada RSS-247

Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and License-Exempt Local Area Network (LE-LEN) Devices

This report covers the additional modes of operation being added to an existing product line. Measurements are performed on the lowest and highest rate of each MR mode (italicized):

PHY_MODE_4G_12500BPS_OQPSK100 PHY_MODE_4G_25KBPS_OQPSK100 PHY_MODE_4G_50KBPS_OQPSK100 (PHY_MODE_4G_6250BPS_OQPSK100 which was tested and reported in ITRO01-U2)

PHY_MODE_4G_12500BPS_OQPSK200 PHY_MODE_4G_25KBPS_OQPSK200 PHY_MODE_4G_50KBPS_OQPSK200 PHY_MODE_4G_100KBPS_OQPSK200

PHY_MODE_4G_50KBPS_2FSK_M1_FEC

To ensure ongoing compliance for the standards listed above are being met the following measurements were verified:

20 dB Occupied Bandwidth Output Power Dwell Time & Occupancy Time Radiated Spurious Emissions 1-18GHz: Only the mid channel with the lowest data rate was verified.

Original Report for reference: ITRO01-U2 Rev A

5.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr.	Model No.	Serial No.	
EUT	NIC 511-0603	Itron Networked Solutions, Inc.	NIC 511-0603	0013500501550FE2	

5.4. Antenna Details

Туре	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
Integral*	Tai Sheng Chen	155-0010-00	f type	1.2	-	360	-	902 - 928
external	WP	WPANT30017-CA	OMNI	3.0	-	360	-	902 - 928
external	WP	WPANT40020-SA	Wrap Around	1.0	-	360	-	902 - 928
BF Gain	- Beamforming	Gain						

Dir BW - Directional BeamWidth

X-Pol - Cross Polarization

*Only Integral Antenna was checked in this report. For other antennas see ITRO01-U2

5.5. Cabling and I/O Ports

1. NONE

5.6. Test Configurations

Results for the following configurations are provided in this report:

Operational	ational Channel Spacing Data Rate with de(s) (kHz) (Kbps)		Channel Frequency (MHz)			
Mode(s)			Low	Mid	High	
			90	2.0 – 928.0 M	Hz	
Mode 53	300 /	50.0	902.3	915.2	926.9	
Mode 62	300	12.5	902.3	915.2	926.9	
Mode 61	300	100.0	902.3	915.2	926.9	
Mode 12	300	25.0	902.3	915.2	926.9	

5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance: 1. NONE

5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program: 1. NONE

6. TEST SUMMARY

Test Header	Result	Data Link
20 dB & 99% Bandwidth	Complies	View Data
Frequency Hopping Tests	-	-
Dwell Time	Complies	View Data
Channel Occupancy	Complies	View Data
Output Power	Complies	View Data
Emissions	-	-
(2) Radiated Emissions	-	-
(i) TX Spurious & Restricted Band Emissions	Complies	View Data

7. TEST EQUIPMENT CONFIGURATION(S)

7.1. Conducted RF

MiTest Automated Test System

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
#3 SA	MiTest Box to SA	Fairview Microwave	SCA1814- 0101-72	#3 SA	29 Jun 2023
#3P1	EUT to MiTest box port 1	Fairview Microwave	SCA1814- 0101-72	#3P1	29 Jun 2023
#3P2	EUT to MiTest box port 2	Fairview Microwave	SCA1814- 0101-72	#3P2	29 Jun 2023
#3P3	EUT to MiTest box port 3	Fairview Microwave	SCA1814- 0101-72	#3P3	29 Jun 2023
#3P4	EUT to MiTest box port 4	Fairview Microwave	SCA1812- 0101-72	#3P4	29 Jun 2023
249	Thermocouple; Resistance Thermometer	Thermotronics	GR2105- 02	9340 #2	29 Jun 2023
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	8 Oct 2023
398	MiTest RF Conducted Test Software	MiCOM	MiTest ATS	Version 4.2.3.0	Not Required
405	DC Power Supply 0-60V	Agilent	6654A	MY4001826	Cal when used
408	USB to GPIB interface	National Instruments	GPIB-USB HS	14C0DE9	Not Required
441	USB Wideband Power Sensor	Boonton	55006	9179	20 Sep 2023
442	USB Wideband Power Sensor	Boonton	55006	9181	19 Oct 2023
445	PoE Injector	D-Link	DPE- 101GL	QTAH1E2000625	Not Required
461	Spectrum Analyzer	Agilent	E4440A	MY46185537	27 Sep 2023
493	USB Wideband Power Sensor	Boonton	55006	9634	8 Oct 2023
494	USB Wideband Power Sensor	Boonton	55006	9726	19 Oct 2023
510	Barometer/Thermometer	Digi Sense	68000-49	170871375	4 Jan 2024
512	MiTest Cloud Solutions RF Test Box	MiCOM	2nd Gen with DFS	512	29 Jun 2023
555	Rhode & Schwarz Receiver (Firmware Version : 2.00 SP1)	Rhode & Schwarz	ESW 44	101893	28 Jun 2023
75	Environmental Chamber	Thermatron	SE-300-2- 2	27946	20 Feb 2023

7.2. Radiated Emissions

The following tests were performed using the radiated test set-up shown in the diagram below. Radiated emissions above and below 1GHz.

Radiated Emissions Above 1GHz Test Setup

Radiated Emissions Below 1GHz Test Setup

MiCOM Labs, 575 Boulder Court, Pleasanton, Čalifornia 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Test Equipment Utilized

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CU101	04R08507	Not Required
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	8 Oct 2023
298	3M Radiated Emissions Chamber Maintenance Check	MiCOM	3M Chamber	298	24 Jan 2023
302	5150 to 5350 MHz Notch Filter	Microtronics	BRC50703	002	6 Oct 2023
303	5725 to 5875 MHz Notch filter	Microtronics	BRC50705	003	6 Oct 2023
330	Variac 0-280 Vac	Staco Energy Co	3PN1020B	0546	Cal when used
336	Active loop Ant 10kHz to 30 MHz	EMCO	EMCO 6502	00060498	29 Nov 2023
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	29 Sep 2023
343	5.15 GHz Notch Filter	EWT	EWT-14-0200	H1	6 Oct 2023
373	26III RMS Multimeter	Fluke	Fluke 26 series III	76080720	29 Sep 2023
377	Band Rejection Filter 5150 to 5880MHz	Microtronics	BRM50716	034	6 Oct 2023
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	27 Oct 2023
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	30 Sep 2023
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	2 Nov 2023
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
414	DC Power Supply 0-60V	HP	6274	1029A01285	Cal when used
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
447	MiTest Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0	447	Not Required
462	Schwarzbeck cable from	Schwarzbeck	AK 9513	462	27 Oct

	Antenna to Amplifier.				2023
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	27 Oct 2023
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	27 Oct 2023
466	Low Pass Filter DC- 1500 MHz	Mini-Circuits	NLP-1750+	VUU10401438	6 Oct 2023
480	Cable - Bulkhead to Amp	SRC Haverhill	157-3050360	480	6 Oct 2023
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-3050787	481	6 Oct 2023
510	Barometer/Thermometer	Digi Sense	68000-49	170871375	4 Jan 2024
554	Precision SMA Cable	Fairview Microwave	SCE18060101- 400CM	554	6 Oct 2023
555	Rhode & Schwarz Receiver (Firmware Version : 2.00 SP1)	Rhode & Schwarz	ESW 44	101893	28 Jun 2023
87	Uninterruptible Power Supply	Falcon Electric	ED2000-1/2LC	F3471 02/01	Cal when used
CC05	Confidence Check	MiCOM	CC05	None	27 Feb 2023

8. TEST RESULTS

8.1. 20 dB & 99% Bandwidth

Conducted Test Conditions for 20 dB and 99% Bandwidth									
Standard:	FCC CFR 47:15.247	Ambient Temp. (ºC):	24.0 - 27.5						
Test Heading:	20 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45						
Standard Section(s):	15.247 (a)(1)(i)/(ii)	Pressure (mBars):	999 - 1001						
Reference Document(s):	See Normative References								

Test Procedure for 20 dB and 99% Bandwidth Measurement

The bandwidth at 20 dB and 99 % was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits for 20 dB and 99% Bandwidth

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

(ii) Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies. The maximum 20 dB bandwidth of the hopping channel is 1 MHz. The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

8.1.1. Mode 53

Equipment Configuration for 20 dB 99% Bandwidth

Variant:	Mode 53	Duty Cycle (%):	99.0
Data Rate:	50.0 KBit/s	Antenna Gain (dBi):	0.00
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Fest Measured 20 dB Bandwidth (MHz)					width (MUz)	Limit	Lowest
Frequency		Por	t(s)				Linin	Margin
MHz	а	b	С	d	Highest	Lowest	MHz	MHz
902.3	0.128				0.128	0.128	0.5	-0.372
915.2	0.130				0.130	0.130	0.5	-0.37
926.9	0.129				0.129	0.129	0.5	-0.371

Test		Measured 99% Bandwidth (MHz) Maximum	Maximum			
Frequency	Port(s)				99% Bandwidth	
MHz	а	b	С	d	(MHz)	
902.3	0.118				0.118	
915.2	0.118				0.118	
926.9	0.118				0.118	

Traceability to Industry Recognized Test Methodologies

•	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

8.1.2. Mode 62

Equipment Configuration for Output Power Peak

Variant:	Mode 62	Duty Cycle (%):	99.0
Data Rate:	12.5 KBit/s	Antenna Gain (dBi):	0.00
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Measured 20 dB Bandwidth (MHz)					20 dB Bandwidth (MHz)		Limit	Lowest
Frequency		Por	t(s)	20 dB Bandw			Linin	Margin
MHz	а	b	С	d	Highest	Lowest	MHz	MHz
902.3	0.255				0.255	0.255	0.5	-0.245
915.2	0.262				0.262	0.262	0.5	-0.238
926.9	0.259				0.259	0.259	0.5	-0.241

Test		Measured 99% E	Maximum			
Frequency		Port(s)				
MHz	а	b	С	d	(MHz)	
902.3	0.246				0.246	
915.2	0.244				0.244	
926.9	0.243				0.243	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

8.1.3. Mode 61

Equipment Configuration for Output Power Peak

Variant:	Mode 61	Duty Cycle (%):	99.0
Data Rate:	100.0 KBit/s	Antenna Gain (dBi):	0.00
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Test Measured 20 dB Bandwidth (MHz)					20 dB Bandwidth (MHz)		Lowest
Frequency		Por	t(s)				Linin	Margin
MHz	а	b	С	d	Highest	Lowest	MHz	MHz
902.3	0.255				0.255	0.255	0.5	-0.245
915.2	0.262				0.262	0.262	0.5	-0.238
926.9	0.243				0.243	0.243	0.5	-0.257

Test		Measured 99% E	Maximum			
Frequency		Port(s)				
MHz	а	b	С	d	(MHz)	
902.3	0.246				0.246	
915.2	0.244				0.244	
926.9	0.259				0.259	

Traceability to Industry Recognized Test Methodologies

•	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

8.1.4. Mode 12

Equipment Configuration for Output Power Peak

Variant:	Mode 12	Duty Cycle (%):	99.0
Data Rate:	25.00 KBit/s	Antenna Gain (dBi):	0.00
Modulation:	2FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Ме	asured 20 dB	Bandwidth (M	Hz)	20 dB Band	width (MUz)	Limit	Lowest
Frequency	Port(s)					Linin	Margin	
MHz	а	b	С	d	Highest	Lowest	MHz	MHz
902.3	0.081				0.081	0.081	0.5	-0.419
915.2	0.085				0.085	0.085	0.5	-0.415
926.9	0.080				0.080	0.08	0.5	-0.42

Test	Measured 99% Bandwidth (MHz)				Maximum	
Frequency		Port(s)			99% Bandwidth	
MHz	а	b	С	d	(MHz)	
902.3	0.083				0.083	
915.2	0.086				0.086	
926.9	0.084				0.084	

Traceability to Industry Recognized Test Methodologies

•	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

8.2. Frequency Hopping Tests

Conducted Test Conditions for Frequency Hopping Measurements				
Standard:	FCC CFR 47:15.247	Ambient Temp. (°C):	24.0 - 27.5	
Test Heading:	Frequency Hopping Tests	Rel. Humidity (%):	32 - 45	
Standard Section(s):	15.247 (a)(1)(i)/(ii)	Pressure (mBars):	999 - 1001	
Reference Document(s):	See Normative References, FCC Public Notice DA 00-705			

Test Procedure for Frequency Hopping Measurements

These tests cover the following measurements:

- i) channel separation
- ii) channel occupancy
- iii) dwell time
- iv) number of hopping frequencies

Frequency hopping testing was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency or hopping mode.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits for Frequency Hopping Measurements

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

(ii) Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies. The maximum 20 dB bandwidth of the hopping channel is 1 MHz. The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.2.1. Mode 53

Equipment Configuration for Channel Occupancy

Variant:	Mode 53	Antenna:	Not Applicable
Data Rate:	50.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable
Duty Cycle (%):	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency(MHz)	Dwell Time (Single Burst) (mS)	Channel Occupancy (mS)	Observation Period (S)	Channel Occupancy Limit (mS)	Pass / Fail
915.20	38.07	114.21	20.00	400.000	Pass

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK		
Measurement Uncertainty:	±2.81 dB		

Issue Date:11th January 2023Page:41 of 61This test report may be reproduced in full only.The document may only be updated by MiCOM Labs
personnel. All changes will be noted in the Document History section of the report.MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

8.2.2. Mode 62

Equipment Configuration for Channel Occupancy

Variant:	Mode 62	Antenna:	Not Applicable
Data Rate:	12.50 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable
Duty Cycle (%):	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency(MHz)	Dwell Time (Single Burst) (mS)	Channel Occupancy (mS)	Observation Period (S)	Channel Occupancy Limit (mS)	Pass / Fail
915.20	86.37	86.37	20.00	400.000	Pass

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK		
Measurement Uncertainty:	±2.81 dB		

Date: 29.N

29.NOV.2022 06:18:20

8.2.3. Mode 61

Equipment Configuration for Channel Occupancy

Variant:	Mode 61	Antenna:	Not Applicable
Data Rate:	100.0 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable
Duty Cycle (%):	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency(MHz)	Dwell Time (Single Burst) (mS)	Channel Occupancy (mS)	Observation Period (S)	Channel Occupancy Limit (mS)	Pass / Fail
915.20	20.24	40.48	20.00	400.000	Pass

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK		
Measurement Uncertainty:	±2.81 dB		

Date:

29.NOV.2022 06:15:06

8.2.4. Mode 12

Equipment Configuration for Channel Occupancy

Variant:	Mode 12	Antenna:	Not Applicable
Data Rate:	25.00 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	2FSK	Beam Forming Gain (Y)(dB):	Not Applicable
Duty Cycle (%):	99.0	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency(MHz)	Dwell Time (Single Burst) (mS)	Channel Occupancy (mS)	Observation Period (S)	Channel Occupancy Limit (mS)	Pass / Fail
915.20	36.07	108.21	20.00	400.000	Pass

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK		
Measurement Uncertainty:	±2.81 dB		

Issue Date:11th January 2023Page:50 of 61This test report may be reproduced in full only.The document may only be updated by MiCOM Labs
personnel. All changes will be noted in the Document History section of the report.MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

8.3. Output Power

Conducted Test Conditions for Fundamental Emission Output Power						
Standard:	FCC CFR 47:15.247	Ambient Temp. (ºC):	24.0 - 27.5			
Test Heading:	Output Power	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.247 (a)(1), (b)(1)/(2)/(3)	Pressure (mBars):	999 - 1001			
Reference Document(s):	See Normative References					

Test Procedure for Fundamental Emission Output Power Measurement

In the case of average power measurements an average power sensor was utilized.

For peak power measurements the spectrum analyzer built-in power function was used to integrate peak power over the 20 dB bandwidth.

Testing was performed under ambient conditions, nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured, summed (Σ) and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document. Supporting Information

Calculated Power = $A + G + Y + 10 \log (1/x) dBm$

A = Total Power $[10^*Log10 (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})]$

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Limits for Fundamental Emission Output Power

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following for frequency hopping systems:

(1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

(2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

8.3.1. Mode 53

Equipment Configuration for Output Power Peak

Variant:	Mode 53	Duty Cycle (%):	99.0
Data Rate:	50.0 KBit/s	Antenna Gain (dBi):	0.00
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Output Power (dBm) Port(s)			Calculated Total Power	Limit	Margin	EUT Power	
MHz	а	b	c c	d	Σ Port(s) dBm	dBm	dB	Setting
902.3	29.70				29.70	30.00	-0.30	max
915.2	29.67				29.67	30.00	-0.33	max
926.9	29.68				29.68	30.00	-0.32	max

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

8.3.2. Mode 62

Equipment Configuration for Output Power Peak

Variant:	Mode 62	Duty Cycle (%):	99.0
Data Rate:	12.5 KBit/s	Antenna Gain (dBi):	0.00
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Output Power (dBm) Port(s)				Calculated Total Power	Limit	Margin	EUT Power
MHz	а	b	c c	d	Σ Port(s) dBm	dBm	dB	Setting
902.3	29.57				29.57	30.00	-0.43	max
915.2	29.69				29.69	30.00	-0.31	max
926.9	29.66				29.66	30.00	-0.34	max

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

8.3.3. Mode 61

Equipment Configuration for Output Power Peak

Variant:	Mode 61	Duty Cycle (%):	99.0
Data Rate:	100.0 KBit/s	Antenna Gain (dBi):	0.00
Modulation:	OQPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	N	leasured Outp Poi	ut Power (dBn rt(s)	n)	Calculated Total Power Σ Port(s)	Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	
902.3	29.64				29.64	30.00	-0.36	max
915.2	29.69				29.69	30.00	-0.31	max
926.9	29.61				29.61	30.00	-0.39	max

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

8.3.4. Mode 12

Equipment Configuration for Output Power Peak

Variant:	Mode 12	Duty Cycle (%):	99.0
Data Rate:	25.00 KBit/s	Antenna Gain (dBi):	0.00
Modulation:	2FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	N	leasured Outp Por	ut Power (dBn rt(s)	n)	Calculated Total Power Σ Port(s)	Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	county
902.3	29.67				29.67	30.00	-0.33	max
915.2	29.71				29.71	30.00	-0.29	max
926.9	29.60				29.60	30.00	-0.40	max

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

8.4. Emissions

8.4.1. Radiated Emissions

Radiated Test Conditions for Radiated Spurious and Band-Edge Emissions (Restricted Bands)										
Standard:	FCC CFR 47:15.247	20.0 - 24.5								
Test Heading:	Radiated Spurious and Band- Edge Emissions	Rel. Humidity (%):	32 - 45							
Standard Section(s):	15.205, 15.209	Pressure (mBars):	999 - 1001							
Reference Document(s):	See Normative References									

Test Procedure for Radiated Spurious and Band-Edge Emissions (Restricted Bands)

Radiated emissions for restricted bands above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned. Measurements on any restricted band frequency or frequencies above 1 GHz are based on the use of measurement instrumentation employing peak and average detectors. All measurements were performed using a resolution bandwidth of 1 MHz.

Test configuration and setup for Radiated Spurious and Band-Edge Measurement were per the Radiated Test Set-up specified in this document.

Limits for Restricted Bands Peak emission: 74 dBuV/m Average emission: 54 dBuV/m

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data. FS = R + AF + CORR - FO

where: FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL - AG + NFLCL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

Example:

Given receiver input reading of 51.5 dBmV; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength (FS) of the measured emission is:

FS = 51.5 + 8.5 + 1.3 - 26.0 +1 = 36.3 dBmV/m

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are as follows: Level (dBmV/m) = 20 * Log (level (mV/m))

40 dBmV/m = 100 mV/m 48 dBmV/m = 250 mV/m Restricted Bands of Operation (15.205)

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

Frequency Band								
MHz	MHz	MHz	GHz					
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15					
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46					
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75					
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5					
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2					
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5					
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7					
6.26775-6.26825	6.26825 108-121.94 1718.8-1722.2		13.25-13.4					
6.31175-6.31225	123-138	2200-2300	14.47-14.5					
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2					
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4					
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12					
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0					
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8					
2.51975-12.52025	240-285	3345.8-3358	36.43-36.5					
2.57675-12.57725	322-335.4	3600-4400	Above 38.6					
13.36-13.41								

(b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhere in this subpart, the provisions of this section apply to emissions from any intentional radiator.

(d) The following devices are exempt from the requirements of this section:

(1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section more than 99% of the time the device is actively transmitting, without compensation for duty cycle.

(2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.

(3) Cable locating equipment operated pursuant to §15.213.

(4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GHz, or §15.257 of this part.

(5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.

(6) Transmitters operating under the provisions of subparts D or F of this part.

(7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

(8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §15.245(b).

(9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in §15.249(a).

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of §15.245 shall not exceed the limits specified in §15.245(b).

Equipment Configuration for FCC Spurious 1 GHz -18 GHz

Antenna:	Integral	Variant:	Mode 62
Antenna Gain (dBi):	Not Applicable	Modulation:	OQPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	915.2	Data Rate:	12.5Kbp/s
Power Setting:	Max	Tested By:	SB
Power Setting:	Max	Tested By:	SB

Test Measurement Results

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1814.22	41.84	1.73	-14.16	29.40	MaxP	Vertical	108	30	74.0	-44.6	Pass
2	1814.22	29.27	1.73	-14.16	16.83	AVG	Vertical	108	30	54.0	-37.2	Pass
3	1815.03	41.98	1.73	-14.15	29.56	MaxP	Horizontal	181	284	74.0	-44.4	Pass
4	1815.03	29.19	1.73	-14.15	16.77	AVG	Horizontal	181	284	54.0	-37.2	Pass
5	2732.12	40.92	2.10	-11.79	31.24	MaxP	Horizontal	194	288	74.0	-42.8	Pass
6	2732.12	28.10	2.10	-11.79	18.41	AVG	Horizontal	194	288	54.0	-35.6	Pass
7	2733.72	40.92	2.11	-11.78	31.24	MaxP	Vertical	134	301	74.0	-42.8	Pass
8	2733.72	28.24	2.11	-11.78	18.56	AVG	Vertical	134	301	54.0	-35.4	Pass
9	4568.76	42.30	2.80	-12.15	32.95	MaxP	Vertical	123	1	74.0	-41.1	Pass
10	4568.76	29.34	2.80	-12.15	19.99	AVG	Vertical	123	1	54.0	-34.0	Pass
11	4569.28	41.86	2.80	-12.15	32.51	MaxP	Horizontal	107	107	74.0	-41.5	Pass
12	4569.28	29.37	2.80	-12.15	20.02	AVG	Horizontal	107	107	54.0	-34.0	Pass
13	6406.86	41.14	3.37	-8.83	35.67	MaxP	Vertical	198	0	74.0	-38.3	Pass
14	6406.86	28.23	3.37	-8.83	22.76	AVG	Vertical	198	0	54.0	-31.2	Pass
15	8242.91	40.16	3.86	-8.11	35.91	MaxP	Vertical	148	124	74.0	-38.1	Pass
16	8242.91	27.88	3.86	-8.11	23.63	AVG	Vertical	148	124	54.0	-30.4	Pass
17	17302.53	38.26	6.09	-1.31	43.04	MaxP	Vertical	131	304	74.0	-31.0	Pass
18	17302.53	25.20	6.09	-1.31	29.98	AVG	Vertical	131	304	54.0	-24.0	Pass
			-	2	¢							

Test Notes: NIC 511-0603, Ch 915.2, MAC:0013500501550FE2

Page: 60 of 61

575 Boulder Court Pleasanton, California 94566, USA Tel: +1 (925) 462 0304 Fax: +1 (925) 462 0306 www.micomlabs.com