EMISSIONS TEST REPORT FOR A LOW POWER TRANSMITTER

I. GENERAL INFORMATION

Requirement:	FCC
Test Requirements:	FCC Part 15

Applicant: Silver Spring Networks 575 Broadway Street Redwood City, CA 94063

FCC ID:	OWS-NIC508
Model No.:	174-000084

II. DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)

The Silver Spring Networks (SSN) model 174-000084 is a radio module for electric power meter communications use. The board incorporates a 900 MHz frequency hopping i210 Mesh radio, a 900 MHz Zigbee Home area Network (HAN) radio, and a 2.4GHz HAN radio.

III. TEST DATES AND TEST LOCATION

Testing was performed on various dates between 15 August – 2 October 2008. Radiated emissions, 900 MHz and 2.4 GHz antenna conducted power, 2.4 GHz antenna conducted spurious, and AC line conducted emissions tests were performed at:

Compliance Certification Services 47173 Benicia Street Fremont, CA 94538

All other antenna port conducted tests were performed at Silver Spring Networks.

Y.M. Cohen____

T.N. Cokenias EMC Consultant/Agent for Silver Spring Networks

13 October 2008

15.203 Antenna connector requirement

The EUT uses a custom permanently attached integral antenna, a special sheet metal antenna manufactured by Silver Spring Networks for electric meters

Antenna description	Mfr.	Model No.	Gain
Built-in sheet metal electric meter	SSN	n/a	2.4 dBi at 915 MHz 1.5 dBi at 2.4 GHz

NOTE: Although all three radios share the same antenna, only one radio at a time is operating, either in receive or transmit mode.

TEST PROCEDURES

All tests were performed in accordance with the applicable procedures called out in the following documents, unless otherwise noted:

FCC 47CFR15

RSS-210 Issue 7: Low power license exempt radio frequency devices (July 2007) RSS-Gen, Issue 2:

RSS-212: Test Facilities and Test Methods for Radio Equipment

ANSI C63.4 – 2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

For each radio, tests were performed at three frequencies:

900 MHz HAN Radio

Channel 1 (LOW) – 906.25 MHz Channel 5 (MID) – 914.25 MHz Channel 10 (HIGH) – 924.3 MHz

2.4 GHz HAN Radio

Channel 11 (LOW) – 2405.8 MHz Channel 18 (MID) – 2440.8 MHz Channel 26 (HIGH) – 2480.9 MHz

900 MHz FHSS

Channel 0 (LOW) – 902.3 MHz Channel 42 (MID) -914.9 MHz Channel 82 (HIFH) – 926.9 MHz

Test Equipment

Compliance Certification Services:

Equipment	Mfr	Model	Asset No.	Cal Due
Spectrum analyzer	Agilent	E4446A	C01159	10/27/08
(radiated emissions				
2.4GHz Pout, spurs)				
EMI Receiver	HP	8542E	C00967	09/10/09
Bilog antenna	Sunol Sciences	JBI	C01016	09/28/08
Pre-amplifier	Agilent	HP8447D	C00885	03/31/09
Horn antenna	EMCO	3115	C00872	03/31/09
Pre-amplifier	Agilent	HP 8449B	C00749	09/27/08
EMI Receiver	R & S	ESHS-20	827129/006	01/27/09
LISN	FCC	LISN50/250-25-2	2023	09/27/08

Silver Spring Networks:

Equipment	Mfr	Model	Asset No.	Cal Date
Spectrum analyzer	Agilent	E44053	1077004	06/29/08

Test Set-up Diagram

Support Equipment

Equipment	Mfr	Model	Asset No.
DC Power Supply	Agilent	E3610A	2844
Laptop PC	Dell	PP01L	TW-0791UH1280-
			OC9-6558
AC/DC adapter	CUI Inc.	DSA-60W-20	2607HB

FREQUENCY HOPPING SPREAD SPECTRUM RADIO EMISSIONS

Silver Spring Networks FCC ID: OWS-NIC508 Model: 174-000084 TEST RESULTS Radiated Test Set-up, 30 MHz-26 GHz

Test Procedures

Radiated emissions generated by the transmitter portion of the EUT were measured.

1. The EUT was placed on a wooden table resting on a turntable on the test site. The search antenna was placed 3m from the EUT. The EUT antenna was mounted in the with the EUT TX antenna pointed directly to the search antenna.

2. The turntable was slowly rotated to locate the direction of maximum emission at each emission falling in the restricted bands of 15.205.

3. Emissions were investigated to the 10^{th} harmonic of the fundamental.

6. Once maximum direction was determined, the search antenna was raised and lowered in both vertical and horizontal polarizations. The maximum readings so obtained are recorded in the data listed below.

Test Results: Worst-case results are presented. Refer to data sheets below. Restricted band emissions meet 54 dBuV/m. Other undesired emissions from the transmitter meet the -20 dBc requirement in 15.247(d).

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505 (1)	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	
13.36 - 13.41	322 - 335.4		

15.205 Restricted Frequency Bands

15.209 General Field Strength Limits

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)				
0.009 - 0.490	2400/F (kHz)	300				
0.490 - 1.705	24000/F (kHz)	30				
1.705 - 30.0	30	30				
30 - 88	100 **	3				
88 - 216	150 **	3				
216 - 960	200 **	3				
Above 960	500	3				

Radiated Emissions Above 1 GHz, Low Channel

Complia	High Frequency Measurement Compliance Certification Services, Morgan Hill Open Field Site															
Companys Project #: Date: Test Engin Configura Mode:	neer: tion:		Silver Spring 08U11890 8/15/08 Thanh Nguyen EUT at Y posit Transmit	Network ion												
<u>Test Equi</u>	<u>cest Equipment:</u>															
Но	rn 1-18	GHz	Pre-ar	nplifer	1-260	Hz	Pre-amp	lifer 26	6-40GHz			н	orn > 180	GHz		
T73; S/	N: 6717 @	93m 🖵	T144 N	liteq 30	08A009	31 🖕			-						-	
	H Frequency Cables				•	12 f Gordon	12 foot cable Gordon 203134001			HP	HPF F_1.5GHz	Re	eject Filte	r <u>Pe</u> RH • <u>Aver</u> RBW	ak Measurements 3W=VBW=1MHz rage Measurements =1MHz ; VBW=10Hz	
f GHz	Dist (m)	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB	Peak dBuV/m	A dBi	Avg uV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes (V/H)
Setting A	TTS112	=7														
Low CH 90	2.325 MI	Iz ATS 107= 0														
2.707	3.0	50.72	46.90	29.2	8.6	-37.4	0.0	0.6	51.6	4	17.8	74	54	-22.4	-6.2	<u> </u>
3.009 4 512	3.0	42.15	33.48	33.0	9.0	-36.5	0.0	0.6	50.0		11.2	74	54	-27.0	-10.5	v
5.414	3.0	42.43	33.55	33.8	11.2	-36.3	0.0	0.5	51.6	4	1.2	74	54	-22.4	-11.3	v
8.121	3.0	40.70	29.31	35.5	13.1	-36.2	0.0	0.7	53.7	4	12.3	74	54	-20.3	-11.7	V
9.023	3.0	40.31	28.15	36.5	13.5	-36.7	0.0	0.7	54.4	4	2.2	74	54	-19.6	-11.8	Noise floor
2 707	2.0	52.06	51.24	20.2	86	27.4	0.0	0.6	54.0	-		74	54	20.0	1.0	
3.609	3.0	42.18	33.75	31.6	0.0 9.6	-36.9	0.0	0.6	47.0	1	38.6	74	54	-20.0	-1.0	<u>п</u> Н
4.512	3.0	43.67	36.12	33.0	10.6	-36.5	0.0	0.6	51.3	4	13.8	74	54	-22.7	-10.2	Н
5.414	3.0	43.65	36.85	33.8	11.2	-36.3	0.0	0.5	52.8	4	16.0	74	54	-21.2	-8.0	Н
8.121	3.0	43.89	34.97	35.5	13.1	-36.2	0.0	0.7	56.9	4	18.0	74	54	-17.1	-6.0	H
9.023	3.0	41.43	28.02	36.5	13.5	-36.7	0.0	0.7	55.5	4	2.1	74	54	-18.5	-11.9	Noise floor
	fMeasurement FrequencyAmpPreamp GainAvg LimAverage Field Strength LimitDistDistance to AntennaD CorrDistance Correct to 3 metersPk LimPeak Field Strength LimitReadAnalyzer ReadingAvgAverage Field Strength @ 3 mAvg MarMargin vs. Average LimitAFAntenna FactorPeakCalculated Peak Field StrengthPk MarMargin vs. Peak LimitCLCable LossHPFHigh Pass FilterFilter									Limit iit nit						

Complia	High I nce Cert	Frequency M ification Ser	deasurement vices, Morga	n Hill O	pen Fi	eld Site										
Company Project #: Date: Test Engi Configura Mode:	: neer: ntion:		Silver Spring 08U11890 8/15/08 Thanh Nguyen EUT at Y posit Transmit MID	Network ion Channel	914.95N	IHZ										
<u>Test Equi</u>	pment:															
Но	rn 1-18	GHz	Pre-ar	nplifer	1-260	SHz	Pre-amp	lifer 26	6-40GHz			Но	orn > 180	GHz		
T73; S/	N: 6717 @	93m 🖵	T144 N	liteq 30	08A009	131 🚽			-						•	
2 foot cable 3 foot cable			-	12 foot cable Gordon 203134001				HP	HPF F_1.5GHz	Re	ject Filte	r <u>Pe</u> RI <u>Ave</u> RBW	<mark>ak Measurements</mark> 3W=VBW=1MHz r age Measurements =1MHz ; VBW=10Hz			
f	Dist	Read Pk	Read Avg.	AF	CL	Amp	D Corr	Fltr	Peak		Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
GHZ	(m)	abuv	авил	aB/m	aв	aB	aß	aß	abuv/m	aB	uv/m	aBuv/m	abuv/m	đB	aв	(V/H)
Mid CH 91	4.950MH	z														
Power Se	tting A1	5112=20														
Channel	setting A	54.02	52.20	20.2	0.7	27.4	0.0	0.6	55.1		F2 4	74	54	10.0	0.6	
2./44	3.0	54.03	52.29	29.5	8./	-37.4	0.0	0.6	53.9		53.4	74	54	-18.9	-0.0	v
4 575	3.0	40.72	29.09	33.1	10.7	-36.5	0.0	0.0	49.3		36.9	74	54	-20.2	-17.1	v
7.319	3.0	44.99	37.88	35.0	12.7	-36.2	0.0	0.6	57.1		49.9	74	54	-16.9	-4.1	v
8.234	3.0	40.55	30.32	35.6	13.1	-36.3	0.0	0.7	53.7		43.5	74	54	-20.3	-10.5	V
9.149	3.0	39.90	28.09	36.5	13.6	-36.7	0.0	0.7	54.1		42.3	74	54	-19.9	-11.7	Noise floor
2.744	3.0	47.37	43.10	29.3	8.7	-37.4	0.0	0.6	48.4		44.2	74	54	-25.6	-9.8	<u> </u>
3.000	3.0	50.90	44.53	31.7	9.7	-36.9	0.0	0.6	56.0		49.6	74	54	-18.0	-4.4	<u>H</u>
4.575	3.0	42.75	41.87	35.0	12.7	-36.2	0.0	0.0	59.2		41.0 53.0	74	54	-23.5	-12.4	<u>н</u> Н
8.234	3.0	43.94	35.94	35.6	13.1	-36.3	0.0	0.7	57.1		49.1	74	54	-16.9	-4.9	н
9.149	3.0	40.89	28.54	36.5	13.6	-36.7	0.0	0.7	55.1		42.7	74	54	-18.9	-11.3	Noise floor
f Measurement Frequency Amp Preamp Gain Avg Lim Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Pk Lim Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Avg Mar Margin vs. Average Limit AF Antenna Factor Peak Calculated Peak Field Strength Pk Mar Margin vs. Peak Limit CL Cable Loss HPF High Pass Filter Pass Filter Pass Filter									Limit nit nit							

Radiated Emissions Above 1 GHz, Mid Channel

	High	Frequency N	Aeasurement												
Complia	nce Cert	ification Ser	vices, Morga	n Hill O	pen Fi	eld Site									
Company Project #: Date: Test Engi Configura Mode:	: neer: ation:		Silver Spring 08U11890 6/16/08 Thanh Nguyen EUT at XY pos Transmit High	Network sition Channel	926.866	MHZ									
<u>Test Equi</u>	<u>pment:</u>														
Но	Horn 1-18GHz Pre-amplifer 1-26GHz						Pre-amp	lifer 2	6-40GHz		н	orn > 18	GHz		
T73; S/	N: 6717 @	23m 🚽	T144 N	/liteq 30	08A009	931 🖵			-					-	
Hi Frequency Cable 2 foot cable 3 foot cable						12 Gordon	foot c	able		HPF	R	eject Filte	er <u>Pe</u> Ri	<u>ak Measurements</u> 3W=VBW=1MHz rage Measurements	
						-			•		1_1.00112			RBW	=1MHz; VBW=10Hz
f	Dist	Read Pk	Read Avg.	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
GHz	(m)	dBuV	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	(V/H)
Power Se	tting A	IS112=7													
Channel	setting A	41510/=82	43.7	20.4	87	37.4	0.0	0.6	48.7	44.9	74	54	25.3	0.1	V
3.707	3.0	42.1	32.1	31.8	9.7	-36.8	0.0	0.6	47.4	37.4	74	54	-26.6	-16.6	v
4.634	3.0	43.8	37.3	33.1	10.7	-36.5	0.0	0.6	51.7	45.2	74	54	-22.3	-8.8	v
7.415	3.0	42.6	30.7	35.0	12.7	-36.2	0.0	0.6	54.8	42.9	74	54	-19.2	-11.1	V
8.342	3.0	41.1	28.7	35.7	13.2	-36.3	0.0	0.7	54.4	42.0	74	54	-19.6	-12.0	V
2 781	3.0	51.85	49.04	29.4	87	37 4	0.0	0.6	53.1	50.3	74	54	-20.9	-37	н
3.707	3.0	46.10	39.90	31.8	9.7	-36.8	0.0	0.6	51.4	45.2	74	54	-22.6	-8.8	Н
4.634	3.0	47.20	42.86	33.1	10.7	-36.5	0.0	0.6	55.1	50.8	74	54	-18.9	-3.2	Н
7.415	3.0	42.27	29.33	35.0	12.7	-36.2	0.0	0.6	54.4	41.5	74	54	-19.6	-12.5	Н
8.342	3.0	40.75	28.92	35.7	13.2	-36.3	0.0	0.7	54.0	42.2	74	54	-20.0	-11.8	Н
	fMeasurement FrequencyAmpPreamp GainAvg LimAverage Field StrengthDistDistance to AntennaD CorrDistance Correct to 3 metersPk LimPeak Field StrengthReadAnalyzer ReadingAvgAverage Field Strength @ 3 mAvg MarMargin vs. AverageAFAntenna FactorPeakCalculated Peak Field StrengthPk MarMargin vs. Peak LinCLCable LossHPFHigh Pass FilterPk MarMargin vs. Peak Lin									ield Strength Strength Lin Average Lir Peak Limit	Limit nit nit				

Radiated Emissions Above 1 GHz, High Channel

Radiated Emissions Below 1 GHZ

Trace: 23

Ref Trace:

Condition: CISPR CLASS-B HORIZONTAL Test Operator:: William Zhuang Project #: : 08U11890 Company: : Silver Spring Configuration:: EUT with Laptop Mode : : : Tx, 900MHz, Hopping Max Power Target: : CISPR Class B

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1	137.880	40.83	-17.92	22.91	30.00	-7.09	Peak
2	297.090	49.38	-15.65	33.73	37.00	-3.27	Peak
3	458.040	39.10	-11.01	28.09	37.00	-8.91	Peak
4	503.280	40.50	-9.82	30.68	37.00	-6.32	Peak
5	605.940	36.93	-8.39	28.54	37.00	-8.46	Peak
б	886.080	32.61	-2.65	29.96	37.00	-7.04	Peak
7	894.780	36.66	-2.40	34.26	37.00	-2.74	Peak

Trace: 31

Ref Trace:

Condition: CISPR CLASS-B HORIZONTAL Test Operator:: William Zhuang Project #: : 08U11890 Company: : Silver Spring Configuration:: EUT with Laptop Mode : : : Tx, 900MHz, Hopping Max Power Target: : CISPR Class B

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	-
1	806.272	30.81	-4.35	26.46	37.00	-10.54	Peak
2	825.856	29.17	-3.96	25.21	37.00	-11.79	Peak
3	845.056	31.69	-3.59	28.10	37.00	-8.90	Peak
4	883.584	33.13	-2.72	30.40	37.00	-6.60	Peak
5	892.032	36.84	-2.49	34.36	37.00	-2.64	Peak
б	922.112	32.54	-1.83	30.71	37.00	-6.29	Peak

Condition: CISPR CLASS-B HORIZONTAL Test Operator:: William Zhuang Project #: : 08U11890 Company: : Silver Spring Configuration:: EUT with Laptop Mode : : : Tx, 900MHz, Hopping Max Power Target: : CISPR Class B

Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	-
940.888	25.96	-1.53	24.43	37.00	-12.57	Peak
960.328	27.13	-1.01	26.12	37.00	-10.88	Peak
979.624	27.31	-0.70	26.61	37.00	-10.39	Peak
998.848	25.71	-0.30	25.41	37.00	-11.59	Peak
	Freq MHz 940.888 960.328 979.624 998.848	Read Freq Level MHz dBuV 940.888 25.96 960.328 27.13 979.624 27.31 998.848 25.71	Read Level Factor MHz dBuV dB 940.888 25.96 -1.53 960.328 27.13 -1.01 979.624 27.31 -0.70 998.848 25.71 -0.30	Read Freq Level Factor Level MHz dBuV dB dBuV/m 940.888 25.96 -1.53 24.43 960.328 27.13 -1.01 26.12 979.624 27.31 -0.70 26.61 998.848 25.71 -0.30 25.41	Read Limit Freq Level Factor Level Line MHz dBuV dB dBuV/m dBuV/m 940.888 25.96 -1.53 24.43 37.00 960.328 27.13 -1.01 26.12 37.00 979.624 27.31 -0.70 26.61 37.00 998.848 25.71 -0.30 25.41 37.00	Read Limit Over Freq Level Factor Level Lime Limit MHz dBuV dB dBuV/m dBuV/m dB 940.888 25.96 -1.53 24.43 37.00 -12.57 960.328 27.13 -1.01 26.12 37.00 -10.88 979.624 27.31 -0.70 26.61 37.00 -10.39 998.848 25.71 -0.30 25.41 37.00 -11.59

Trace: 21

Ref Trace:

Condition: CISPR CLASS-B VERTICAL Test Operator:: William Zhuang Project #: : 08U11890 Company: : Silver Spring Configuration:: EUT with Laptop Mode : : : Tx, 900MHz, Hopping Max Power Target: : CISPR Class B

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dBuV/m	$\overline{dBuV/m}$	dB	-
1	42.180	48.70	-19.82	28.89	30.00	-1.11	Peak
2	98.730	46.34	-21.40	24.94	30.00	-5.06	Peak
3	297.090	50.18	-15.65	34.53	37.00	-2.47	Peak
4	458.040	42.79	-11.01	31.78	37.00	-5.22	Peak
5	862.590	34.91	-3.16	31.75	37.00	-5.25	Peak
б	894.780	37.05	-2.40	34.65	37.00	-2.35	Peak

Trace: 29

Ref Trace:

Condition: CISPR CLASS-B VERTICAL Test Operator:: William Zhuang Project #: : 08U11890 Company: : Silver Spring Configuration:: EUT with Laptop Mode : : : Tx, 900MHz, Hopping Max Power Target: : CISPR Class B

	From	Read	Factor	torrol	Limit	Over	Domark
	tred	rever	ractor	Tever	Line	DIMIC	Remark
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	-
1	804.736	35.12	-4.40	30.72	37.00	-6.28	Peak
2	826.880	35.19	-3.94	31.25	37.00	-5.75	Peak
3	837.632	35.11	-3.73	31.38	37.00	-5.62	Peak
4	859.136	36.57	-3.22	33.35	37.00	-3.65	Peak
5	883.584	29.47	-2.72	26.75	37.00	-10.25	Peak
б	892.032	37.07	-2.49	34.59	37.00	-2.41	Peak
7	913.536	33.20	-2.07	31.13	37.00	-5.87	Peak
в	922.112	30.29	-1.83	28.46	37.00	-8.54	Peak

Trace: 27

Ref Trace:

Condition: CISPR CLASS-B VERTICAL Test Operator:: William Zhuang Project #: : 08U11890 Company: : Silver Spring Configuration:: EUT with Laptop Mode : : : Tx, 900MHz, Hopping Max Power Target: : CISPR Class B

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	-
1	946.072	32.15	-1.41	30.73	37.00	-6.27	Peak
2	960.328	27.90	-1.01	26.89	37.00	-10.11	Peak
3	968.032	30.85	-0.93	29.92	37.00	-7.08	Peak
4	978.328	31.51	-0.75	30.76	37.00	-6.24	Peak

20 dB Bandwidth

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to approximately 5% of the 20 dB bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled.

RESULTS

No non-compliance noted:

Channel	Frequency	20 dB Bandwidth
	(MHz)	(kHz)
Low	902.3	222.5
Middle	914.9	220
High	926.9	215

Emission Designator: 223KF1D

20 dB BANDWIDTH LOW CHANNEL

20 dB BANDWIDTH MID CHANNEL

20 dB BANDWIDTH HIGH CHANNEL

HOPPING FREQUENCY SEPARATION

<u>LIMIT</u>

§15.247 (a) (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 10 kHz and the VBW is set to 30 kHz. The sweep time is coupled.

RESULTS

No non-compliance noted:

The separation is 312.5KHz.

HOPPING FREQUENCY SEPARATION

NUMBER OF HOPPING CHANNELS

LIMIT

§15.247 (a) (1) (i) For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to 3 % of the span. The analyzer is set to Max Hold.

RESULTS

No non-compliance noted:

83 Channels observed.

NUMBER OF HOPPING CHANNELS

AVERAGE TIME OF OCCUPANCY

LIMIT

§15.247 (a) (1) (i) For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 20 second scan, to enable resolution of each occurrence.

RESULTS

No non-compliance noted:

There are 3 pulses within the 20-second period. The on time for each pulse is 90 msec.

Therefore, the average time of occupancy in the specified 20-second period is 270 sec.

PULSE WIDTH

NUMBER OF PULSES IN 20 SECOND OBSERVATION PERIOD

PEAK OUTPUT POWER

PEAK POWER LIMIT

\$15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

§15.247 (b) (2) For frequency hopping systems operating in the 902-928 MHz band, employing at least 50 hopping channels: 1 watt; and employing less than 50 hopping channels, but at least 25 hopping channels: 0.25 watt.

§15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is 2.4 dBi, therefore the power limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer and the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

RESULTS

No non-compliance noted:

Channel	Frequency	P out
Low	902.3	29.56
Mid	914.9	29.22
High	926.9	28.84

OUTPUT POWER MID CHANNEL

OUTPUT POWER HIGH CHANNEL

MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

\$1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
(A) Lin	nits for Occupational	I/Controlled Exposu	res		
0.3-3.0 3.0-30 30-300 300-1500 1500-100,000	614 1842/f 61.4	1.63 4 <i>.89/</i> f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6 6	
(B) Limits	for General Populati	on/Uncontrolled Exp	posure		
0.3–1.34	614 824 <i>1</i> ř	1.63 2.19/f	*(100) *(180/f²)	30 30	

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz
* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their
employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure.
Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.
NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for
exposure or can not exercise control over their exposure.

exposure or can not exercise control over their exposure.

CALCULATIONS

Ε

Given

$$= \sqrt{(30 * P * G)} / d$$

and

 $S = E^{2}/3770$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P (mW) = P (W) / 1000 and d (cm) =100 * d (m) yields $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$ where d = distance in cm P = Power in mW G = Numeric antenna gain $S = \text{Power Density in mW/cm^2}$

Substituting the logarithmic form of power and gain using:

P (mW) = 10 ^ (P (dBm) / 10) and G (numeric) = 10 ^ (G (dBi) / 10) yields $d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$ where d = MPE distance in cm P = Power in dBm

G = Antenna Gain in dBi

 $S = Power Density Limit in mW/cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance.

Equation (1)

LIMITS

From §1.1310 Table 1 (B), S = 0.6 mW/cm^2

RESULTS

No non-compliance noted:

Power Density	Output	Antenna	S, mW/cm2	
Limit	Power	Gain	at 20cm	
(mW/cm^2)	(dBm)	(dBi)		
0.6	29.56	2.40	0.31	

MPE Distance: 14.4 cm

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

CONDUCTED SPURIOUS EMISSIONS

LIMITS

§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

The spectrum from 30 MHz to 10 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

No non-compliance noted:

SPURIOUS EMISSIONS, LOW CHANNEL, HOPPING

SPURIOUS EMISSIONS, LOW CHANNEL

∰ A g	★ Agilent 15:51:47 Sep 12, 2008									
Ref 37	dBm		At	ten 40 di	3				Mkr1 29	909 MHz .32 dBm
#Peak Log		1								
10 dB/										
Offst 11										
dB DI	Marke	r								
9.3 dBm	908.7	50000	MHz							
	29.3	2 dBm								
V1 S2 S3 FC	m	m	g. harry warden b	hun	mm	www.	m	mane	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	yan dan dan dan dan dan dari dari dari dari dari dari dari dari
ÂĂ										
Start (#Res E	Start 30 MHz									

SPURIOUS EMISSIONS, MID CHANNEL

🔆 🔆 Ag	j ilent 1	5:50:49	Sep 12, 2	008						
Ref 37	dBm		Att	ten 40 di	3				Mkr1 29	909 MHz .26 dBm
#Peak Log ↓ o		1 \$								
10 dB/ 0ffor										
dB										
DI 9.3	Displa	y Line								
dBm	5.20	udili								
V1 S2 S3 EC	m	mana	******	Turn	my	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	man	m	mm	mmm
ÂĂ										
Start 3	0 MH-2								Stop 9	9 28 64-2
#Res B	W 100 ki	lz		#	VBW 300	kHz		Sweep 95	68.3 ms (4	401 pts)

SPURIOUS EMISSIONS, HIGH CHANNEL, HOPPING

SPURIOUS EMISSIONS, HIGH CHANNEL, HOPPING

🔆 Ag	j ilent 1	5:49:22	Sep 12, 2	008						
Ref 37	dBm		At	ten 40 di	3				Mkr1 29	932 MHz .07 dBm
#Peak Lo∝		1								
LU9 10										
d₿/										
Offst										
dB										
DI	Nisnla	v Line								
9.0 dBm	8.99	dBm								
M1 S2	~~~~	m	-	hann			m	mm	·····	~~~~~w
S3 FC AA										
Start 3	30 MHz								Stop S	9.28 GHz
#Res B	W 100 kH	lz		#	VBW 300	kHz		Sweep 95	68.3 ms (4	01 pts)

4.4 POWERLINE CONDUCTED EMISSIONS

LIMIT

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56 *	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

* Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

No non-compliance noted:

900 HAN, LINE 1 RESULTS

900 HAN, LINE 2 RESULTS

Condition: CISPR CLASS-B Test Operator:: William Zhuang Project #: : 08U11890 Company: : Silver Spring Networks Configuration:: EUT With support equipment Mode: : Worst case (900MHz, 802.15.4) Target: : FCC Class B Voltage: : 115VAC / 60 Hz : L2: Peak (Blue), Average (Green)

2.4 GHz HAN, LINE 1 RESULTS

: L1: Peak (Blue), Average (Green)

2.4 GHz HAN, LINE 2 RESULTS

: L2: Peak (Blue), Average (Green)

900 MHz FHSS, LINE 1 RESULTS

Voltage:

Condition: CIS	PR CLASS-B
Test Operator:	: William Zhuang
Project #:	: 08U11890
Company:	: Silver Spring Networks
Configuration:	: EUT With support equipment
Mode:	: Normal (Hopping, Max Power)
Target:	: FCC Class B
Voltage:	: 115VAC / 60 Hz
	: L2: Peak (Blue), Average (Green)

SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP, SILVER SPRING NETWORKS

ANTENNA PORT CONDUCTED TESTS, CCS

RADIATED RF MEASUREMENT SETUP

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

END OF REPORT

Page 112of 113

Report Revision History

Revision	Revision Description	Pages Revised	Revised by	Date
No.				
-	Original Issue		T. Cokenias	10/12/08