EMISSIONS TEST REPORT FOR A LOW POWER TRANSMITTER

I. GENERAL INFORMATION

Requirement: FCC

Test Requirements: FCC Part 15

Applicant: Silver Spring Networks

575 Broadway Street Redwood City, CA 94063

FCC ID: OWS-NIC507 Model No.: 174-000084

II. DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)

The Silver Spring Networks (SSN) model 174-000084 is a radio module for electric power meter communications use. The board incorporates a 900 MHz frequency hopping i210 Mesh radio and a 2.4GHz 802.15.4 Zigbee Home Area Network (HAN radio.

III. TEST DATES AND TEST LOCATION

Testing was performed on various dates between 22 August – 27 September 2008. Radiated, 2.4 GHz antenna conducted power, 2.4 GHz antenna conducted spurious, and AC line conducted emissions tests were performed at:

Compliance Certification Services 47173 Benicia Street Fremont, CA 94538

J.M. Cohen

All other antenna port conducted tests were performed at Silver Spring Networks.

T.N. Cokenias

27 September 2008

EMC Consultant/Agent for Silver Spring Networks

15.203 Antenna connector requirement

The EUT uses a custom permanently attached integral antenna, a special sheet metal antenna manufactured by Silver Spring Networks for electric meters

Antenna description	Mfr.	Model No.	Gain
Built-in sheet metal electric meter	SSN	n/a	2.4 dBi at 915 MHz 1.5 dBi at 2.4 GHz

TEST PROCEDURES

All tests were performed in accordance with the applicable procedures called out in the following documents, unless otherwise noted:

FCC 47CFR15

RSS-210 Issue 7: Low power license exempt radio frequency devices (July 2007) RSS-212: Test Facilities and Test Methods for Radio Equipment

ANSI C63.4 – 2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

For each radio, tests were performed at three frequencies:

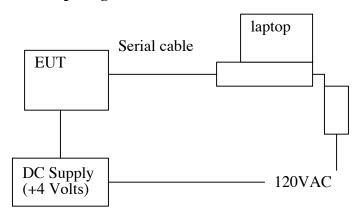
2.4 GHz HAN Radio

Channel 11 (LOW) – 2405.8 MHz Channel 18 (MID) – 2440.8 MHz Channel 26 (HIGH) – 2480.9 MHz

900 MHz FHSS

Channel 0 (LOW) – 902.3 MHz Channel 42 (MID) -914.9 MHz Channel 82 (HIFH) – 926.9 MHz

Test Equipment

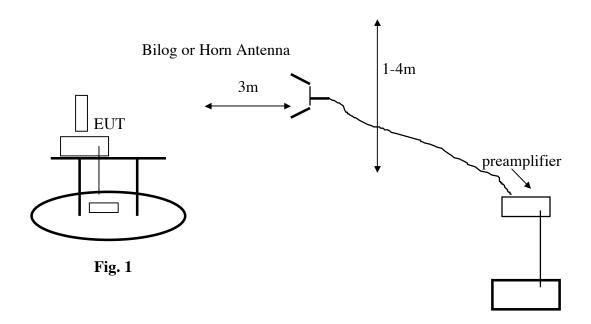

Compliance Certification Services:

Equipment	Mfr	Model	Asset No.	Cal Due
Spectrum analyzer	Agilent	E4446A	C01159	10/27/08
(radiated emissions				
2.4GHz Pout, spurs)				
EMI Receiver	HP	8542E	C00967	09/10/09
Bilog antenna	Sunol Sciences	JBI	C01016	09/28/08
Pre-amplifier	Agilent	HP8447D	C00885	03/31/09
Horn antenna	EMCO	3115	C00872	03/31/09
Pre-amplifier	Agilent	HP 8449B	C00749	09/27/08
EMI Receiver	R & S	ESHS-20	827129/006	01/27/09
LISN	FCC	LISN50/250-25-2	2023	09/27/08

Silver Spring Networks:

Equipment	Mfr	Model	Asset No.	Cal Date
Spectrum analyzer	Agilent	E44053	1077004	06/29/08

Test Set-up Diagram



Support Equipment

Equipment	Mfr	Model	Asset No.
DC Power Supply	Agilent	E3610A	2844
Laptop PC	Dell	PP01L	TW-0791UH1280-
			OC9-6558
AC/DC adapter	CUI Inc.	DSA-60W-20	2607HB

2.4 GHz HAN Radio Emissions Test Results

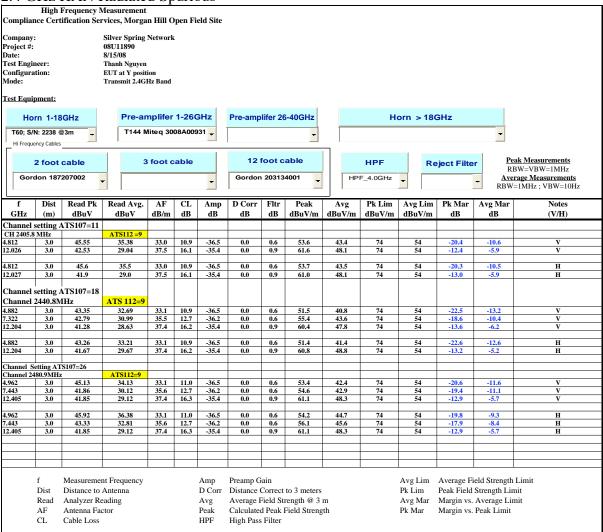
TEST RESULTS Radiated Test Set-up, 30-26 GHz

Test Procedures

Radiated emissions generated by the transmitter portion of the EUT were measured.

- 1. The EUT was placed on a wooden table resting on a turntable on the test site. The search antenna was placed 3m from the EUT. The EUT antenna was mounted in the with the EUT TX antenna pointed directly to the search antenna.
- 2. The turntable was slowly rotated to locate the direction of maximum emission at each emission falling in the restricted bands of 15.205.
- 3. Emissions were investigated to the 10th harmonic of the fundamental.
 - 4. Once maximum direction was determined, the search antenna was raised and lowered in both vertical and horizontal polarizations. The maximum readings so obtained are recorded in the data listed below.

Test Results: Worst-case results are presented. Refer to data sheets below. Restricted band emissions meet 54 dBuV/m. Other undesired emissions from the transmitter meet the -20 dBc requirement in 15.247(d).

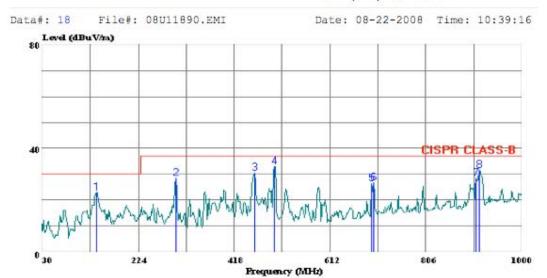

15.205 Restricted Frequency Bands

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505 (1)	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	
13.36 - 13.41	322 - 335.4		

15.209 General Field Strength Limits

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

2.4 GHz HAN Radiated Spurious


Radiated Emissions 30-1000 MHz

Compliance Certification Services

47173 Benicia Street

Fremont, CA 94538 Tel: (510) 771-1000 Fax: (510) 661-0888

Trace: 17 Ref Trace:

Condition: CISPR CLASS-B HORIZONTAL

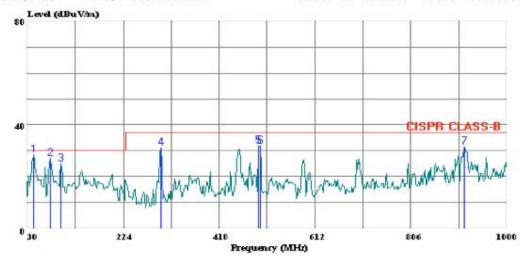
Test Operator:: William Zhuang

Project #: : 08U11890
Company: : Silver Spring
Configuration:: EUT with Laptop
Mode: : Tx, 802.15.4_2.4GHz, Ch. 1 Max Power
Target: : CISPR Class B

: CISPR Class B Target:

Page: 1

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1	138.640	40.80	-17.92	22.88	30.00	-7.12	Peak
2	300.630	43.90	-15.47	28.43	37.00	-8.57	Peak
2	458.740	41.47	-11.00	30.47	37.00	-6.53	Peak
4	499.480	42.80	-9.87	32.93	37.00	-4.07	Peak
4 5 6 7	696.390	32.75	-6.42	26.33	37.00	-10.67	Peak
6	701.240	33.00	-6.29	26.71	37.00	-10.29	Peak
7	906.880	30.55	-2.22	28.33	37.00	-8.67	Peak
8	914.640	33.74	-2.06	31.68	37.00	-5.32	Peak



Compliance Certification Services

47173 Benicia Street

Fremont, CA 94538 Tel: (510) 771-1000 Fax: (510) 661-0888

Data#: 20 File#: 08U11890.EMI Date: 08-22-2008 Time: 10:46:05

Trace: 19 Ref Trace:

Condition: CISPR CLASS-B VERTICAL Test Operator:: William Zhuang Project #: : 08U11890
Company: : Silver Spring
Configuration:: EUT with Laptop
Mode: : Tx, 802.15.4 2.4GHz, Ch. 1 Max Power
Target: : CISPR Class B

Page: 1


	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
187	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	-
1	43.580	49.03	-20.69	28.34	30.00	-1.66	Peak
2	75.590	50.64	-23.54	27.10	30.00	-2.90	Peak
3	96.930	46.65	-21.85	24.80	30.00	-5.20	Peak
4	300.630	46.56	-15.47	31.09	37.00	-5.91	Peak
5	497.540	41.95	-9.94	32.01	37.00	-4.99	Peak
5	502.390	41.69	-9.83	31.86	37.00	-5.14	Peak
7	914.640	33.72	-2.06	31.66	37.00	-5.34	Peak

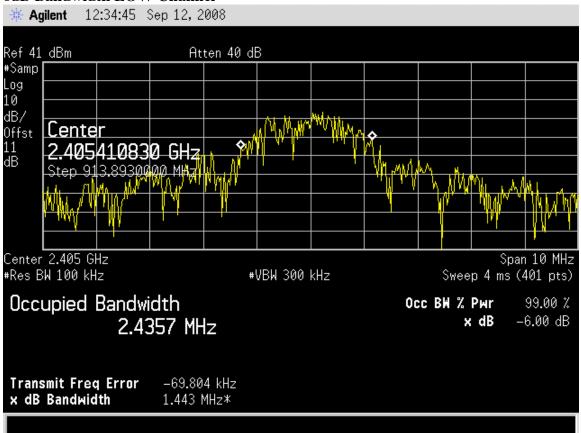
6dB Bandwidth for DTS

Test Requirement: FCC: 15.247 (a)2

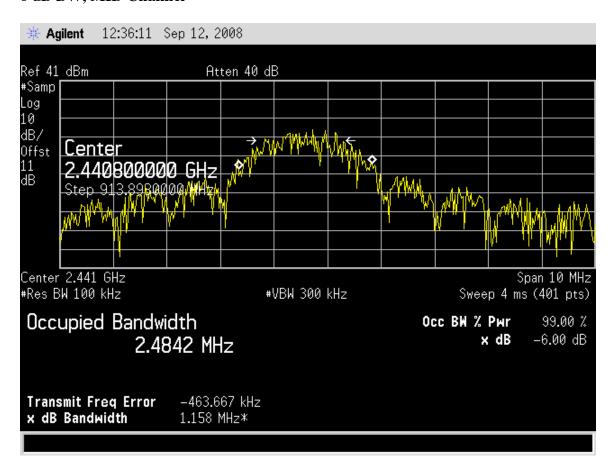
IC: RSS-210 Sec. 6.2.2(o)(iv)

Test Set-up

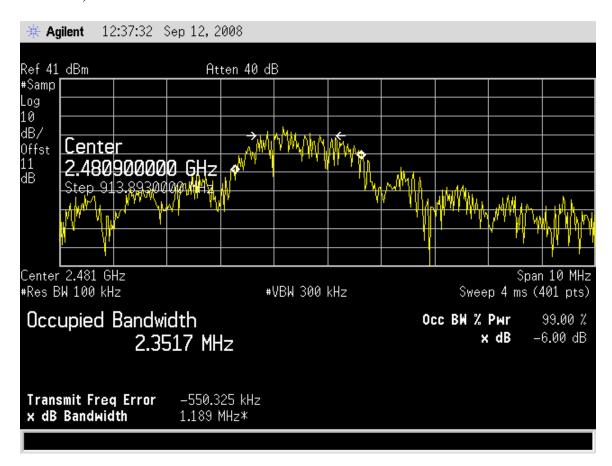
Test Procedures


A modified EUT with a coaxial cable attached to the radio antenna port was configured on a test bench. The cable's SMA connector was connected to the spectrum analyzer. The EUT transmission was continuous at the LOW channel. While the transmitter broadcast a steady stream of digital data, the analyzer OCCUPIED BW function was activated to measure 6 dB BW and 99% BW.

Test was repeated for MID and HIGH channels.


Test Results. No non-compliance noted. Refer to data sheets below.

Minimum 6 dB BW: 1.158 MHz Minimum Required: 500 kHz


6dB Bandwidth LOW Channel

6 dB BW, MID Channel



6 dB BW, HIGH Channel

99% Bandwidth

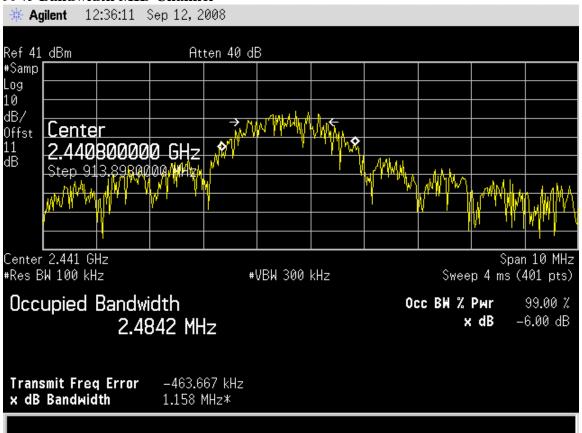
Test Setup

Limit

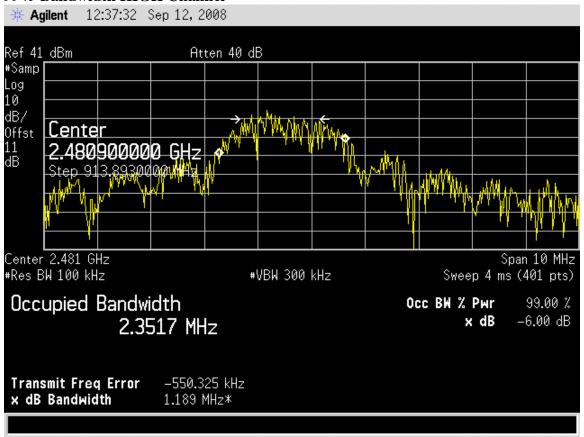
None: for reporting purposes only.

Test Procedure

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal OCCUPIED BW function was utilized.

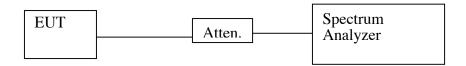

Test Results

Refer to spectrum analyzer charts below. 99% bandwidth approximately 2.4 MHz.


99% Bandwidth LOW Channel

99% Bandwidth MID Channel

99% Bandwidth HIGH Channel



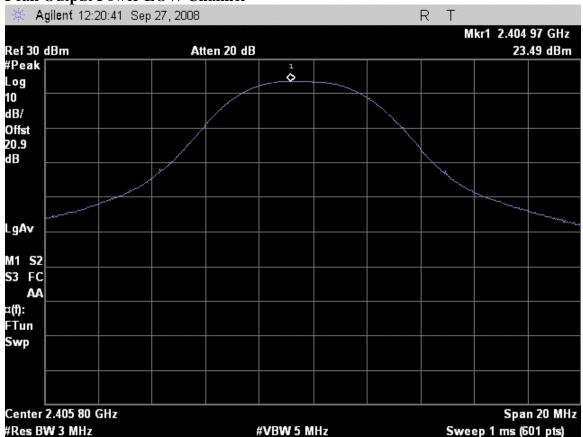
RF Power Output

Test Requirement: FCC: 15.247(b)

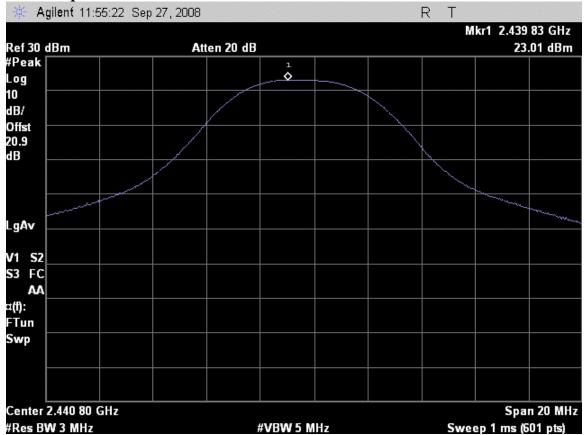
IC: RSS-210 Sec. 6.2.2(o)(iv)

Test Setup

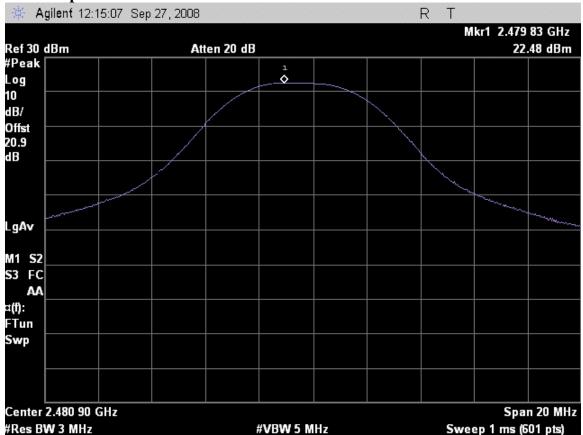
Test Procedures


- 1.The EUT was configured on a test bench. RBW was set to a value higher than the 2.5 MHz 99% band width: RBW=3 MHz, VBW=8 MHz
- 2. The spectrum analyzer detector was set to PEAK and the highest value was recorded using the analyzer PEAK SEARCH function.

Test Results


Refer to spectrum analyzer graphs. Reference level offset corrects for external attenuation and cable loss.

Channel	Frequency, MHz	Output Power, dBm
Low	2405.8	23.49
Mid	2440.8	23.01
High	2480.9	22.15


Peak Output Power LOW Channel

Peak Output Power MID Channel


Peak Output Power HIGH Channel

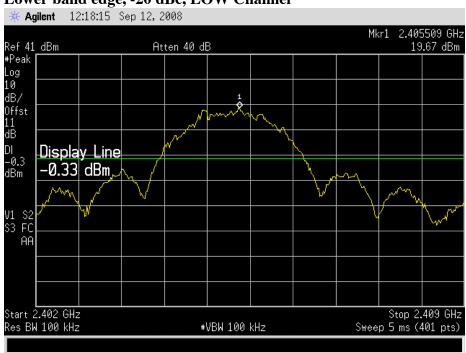
Spurious Emissions, Conducted Test Requirement: FCC: 15.247(d)

IC: RSS-210 Sec. 6.2.2(o)(e1)

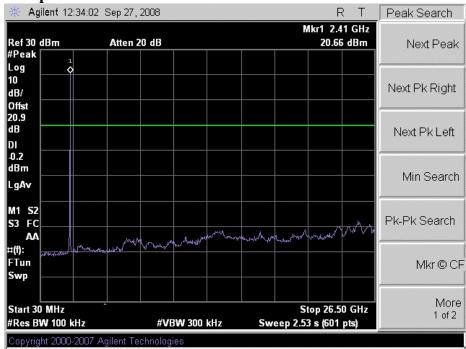
Test Setup

Test Procedure

1. The EUT was configured on a test bench. The cable was connected between the EUT antenna port and the spectrum analyzer input port.

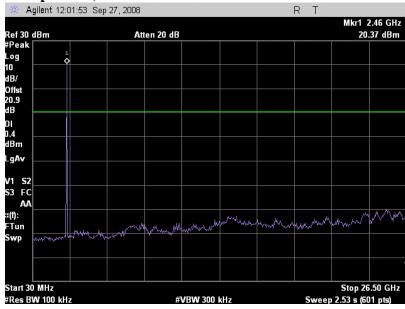

Spectrum analyzer RES BW was set to 100 kHz. While the transmitter broadcast a steady stream of digital data, the analyzer MAX HOLD function was used to capture the envelope of the transmission.

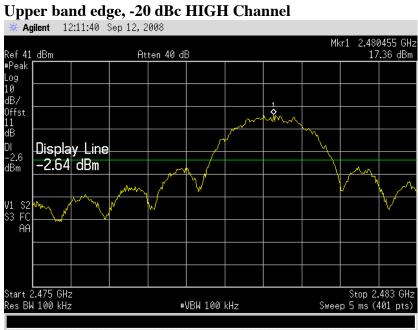
Readings were taken out to 10fo.


Test Results

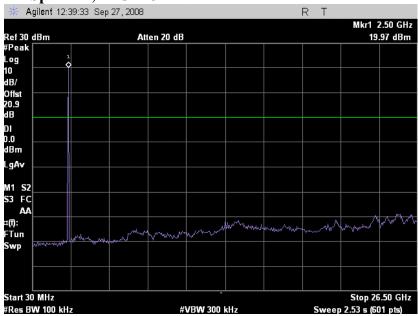
Refer to spectrum analyzer plots. Data shows out of band emissions are suppressed well below the -20 dBc minimum required by the Rules.

Lower band edge, -20 dBc, LOW Channel


TX Spurious Emissions LOW Channel



-20 dBc MID Channel Reference



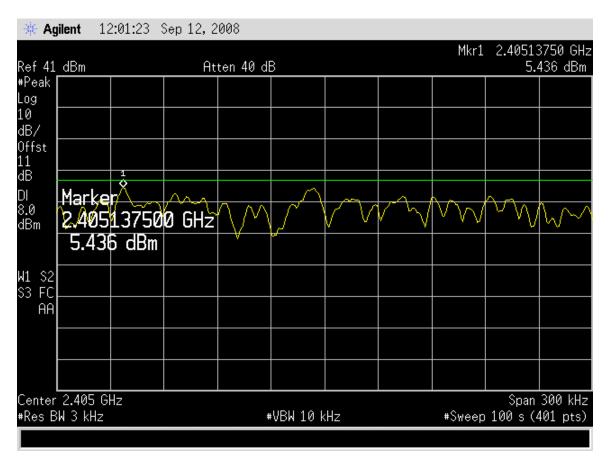
TX Spurious, MID Channel

TX Spurious, HIGH Channel

Power Spectral Density Test Requirement: 15.247(e)

RSS-210 Sec. 6.2.2(o)(iv)

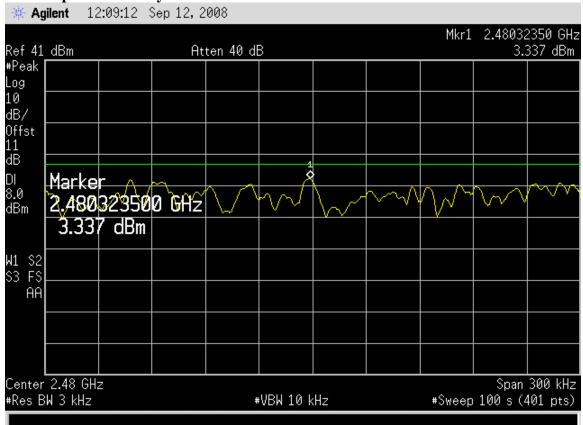
Test Setup


Test Procedure

- 1. Determine frequency at which maximum emission occurs during pre-scan.
- 2. Reduce SPAN to 300 kHz, while adjusting tuning frequency so that peak remains at center of screen.
- 3. Set RES BW = 3 kHz, VID BW = 10 kHz, SWEEP = 100 sec.
- 4. Record highest reading and compare to 8 dBm limit.

Test Results

Maximum PSD was 5.4 dBm. Refer to attached spectrum analyzer chart.


Power Spectral Density LOW Channel

Power Spectral Density MID Channel

Power Spectral Density HIGH Channel

RF Exposure (MPE) Calculations

					1	1
FCC ID: OWS-NIC507						
IC: 5975A- NIC507						
Utility Meter WLAN Transceiver 2.4 GHz		Calculate mW/cm2	⊥ 2 here. Enter fr	l requency in MHz		
RF Hazard Distance Calculation		Calculation of Limit	ts from 1.1310 T	able 1		
					Controlled	Uncontrolled
					Ave 6 min	Ave 30 min
mW/cm2 from Table1: 1.00 (E: 61 V/m)		F(MHz)	Actual F, MHz			Gen, mW/cm2
	_	0.3-3	0.5		100.0	100.0
Max RF Power TX Antenna MPE distance S, mW/cm@	Comment	3.0 - 30.0	5		180.0	36.0
P, dBm G, dBi cm at 20 cm		30.0-300	55		1.0	0.2
		300-1500	902		3.0	0.60
24.3 1.0 5.2 0.07		1500-100000	5555		5.0	1.0
		Enter P(mW)	Equivalent dBm	Enter dBm	Equivalent Wat	ts
Basis of Calculations:		64	18.1	<u>18.1</u>	64.6	
E^2/3770 = S, mW/cm2						
E, V/m = (Pwatts*Ggain*30)^.5/d, meters						
	0^(PdBm-30+GdBi)/10)				
S@20cm = 20 log (MPE dist/20cm)						
NOTE: For mobile or fixed location transmitters, minimum s	eparation distance is fo	r FCC compliance is 20 cr	n,			
even if calculations indicate MPE distance is less						