Test of Silver Spring Networks NIC 451 To: FCC 47 CFR Part15.247 & IC RSS-210 Test Report Serial No.: SSNT92-U2A Rev A

Test of Silver Spring Networks NIC 451

To FCC 47 CFR Part15.247 & IC RSS-210

Test Report Serial No.: SSNT92-U2A Rev A

This report supersedes: None

- Manufacturer: Silver Spring Networks 555 Broadway Street Redwood City California 94063, USA
- Product Function: Machine to machine communication

Copy No: pdf Issue Date: 27th April 2015

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:3 of 43

This page has been left intentionally blank

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Silver Spring Networks NIC 451 To: FCC 47 CFR Part15.247 & IC RSS-210 Serial #: SSNT92-U2A Rev A Issue Date: 27th April 2015 Page: 4 of 43

TABLE OF CONTENTS

AC	CRE	DITATION, LISTINGS & RECOGNITION	5
	TES	TING ACCREDITATION	. 5
	REC	OGNITION	. 6
	PRO	DUCT CERTIFICATION	7
1.	TES	T RESULT CERTIFICATE	9
2.	REF	ERENCES AND MEASUREMENT UNCERTAINTY	10
	2.1.	Normative References	10
	2.2.	Test and Uncertainty Procedures	11
3.	PRC	DUCT DETAILS AND TEST CONFIGURATIONS	12
	3.1.	Technical Details	12
	3.2.	Scope of Test Program	13
	3.3.	Product Description	14
	3.4.	Equipment Model(s) and Serial Number(s)	15
	3.5.	Antenna Details	16
	3.6.	Cabling and I/O Ports	16
	3.7.	Test Configurations	16
	3.8.	Equipment Modifications	16
	3.9.	Deviations from the Test Standard	16
4.	TES	T EQUIPMENT CONFIGURATION(S)	17
5.	TES	T SUMMARY	19
6.	TES	T RESULTS	20
	6.1.	Radiated Spurious Emissions	20
	6.2.	Radiated Emissions – Digital Emissions (0.03-1 GHz)	35
	6.3.	AC Wireline Conducted Emissions (150 kHz – 30 MHz)	41

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:5 of 43

ACCREDITATION, LISTINGS & RECOGNITION

TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:6 of 43

RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	тсв	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
1	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	САВ	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	САВ	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB APEC MRA 1		
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

**APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification N/A - Not Applicable

**EU MRA – European Union Mutual Recognition Agreement. Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

**NB – Notified Body

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:7 of 43

PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

<u>United States of America – Telecommunication Certification Body (TCB)</u> TCB Identifier – US0159

Industry Canada – Certification Body CAB Identifier – US0159

<u>Europe – Notified Body</u> Notified Body Identifier - 2280

Japan – Recognized Certification Body (RCB) RCB Identifier - 210

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:8 of 43

DOCUMENT HISTORY

Document History						
Revision	Date	Comments				
Draft						
Rev A	27 th April 2015	Initial release.				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:9 of 43

1. TEST RESULT CERTIFICATE

Manufacturer:	Silver Spring Networks 555 Broadway Street Redwood City California 94063, USA	Tested By:	MiCOM Labs, Inc. 575 Boulder Court Pleasanton
EUT:	Network Interface Card (NIC)	Phone:	+1 925 462 0304
Model:	NIC 451-0523-10	Fax:	+1 925 462 0306
S/N:	Radiated 00:13:50:07:00:00:03:CD		
Test Date(s):	18th March 2015	Website:	www.micomlabs.com

STANDARD(S)TEST RESULTSFCC 47 CFR Part15.247 & IC RSS-210EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs, Inc.

Gordon Hurst President & CEO MiCOM Labs, Inc.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:10 of 43

2. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

2.1. Normative References

Ref.	Publication	Year	Title
(i)	FCC 47 CFR Part 15.247	2014	CFR Title 47 Part 15.247 – Radio Frequency Devices; Subpart C – Intentional Radiators
(ii)	KDB 558074 D01	June 6,2014	DTS Meas Guidance v03r02 Guidance for performing compliance measurements on Digital Transmission Systems (DTS) operating under section 15.247.
(iii)	KDB 558074 D02	June 5,2014	DTS Part 15.247 Old Rule. Guidance for performing compliance measurements on Digital Transmission Systems (DTS) operating under section 15.247.
(iv)	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
(v)	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(vi)	CISPR 22	2008	Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
(vii)	ICES-003	lssue 5 2012	Spectrum Management and Telecommunications; Interference-Causing Equipment Standard. Information Technology Equipment (ITE) – Limits and methods of measurement.
(viii)	RSS-210 Annex 8	2010	Radio Standards Specification 210; License- exempt Radio Apparatus (All Frequency Bands): Category I Equipment
(ix)	RSS-Gen	2014	General Requirements and Information for the Certification of Radiocommunication Equipment
(x)	FCC 47 CFR Part 2.1033	2014	FCC requirements and rules regarding photographs and
(xi)	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(xii)	M 3003	Edition 3 Nov. 2012	Expression of Uncertainty and Confidence in Measurements
(xiii)	A2LA	April 2014	Reference to A2LA Accreditation Status – A2LA Advertising Policy

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:11 of 43

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:12 of 43

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details

Details	Description
Purpose:	Test of the Silver Spring Networks NIC 451 to FCC Part 15.247 and Industry Canada RSS-210 regulations
Applicant:	As Manufacturer
Manufacturer:	Silver Spring Networks
	Redwood City
	California 94063, USA
Laboratory performing the tests:	MiCOM Labs, Inc.
	575 Boulder Court
	Pleasanton, California 94566 USA
Test report reference number:	SSNT92-U2A Rev A
Standard(s) applied:	FCC 47 CFR Part15.247 & IC RSS-210
Date EUT received:	8th October 2013
Dates of test (from - to):	18th March 2015
No of Units Tested:	Тwo
Type of Equipment:	Network Interface Card (NIC)
Manufacturers Trade Name:	Silver Spring Networks
Model:	NIC 451-0523-10
Location for use:	Indoor/Outdoor
Declared Frequency Range(s):	902 – 928 MHz
Type of Modulation:	900 MHz: FSK & GFSK
Declared Nominal Output	902-928 MHz :+30 dBm
Power:	
EUT Modes of Operation:	FHSS
Transmit/Receive Operation:	Transceiver, Simplex
Rated Input Voltage:	Nominal Voltage 4 Vdc
Operating Temperature Range:	-40°C to +85°C (client declared range)
ITU Emission Designator(s):	900 MHz 100 kbps 200 kHz BW GFSK: 120KF1D
	900 MHz 100 kbps 300 kHz BW FSK: 205KF1D
	900 MHz 150 kbps 300 kHz BW GFSK: 169KF1D
	900 MHZ 300 KDPS 400 KHZ BW GFSK: 319KF1D
EUT Dimensions:	2.75" diameter by 0.75" high
EUT Weight :	50 grams
Primary function of equipment:	Machine to machine communication over 900 MHz FHSS

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:13 of 43

3.2. Scope of Test Program

The scope of the test program was to test the Silver Spring Networks NIC 451 in the frequency ranges 902 - 928 MHz against the emissions requirements of FCC 47 CFR Part 15.247 and Industry Canada RSS-210 specifications.

This product was previously tested by MiCOM Silver Spring Networks NIC 451 in the frequency ranges 902 - 928 MHz against FCC 47 CFR Part 15.247 and Industry Canada RSS-210 specifications with results reported in MiCOM test report SSNT69-U2 Rev B published in November 2013. The product now uses new integral and external antennas. The scope of this test program is limited to performing radiated emissions testing.

Product Description

The following product description was provided by the manufacturer.

The Silver Spring Networks NIC 451 is a network interface card (NIC) designed to fit inside existing photocell products as a retrofit to provide communication and control for street lights. The NIC 451 is designed to be integrated into LED fixtures and control nodes, and provides advanced functionality for controlling external devices such as dimmable electronic ballasts and LED fixtures. The NIC uses industry standard interfaces (such as 1-10V or DALI) to control these devices. An optional GPS chip can be added to provide accurate location and time and/or real-time clock (RTC) can be provided with backup battery/super caps to keep time, even when the NIC has lost power

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:14 of 43

3.3. Product Description

The following product model information was declared by the manufacturer.

The manufacturer declared that the variant tested represents the worst case covering all of the available options.

			900MHz	2.4GHz	Int	Ext			1-10V
Models	FCC ID	IC ID	Mesh	Mesh	Ant	Ant	GPS	RTC	Dimmer
NIC 451-0101	OWS-NIC451	5975A-NIC451	Х		Х				
NIC 451-0102	OWS-NIC451	5975A-NIC451	Х			Х			
NIC 451-0103	OWS-NIC451	5975A-NIC451	Х		Х	Х			
NIC 451-0501	OWS-NIC452	5975A-NIC452	Х	Х	Х				
NIC 451-0502	OWS-NIC452	5975A-NIC452	Х	Х		Х			
NIC 451-0503	OWS-NIC452	5975A-NIC452	Х	Х	Х	Х			
NIC 451-0103-03	OWS-NIC451	5975A-NIC451	Х		Х	Х		Х	
NIC 451-0103-04	OWS-NIC451	5975A-NIC451	Х		Х	Х		Х	Х
NIC 451-0101-03	OWS-NIC451	5975A-NIC451	Х		Х			Х	
NIC 451-0102-03	OWS-NIC451	5975A-NIC451	Х			Х		Х	
NIC 451-0503-03	OWS-NIC452	5975A-NIC452	Х	Х	Х	Х		Х	
NIC 451-0121-05	OWS-NIC451	5975A-NIC451	Х		Х		Х		
NIC 451-0123-05	OWS-NIC451	5975A-NIC451	Х		Х	Х	Х		
NIC 451-0523-05	OWS-NIC452	5975A-NIC452	Х	Х	Х	Х	Х		
NIC 451-0523-10	OWS-NIC452	5975A-NIC452	Х	Х	Х	Х	Х	Х	Х

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:15 of 43

Antenna Options

The NIC 451 (NIC 451-0523-10) has two antenna options; integral and external. Both options were tested.

The NIC 451 (NIC 451-0523-10) was tested with the following modulations and data rates. Results for the external antenna are included in this report.

Frequency Band	Modulation	Data Rate / Bandwidth
902 – 928 MHz	FSK	100 kBit/s / 300 kHz
	GFSK	100 kBit/s / 200 kHz
	GFSK	150 kBit/s / 300 FSK
	GFSK	300 kBit/s / 400 kHz

3.4. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	e Equipment Description T/ (Including Brand Name) Mfr		Model No.	Serial No.
EUT	Network Interface Card	Silver Spring Network	NIC 451-0523- 10	Radiated 00:13:50:07:00:00:03:CD
Support	Laptop	IBM	ThinkPad	None

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

3.5. Antenna Details

Antenna type (dipole, chip, etc)	Frequency Band (MHz)	Antenna Gain (dBi)	Manufacturer	Internal/ External	Model No.
Omni- directional	870 - 930 2400 - 2500	1	World Products	Internal	WPANT10061- S1C
Omni-	860 - 960	2.5	World	E dama e l	WPANT30088-
directional	2400 - 2500	4.5	Products	External	S1A

3.6. Cabling and I/O Ports

Number and type of I/O ports

1. NONE

3.7. Test Configurations

Test configurations

Frequency Band	Modulation	Data Rate (kBit/s)	Channel Center Frequency (MHz)
	FSK	100	902.3, 915.2, 927.5
002 028 MH-	GFSK	100	902.2, 915.2, 927.8
902 – 926 MINZ	GFSK	150	902.3, 915.2, 927.5
	GFSK	300	902.4, 915.6, 927.6

3.8. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

3.9. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:17 of 43

4. TEST EQUIPMENT CONFIGURATION(S)

Radiated Testing

The following tests were performed using the radiated test set-up shown in the diagram below.

6.7 Radiated Spurious Emissions (1 - 10 GHz)

6.8 Radiated Digital Emissions (0.03 – 1 GHz)

Radiated Emission Measurement Setup

Radiated Emission Test Setup

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Silver Spring Networks NIC 451 To: FCC 47 CFR Part15.247 & IC RSS-210 Serial #: SSNT92-U2A Rev A Issue Date: 27th April 2015 Page: 18 of 43

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CY101	04R08507	Not Required
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	31 Jul 2015
301	5470 to 5725 MHz Notch Filter	Microtronics	RBC50704	001	08 Oct 2015
302	5150 to 5350 MHz Notch Filter	Microtronics	BRC50703	002	08 Oct 2015
303	5725 to 5875 MHz Notch filter	Microtronics	BRC50705	003	08 Oct 2015
310	SMA Cable	Micro-Coax	UFA210A-0- 0787-3G03G0	209089-001	30 Oct 2015
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	14 Aug 2015
342	2.4 GHz Notch Filter	EWT	EWT-14-0203	H1	08 Oct 2015
343	5.15 GHz Notch Filter	EWT	EWT-14-0200	H1	08 Oct 2015
344	5.35 GHz Notch Filter	EWT	EWT-14-0201	H1	08 Oct 2015
345	5.46 GHz Notch Filter	EWT	EWT-14-0202	H1	08 Oct 2015
377	Band Rejection Filter 5150 to 5880MHz	Microtronics	BRM50716	034	08 Oct 2015
396	2.4 GHz Notch Filter	Microtronics	BRM50701	001	07 Oct 2015
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	23 Oct 2015
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	10 Oct 2015
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	30 May 2015
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
414	DC Power Supply 0-60V	HP	6274	1029A01285	Cal when used
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
502	Test Software for Radiated Emissions	EMISoft	Vasona	Version 5 Build 59	Not Required
87	Uninterruptible Power Supply	Falcon Electric	ED2000-1/2LC	F3471 02/01	Cal when used

Assets Utilized for Radiated Emission Testing

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:19 of 43

5. TEST SUMMARY

List of Measurements

The following table represents the list of emission measurements required under the FCC CFR47 Part 15.247, Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(d) 15.205 15.209 A8.5	Radiated Emissions above 1 GHz	Transmitter	Radiated	Complies	6.1
15.247(d) 15.205 15.209 A8.5 8.9	Radiated Emissions below 1 GHz		Radiated	Complies	6.2
15.207 8.8	Conducted	AC Wireline Conducted Emissions	Conducted	Test not applicable EUT is dc powered	6.3

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 3.8 - Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:20 of 43

6. TEST RESULTS

6.1. Radiated Spurious Emissions

Transmitter Radiated Spurious Emissions; Peak Field Strength Measurements; and Radiated Band Edge Measurements – Restricted Bands

FCC, Part 15 Subpart C §15.247(d) 15.205; 15.209 Industry Canada RSS-210 §A8.5, §2.2 Industry Canada RSS-Gen §8.10

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:21 of 43

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FOwhere: FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL - AG + NFL CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

For example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \text{ dB}\mu\text{V/m}$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

NOTE: KDB 662911 was implemented for Out-of-Band measurements. Where necessary Option (2) Measure and add 10 log (N) dB was implemented

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:22 of 43

6.1.1. Integral Antenna - Radiated Spurious Emissions

Tes	st Freq.	902.3 MI	Ηz						Engineer	JMH		
١	Variant	300 KHz	, 100 KB	it/s				Т	emp (⁰C)	18		
Freq.	Range	30-1000	MHz					Rel.	Hum.(%)	43		
Power S	Setting	49						Press	. (mBars)	1005		
Ai	ntenna	Integral						Duty (Cycle (%)	100%		
Test N	lotes 1	NIC 451	-0523-05	, MAC: 00:13	3:50:07:00:00:03:	CD, IN	NT Ante	enna W	PANT1006	1-S1C		
Test N	lotes 2											
Miceim	Labs	dBuV/m Vasona by EMiSoft 18 Mar 15 10:15 500 500 500 500 500 500 500 5										
Formally	meası	ured em	nission	peaks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
902.806	69.1	6.3	-7.6	67.8	Peak [Scan]	Н						FUND
824.284	42.5	6.2 -8.1 40.6 Quasi Max H 101 251 46 -5.43 Pass								Pass		
850.339	42.5	6.3	-8.1	40.7	Quasi Max	Н	99	227	46	-5.31	Pass	
876.280	41.6	6.3	-8.0	39.8	Quasi Max	Н	165	259	46	-6.16	Pass	
	1											
Legend:	TX = T	ransmitte	r Emissio	ons; DIG = Di	gital Emissions; F	FUND	= Fund	lamenta	al; WB = W	ideband E	mission	
	NRB =	Non-Rest	tricted Ba	and; RB = Re	estricted Band. L	imits p	er 15.2	:05				

NOTE: The emission breaking the limit line is the fundamental frequency. A notch filter was used to attenuate the fundamental frequency

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:23 of 43

Tos	t Eroa	015 2 ML	1-						Enginoor				
165	kariant	915.5 Mir	12	2:1/-				-					
	variant	300 KHZ	, 100 KE	Bit/S					emp (°C)	18			
Freq.	Range	30-1000	MHz					Rel.	Hum.(%)	43			
Power S	Setting	60						Press	. (mBars)	1005			
Ai	ntenna	Integral						Duty (Cycle (%)	100%			
Test N	lotes 1	NIC 451-	0523-0	5, MAC: 00:1	3:50:07:00:00:03	3:CD, I	NT Ant	enna V	VPANT100	61-S1C			
Test N	lotes 2												
MiCem	Binding of the second s												
Formally	/ meas	ured em	nission	n peaks									
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
916.413	53.8	6.4	-7.6	52.6	Peak [Scan]	Н						FUND	
882.252	38.8	6.3	-8.0	37.0	Quasi Max	Н	156	259	46	-8.96	Pass		
864.172	40.8	6.3	-8.1	38.9	Peak [Scan]	Н	98	361	46	-7.08	Pass		
Legend:	TX = T	ransmitter	Emissi	ons; DIG = D	igital Emissions;	FUND) = Fun	damen	tal; WB = V	lideband I	Emissior	١	
	NRB =	Non-Rest	ricted B	and; RB = R	estricted Band. I	Limits	per 15.	205					

NOTE: The emission breaking the limit line is the fundamental frequency. A notch filter was used to attenuate the fundamental frequency

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:24 of 43

	_												
Test	Freq.	927.5 M	Hz						Engineer	JMH			
V	ariant	300 KHz	:, 100 KB	it/s				Т	emp (⁰C)	18			
Freq. F	Range	30-1000	MHz					Rel.	Hum.(%)	43			
Power S	etting	60						Press.	. (mBars)	1005			
An	tenna	Integral						Duty (Cycle (%)	100%			
Test No	otes 1	NIC 451	-0523-05	, MAC: 00:13	3:50:07:00:00:03	CD, IN	NT Ante	enna W	PANT1006	1-S1C			
Test No	otes 2												
MiCOM	ViceNubs dBuV/m Vasona by EMiSoft 18 Mar 15 11:24 to the form of the second state												
Formally	meası	ured em	ission	peaks									
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
928.076	59.7	6.4	-7.3	58.8	Peak [Scan]	V						FUND	
849.504	42.2	6.3	6.3 -8.1 40.4 Quasi Max H 99 271 46 -5.65 Pass										
875.495	40.4	6.3	-8.0	38.7	Quasi Max	Н	152	272	46	-7.35	Pass		
Legend:	TX = T	ransmitte	r Emissic	ons; DIG = Di	gital Emissions; I	FUND	= Fund	lamenta	al; WB = W	ideband E	mission		
	NRB =	Non-Res	tricted Ba	and; RB = Re	estricted Band. L	imits p	er 15.2	:05					

NOTE: The emission breaking the limit line is the fundamental frequency. A notch filter was used to attenuate the fundamental frequency

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:25 of 43

Tes	st Freq.	902.3 N	ЛНz						Engineer	JMH		
Ņ	Variant	300 KH	lz, 100 KE	Bit/s				Т	emp (ºC)	18		
Freq.	Range	1-10 G	Hz					Rel.	Hum.(%)	43		
Power	Setting	49						Press	. (mBars)	1005		
A	ntenna	Integra	I					Duty (Cycle (%)	100%		
Test N	lotes 1	NIC 45	1-0523-05	5, MAC: 0	0:13:50:07:00:00):03:Cl	D, INT .	Antenn	a WPANT1	0061-S1C	;	
Test N	lotes 2											
Micen	/ Labs	1: Pi Ai F F 100 (8GHz (\$snt92\ssn	8 Mar 15 15 [1] Ho [2] Ve PK Lm Av Ln + Debug / Meas Dist Spec Dist requency: 1 0.0 192 902.3 In	:50 rizonti rtical It It 3m 3m MHz It 1-10								
Formally	y mea	sured	emissio	on pea	ks							
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV /m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2706.864	60.2	4.2	-11.4	53.0	Average Max	V	99	81	54	-1.02	Pass	RB
2706.864	62.4	4.2	-11.4	55.2	Peak Max	V	99	81	74	-18.85	Pass	RB
5413.727	56.6	6.0	-11.2	51.5	Peak Max	V	112	139	74	-22.53	Pass	RB
5413.727	49.6	6.0	-11.2	44.4	Average Max	V	112	139	54	-9.57	Pass	RB
9022.946	41.5	8.1	-6.9	Average Max	V	108	85	54	-11.3	Pass	RB	
9022.946	51.2	8.1	-6.9	52.5	Peak Max	V	108	85	74	-21.6	Pass	RB
1793.587	59.6	3.4	-13.8	49.2	Peak [Scan]	Н						NRB
Legend:	TX = 1	ransmitt	er Emissio	ons; DIG	= Digital Emissio	ns; FU	IND = F	undam	nental; WB	= Widebar	nd Emiss	sion
	NRB =	Non-Re	stricted B	and; RB :	= Restricted Band	d. Lim	its per	15.205				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:26 of 43

Tes	st Freq.	915.3 N	ЛНz						Engineer	JMH		
,	Variant	300 KH	lz, 100 KE	Bit/s				Т	emp (°C)	18		
Frea.	Range	1-10 G	Hz					Rel.	Hum.(%)	43		
Power	Settina	49						Press	. (mBars)	1005		
Α	ntenna	Integra						Duty (Cycle (%)	100%		
Test N	Notes 1	NIC 45	1-0523-05	5 MAC: (0.13.50.07.00.00)·03·Cl	D INT	Antenn	a WPANT1	0061-S1C	:	
Test N	Notes 2		1 0020 00	,			2,					
WICKNESS dBuV/m Vasona by EMISoft 18 Mar 15 19 Mar 1											:06 rizont: ttical it it il 3m 3m MHz it 1-10	
Formal	lly mea	sured	emissio	on peal	<s< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></s<>							
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV /m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2745.604	57.5	4.2	-11.4	50.4	Average Max	Н	201	138	54	-3.63	Pass	
2745.604	60.0	4.2	-11.4	52.8	Peak Max	Н	201	138	74	-21.16	Pass	
9151.854	40.1	8.2	-7.2	41.1	Average Max	V	123	295	54	-12.9	Pass	
9151.854	50.3	8.2	-7.2	Peak Max	V	123	295	74	-22.71	Pass		
5489.919	51.5	6.1	-11.2	46.4	Peak [Scan]	V	122	295	54	-7.6	Pass	
1830.335	55.8	3.4	-13.5	45.7	Peak [Scan]	Н	100	-1	54	-8.3	Pass	
	1											
Legend:	TX = 1	ransmitt	er Emissio	ons; DIG	= Digital Emissio	ns; FU	ND = F	undam	ental; WB	= Widebar	nd Emiss	sion
	NRB =	= Non-Re	stricted B	and; RB :	= Restricted Bane	d. Lim	its per	15.205				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:27 of 43

Tes	t Freq.	927.5 N	ИНz						Engineer	JMH		
١	/ariant	300 KH	lz, 100 K	Bit/s				Т	emp (°C)	18		
Freq.	Range	1-10 G	Hz					Rel.	Hum.(%)	43		
Power S	Settina	60						Press	(mBars)	1005		
Δr	ntenna	Integra	1					Duty (Cycle (%)	100%		
Test N	lotes 1	NIC 45	1_0523_(5 MAC: (0.13.50.07.00.00	03.01	דואו כ	Antenn	2 WPANT1	0061-S10		
Tost N	lotes 2	1110 40	1 0020 0	, MAO. C	0.10.00.07.00.00		5 , INT 1	Antonin		0001-010	,	
MiC®N	Vasona by EMiSoft											
Formal	ly mea	sured	emissi	ion peal	ĸs							
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/ m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2782.559	57.8	4.2	-11.3	50.7	Peak Max	н	192	135	74	-23.28	Pass	RB
2782.559	54.5	4.2	-11.3	47.4	Average Max	Н	192	135	54	-6.57	Pass	RB
8347.230	41.5	7.8	-7.1	42.2	Average Max	V	105	143	54	-11.83	Pass	RB
8347.23	51.6	7.8	-7.1	52.3	Peak Max	V	105	143	74	-21.7	Pass	RB
9837.675	46.4	8.6	-6.0	49.0	Peak [Scan]	V	100					NRB
1847.804	54.6	3.4	-13.5	44.6	Peak [Scan]	Н	98					NRB
5562.256	51.4	6.1	-11.2	46.3	Peak [Scan]	V	98					NRB
		-			·	•	·					
Legend:	TX = T	ransmitt	er Emiss	ions; DIG	= Digital Emissio	ns; FU	ND = F	undam	ental; WB	= Widebar	nd Emiss	ion
	NRB =	Non-Re	stricted I	Band; RB :	= Restricted Ban	d. Lim	its per	15.205				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:28 of 43

6.1.2. External Antenna - Radiated Spurious Emissions

Tes	st Freq.	902.3 M	Hz						Engineer	JMH			
,	Variant	300 KH:	z, 100 KBi	t/s				٦	ſemp (⁰C)	18			
Freq.	Range	30-1000) MHz					Rel.	Hum.(%)	43			
Power	Setting	60						Press	. (mBars)	1005			
A	ntenna	Externa						Duty (Cycle (%)	100%			
Test	Notes 1	NIC 451	-0523-05,	MAC: 00:13	:50:07:00:00:03:0	CD, EX	(T Ante	enna W	PANT3008	8-S1A			
Test	Notes 2												
MiCem	.abs	dBuV/m 60.0 40.0 30.0 20.0 10.0 0.0 30.0 File	130.0 2 liated Emis name: c:\pr	Va:	430.0 530.0 63 Ten hisoft - vasona\res	ft	30.0 8 FCC 15	80.0 S 209 RE ams\ssi	18 Ma op + + + + + + + + + + + + +	ar 15 12:03 [1] Horizo [2] Vertica Qpk Lmt Debug Formal as Dist 3m to Dist 3m to Dist 3m tency: MHz	 nti 11		
Formally	measu	ired en	nission	peaks									
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
902.806	67.2	6.3	-7.6	66.0	Peak [Scan]	Н						FUND	
876.289	43.3	6.3	-8.0	41.6	Quasi Max	Н	99	105	46	-4.45	Pass		
850.309	41.0	6.3	-8.1	39.2	Quasi Max	Н	99	43	46	-6.82	Pass		
292.596389	47.5	4.7	-17.5	34.7	Quasi Max	V	120	293	46	-11.32	Pass		
825.115	40.7	6.2	6.2 -8.1 38.7 Peak [Scan] H 98 361 46 -7.28 Pass										
253.254	51.5	4.5	-19.0	37.0	Peak [Scan]	Н	98	361	46	-9.01	Pass		
	T	•	•	-	•		•	•	-				
Legend:	TX = 1	Fransmitte	r Emissio	ns; DIG = Dig	ital Emissions; F	UND =	= Funda	amenta	l; WB = Wid	deband Er	nission		
	NRB =	Non-Res	stricted Ba	nd; RB = Res	stricted Band. Li	nits pe	er 15.20)5					

NOTE: The emission breaking the limit line is the fundamental frequency. A notch filter was used to attenuate the fundamental frequency

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:29 of 43

_													
Tes	st Freq.	915.2 MHz	2						Engineer	JMH			
\\	Variant	300 KHz,	100 KBit/	S				٦	`emp (⁰C)	18			
Freq.	Range	30-1000 N	lHz					Rel.	Hum.(%)	43			
Power	Setting	60						Press	. (mBars)	1005			
A	ntenna	External						Duty	Cycle (%)	100%			
Test N	lotes 1	NIC 451-0	523-05, N	MAC: 00:13	:50:07:00:00:03:0	CD, EX	(T Ante	enna W	PANT3008	8-S1A			
Test N	lotes 2												
MiC®M	abs	dBuV/m 600 500 400 300 200 100 100 00 300 Radiat Filenar	V/m Vasona by EMiSoft 18 Mar 15 13:32										
Formally	measu	ired emis	sion p	eaks									
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
916.413	47.9	6.4	-7.6	46.7	Peak [Scan]	Н						FUND	
837.179	41.3	6.2	-8.3	39.2	Quasi Max	Н	172	332	46	-6.85	Pass		
881.375	35.9	9 6.3 -8.0 34.1 Quasi Max H 165 131 46 -11.87 Pa								Pass			
828.823	35.5	6.2	-8.1	33.5	Quasi Max	н	103	362	46	-12.46	Pass		
863.791	40.0	6.3 -8.1 38.1 Peak [Scan] H 98 361 46 -7.89 Pass											
292.474	48.6	4.7	-17.5	35.8	Peak [Scan]	V	98	361	46	-10.19	Pass		
	1												
Legend:	TX = T	ransmitter E	Emissions	s; DIG = Dig	ital Emissions; F	UND =	= Funda	amenta	l; WB = Wio	deband Er	nission		
	NRB =	Non-Restri	cted Ban	d; RB = Res	stricted Band. Li	mits pe	er 15.20)5					

NOTE: The emission breaking the limit line is the fundamental frequency. A notch filter was used to attenuate the fundamental frequency

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:30 of 43

Tes	st Freq.	927.5 MF	Ηz						Engineer	JMH		
\\	Variant	300 KHz,	, 100 KBi	t/s				1	emp (⁰C)	18		
Freq.	Range	30-1000	MHz					Rel.	Hum.(%)	43		
Power S	Setting	60						Press	. (mBars)	1005		
A	ntenna	External						Duty	Cycle (%)	100%		
Test N	lotes 1	NIC 451-	0523-05,	MAC: 00:13	:50:07:00:00:03:0	CD, EX	(T Ante	enna W	PANT3008	3-S1A		
Test N	lotes 2											
MiC®M	abs	dBuV/m Vasona by EMiSoft 18 Mar 15 13:57 - 19 Merical 10 Meas Dist 3m Spec Dist 3m Spec Dist 3m Frequency: MHz Filename: c:\program files\emisoft - vasona\results\client programs\ssnt92\ssnt92\ssnt92 927.5 EXT 30-										
Formally	meası	ured emi	ission	peaks	Γ							
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
928.076	55.5	6.4	-7.3	54.6	Peak [Scan]	V						FUND
849.524	40.4	6.3	-8.1	38.5	Quasi Max	Н	102	42	46	-7.48	Pass	
292.565	48.1	4.7	-17.4	35.3	Quasi Max	Н	98	-1	46	-10.7	Pass	
819.077	30.4	6.1 -8.3 28.2 Quasi Max H 273 30 46 -17.83 Pass										
836.581	38.4	6.2	-8.3	36.3	Quasi Max	Н	99	-1	46	-9.71	Pass	
875.563	40.6	6.3	-8.0	38.9	Peak [Scan]	Н	98	361	46	-7.13	Pass	
253.533	51.6	4.5	-19.0	37.1	Peak [Scan]	V	98	361	46	-8.9	Pass	
		•••	E i		ital Easte in E		- ·			1. h		
Legend:		ransmitter		ns; DIG = Dig	IITAI Emissions; F	UND =	= Funda	amenta	i; VVB = VVic	eband En	nission	
	NRB =	Non-Rest	ricted Ba	nd; RB = Res	stricted Band. Li	nits pe	er 15.20	15				

NOTE: The emission breaking the limit line is the fundamental frequency. A notch filter was used to attenuate the fundamental frequency

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:31 of 43

Tes	st Frea.	902.3							Engineer	JMH		
	Variant	300 KHz	100 KBit	/s				Т	emp (°C)	18		
Freq	Range	1-10 GHz	100 1101					Ral	Hum (%)	43		
Power 9	Sotting	10 0112						Bross	(mBare)	1005		
Fower	ntonno	49 Eutomol						Duty		1005		
A		External	500.05	140.00.40	50.07.00.00.00			Duty		100%		
Test N	Notes 1	NIC 451-0	1523-05,	MAC: 00:13	3:50:07:00:00:03:	CD, E	XT Ant	enna v	/PAN13008	38-51A		
lest N	Notes 2											
MiCem	.abs	dBuV/m 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 1000.0 Radia Filena	ted Emiss me: c:lpro	Va	isona by EMiSo	mplate:	+ + FCC R ent prog	E 1-18G	18 M PK + + Av [2] Me Sp Freq 100000 Hz nt92\ssnt92	ar 15 14:43 - [1] Horizo - [2] Vertici - Pk Lmt - Av Lmt Debug as Dist 3m uency: MH2 902.3 ext 1	 al	
Formally	meas	ured emi	ssion	peaks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2706.826	62.0	4.2	-11.4	54.7	Peak Max	V	99	86	74	-19.26	Pass	RB
2706.826	59.5	4.2	-11.4	52.3	Average Max	V	99	86	54	-1.73	Pass	RB
5413.727	59.1	6.0	-11.2	54.0	Peak Max	V	112	124	74	-20.03	Pass	RB
5413.727	54.6	6.0	-11.2	49.4	Average Max	V	112	124	54	-4.59	Pass	RB
9023.021	46.0	8.1	-6.9	47.2	Average Max	V	108	257	54	-6.8	Pass	RB
9023.021	53.7	8.1	-6.9	54.9	Peak Max	V	108	257	74	-19.1	Pass	RB
1793.587	62.5	3.4	-13.8	52.1	Peak [Scan]					NRB		
9765.531	46.9	8.6	-6.2	49.2	Peak [Scan]	V						NRB
-												
Legend:	TX = 1	ransmitter	Emission	s; DIG = Di	gital Emissions; F	-UND	= Fund	amenta	al; WB = Wi	deband E	mission	
	NRB =	Non-Restr	icted Bar	nd; RB = Re	stricted Band. Li	imits p	er 15.2	05				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:32 of 43

Tes	t Freq.	915.2 M	Hz						Engineer	JMH			
١	Variant	300 KHz	z, 100 KBi	t/s				Г	emp (⁰C)	18			
Freq.	Range	1-10 GH	z					Rel.	Hum.(%)	43			
Power S	Setting	49						Press	(mBars)	1005			
Ai	ntenna	External						Duty (Cycle (%)	100%			
Test N	lotes 1	NIC 451	-0523-05.	MAC: 00:13	:50:07:00:00:03:	CD, EX	XT Ante	enna W	PANT3008	8-S1A			
Test N	lotes 2					,							
MiC®M	abs	dBuV/m 80.0 70.0 60.0 50.0 40.0 20.0 10.0 1000.0 Rad Filer	iated Emisiname: c:\pr	Va	sona by EMiSo	nplate: ults\clie	+ + FCC Ri ent prog	E 1-18G	18 M. PK + Av + Av Frequent 10000.0 Hz nt92\ssnt92	ar 15 15:05 [1] Horizo [2] Vertic: Pk Lmt Av Lmt Debug as Dist 3m sency: MHz 915.2 ext 1	 nt:		
Formally	meas	ured em	nission	peaks									
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
2745.604	61.7	4.2	-11.4	54.5	Peak Max	Н	112	141	74	-19.48	Pass	RB	
2745.604	59.5	4.2	-11.4	52.3	Average Max	Н	112	141	54	-1.69	Pass	RB	
4575.921	57.1	5.5	-11.4	51.3	Peak Max	V	122	136	74	-22.75	Pass	RB	
4575.921	51.9	5.5	-11.4	46.0	Average Max	V	122	136	54	-7.97	Pass	RB	
5491.045	59.1	6.1	-11.2	54.0	Peak Max	V	99	82	74	-19.98	Pass	RB	
5491.045	54.1	6.1	-11.2	49.0	Average Max	V	99	82	54	-4.97	Pass	RB	
9151.916	50.4	8.2	-7.2	51.4	Peak Max	V	100	168	74	-22.6	Pass	RB	
9151.916	40.3	8.2	8.2 -7.2 41.3 Average Max V 100 168 54 -12.7 Pass RE										
1829.659	61.7	3.4	-13.5	51.5	Peak [Scan]	Н						NRB	
Legend:	TX = 1	ransmitte	r Emissio	ns; DIG = Dię	gital Emissions; F	UND	= Fund	amenta	l; WB = Wi	deband Er	mission		
	NRB =	Non-Res	tricted Ba	nd; RB = Re	stricted Band. Li	mits p	er 15.2	05					

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:33 of 43

Tes	t Freq.	927.5 M	Hz						Engineer	JMH		
١	Variant	300 KHz	z, 100 KBi	it/s			Temp (ºC)			18		
Freq.	Range	1-10 GH	z				Rel. Hum.(%)			43		
Power	Setting	49				Press. (mBars)			. (mBars)	1005		
Α	ntenna	External						Duty	Cycle (%)	100%		
Test N	lotes 1	NIC 451	-0523-05	, MAC: 00:13	3:50:07:00:00:03:	CD, E	XT Ant	enna W	/PANT3008	8-S1A		
Test Notes 2												
MiC MLabs 70. 60. 90. 90. 90. 90. 90. 90. 90. 90. 90. 9			iated Emis	Va	isona by EMiSo	nft	FCC R ent prog	E 1-18G	18 M PK + Av [2] Me Sp Freq 1000.0 Hz nt92\ssnt92	ar 15 15:25 - [1] Horizo - [2] Vertic: - PK Lmt - Av Lmt Debug as Dist 3m uency: MHz 9127.5 ext	 nti al	
Formally	meas	ured em	nission	peaks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2782.503	58.2	4.2	-11.3	51.1	Peak Max	V	149	254	74	-22.88	Pass	RB
2782.503	54.8	4.2	-11.3	47.7	Average Max	V	149	254	54	-6.26	Pass	RB
4637.425	58.1	5.5	-11.3	52.3	Peak Max	Н	100	43	74	-21.69	Pass	RB
4637.425	53.4	5.5	-11.3	47.7	Average Max	Н	100	43	54	-6.34	Pass	RB
8347.194	51.3	7.8	-7.1	52.1	Peak Max	V	161	131	74	-21.95	Pass	RB
8347.194	40.4	7.8	-7.1	41.1	Average Max	V	161	131	54	-12.87	Pass	RB
5564.054	51.8	6.1	-11.2	46.7	Peak [Scan]	V	99	-1	54	-7.3	Pass	RB
1847.695	60.0	3.4	-13.5	50.0	Peak [Scan]	Н						NRB
الم مرجع ال	TY 7		n Finale at		aital Englacian - 5		E			alahar d E		
Legend:		Non Dec			yıtai ⊑missions; h				ai, vv B = VVI	uepand El	nission	
	NRB = Non-Restricted Band; RB = Restricted Band. Limits per 15.205											

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:34 of 43

Specification

Limits

FCC Part 15 Subpart C §15.247(d)

Industry Canada §A8.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0287, 0335, 0338, 0158, 0134, 0304, 0311, 0315, 0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:35 of 43

6.2. Radiated Emissions – Digital Emissions (0.03-1 GHz)

FCC, Part 15 Subpart C §15.205/ §15.209 Industry Canada RSS-Gen §8.9

Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

The EUT had two methods of powering on ac/dc converter and Power over Ethernet (POE). Both modes were tested for emissions below 1GHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

where:

FS = R + AF + CORR

FS = Field Strength R = Measured Receiver Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain

For example:

Given a Receiver input reading of $51.5dB\mu V$; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

Level $(dB\mu V/m) = 20 * Log (level (\mu V/m))$

40 dBuV/m = 100 uV/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:36 of 43

6.2.1. Radiated Digital Emissions

Integral Antenna - Radiated Spurious Emissions

GPS turned on

	EUT	NIC 451	NIC 451-0523-10			Engineer			Engineer	JMH		
١	Variant	Digital E	missions	6		Temp (ºC)			ſemp (ºC)	18		
Freq.	Range	30 MHz	- 1000 N	1Hz		Rel. Hum.(%)			Hum.(%)	43		
Standar	d Limit	FCC Cla	iss B					Press	. (mBars)	1005		
Support	t Equip	None										
Test	Notes	MAC: 00:13:50:07:00:00:03:CD, INT Antenna WPANT10061-S1C, GPS ON										
Formally n	s	dBuV/m 50.0 40.0 20.0 10.0 0.0 30.0 Rad Filer	130.0 iated Emiliarme: c:\p	230.0 330(ssions peaks	Vasona by EMi www.www.www.www. 0 430.0 530.0 Vemisoft - vasonav	630.0 Templa results	730.0 te: FCC iclient pi	830.0 : 15.209 rograms	18 Qr Qr Qr (2) S30.0 1000 RE 30-1000 Nssnt92\SSN	Mar 15 09 [1] Ho [2] Ver Copk Li Pebug Meas Dist Spec Dist Spec Dist requency: M 0 MHz IT92 DE 30-	3m 3m IHz	
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
253.771	43.4	4.5	-19.0	28.9	Peak [Scan]	V	99	-1	46	-17.1	Pass	
						•			·	·		
Legend:	DIG =	Digital De	vice Emi	ssion; TX =	Transmitter Emi	ission;	FUND	= Fun	damental F	requency		
	TRNS	= Transier	nt Emissi	on, Brbnd=	Broadband emis	sion						

NOTE: The emission breaking the limit line is the fundamental frequency. A notch filter was used to attenuate the fundamental frequency

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:37 of 43

Integral Antenna - Radiated Spurious Emissions

RTC turned on

RTC - real time clock

	EUT	NIC 451	NIC 451-0503-10			Engineer			JMH			
١	Variant	Digital E	missions				Temp (ºC)			20		
Freq.	Range	30 MHz	30 MHz - 1000 MHz				Rel. Hum.(%)			42		
Standar	d Limit	FCC Cla	FCC Class B					Press	. (mBars)	1011		
Support	Equip	None	lone									
Test	Notes	MAC: 00	IAC: 00:13:50:07:00:00:03:CD, INT Antenna WPANT10061-S1C, RTC ON									
Formally	ILabs y meas	dBuV/m 60.0 40.0 30.0 20.0 10.0 00 30.0 Rad File	130.0 iated Emis name: c:\p	V 230.0 330.0 sions rogram files/	asona by EMIS	630.0 emplatiesults/c	730.0 a: FCC client pro	830.0 15.209 i ograms\0	25 Cop- Cop- (7) Free 930.0 10000 RE 30-10000 RE 30-10000	Mar 15 12: [1] Hori [2] Vert Debug Meas Dist 3 Spec Dist 3 Requency: M [Hz 2 de INT 30	n2 ical it m Hz	
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
265.256	48.2	4.6	-17.7	35.100	Peak [Scan]	V	98	361	46.0	-10.9	Pass	
Legend:	DIG =	Digital De	vice Emis	sion; TX =	Transmitter Emis	ssion;	FUND	= Fund	amental Fre	equency		
	TRNS	= Transie	Transient Emission, Brbnd= Broadband emission									

NOTE: The emission breaking the limit line is the fundamental frequency. A notch filter was used to attenuate the fundamental frequency

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:38 of 43

External Antenna - Radiated Spurious Emissions

GPS turned on

	EUT	NIC 451	NIC 451-0523-10			Engineer			JMH			
١	/ariant	Digital E	missions			Temp (ºC)			ſemp (ºC)	18		
Freq.	Range	30 MHz	- 1000 M	Hz				Rel.	Hum.(%)	43		
Standar	d Limit	FCC Cla	FCC Class B					Press	. (mBars)	1005		
Support	Equip	None	None									
Test	Notes	MAC: 00	/AC: 00:13:50:07:00:00:03:CD, EXT Antenna WPANT30088-S1A, GPS ON									
MiCOM	.abs y meas	dBuV/m Vasona by EMISoft 18 Mar 15 11:40 – 19 Mar 15 11:40 – 19 Vertical 00 Debug 00 Debug										
Frequency	Raw	Cable	AF	Level	Measurement	Pol	Hgt	Azt	Limit	Margin	Pass	Comments
253 652		LOSS	-19.0	ави у/т	I ype	V	cm	Deg	46.0	aB -14.7	Pass	
200.000	45.0	4.5	-19.0	51.270	i car [Scall]	v	90	301	40.0	-14.7	r ass	
Legend:	DIG =	Digital De	vice Emis	sion; TX =	Transmitter Emis	ssion; l	FUND	= Fund	amental Fre	equency		
	TRNS	= Transier	t Emissio	on, Brbnd=	Broadband emis	sion						

NOTE: The emission breaking the limit line is the fundamental frequency. A notch filter was used to attenuate the fundamental frequency

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:39 of 43

External Antenna - Radiated Spurious Emissions

RTC turned on

RTC - real time clock

	EUT	NIC 451	-0503-1	D		Engineer				JMH		
١	Variant	Digital E	Emission	S				Т	emp (ºC)	20		
Freq.	Range	30 MHz	- 1000 N	/IHz		Rel. Hum.(%)			Hum.(%)	42		
Standar	d Limit	FCC Cla	ass B					Press	. (mBars)	1011		
Support	Equip	None										
Test	Notes	MAC: 0	MAC: 00:13:50:07:00:00:03:CD, EXT Antenna WPANT30088-S1A, RTC ON									
BuV/m Vasona by EMit 600 600 600 600 600 600 600 60						630.0 Templa	730.0 te: FCC client p	830.0 2 15.209 rograms	2: Q Q Q Q Q Q Q Q Q Q Q Q Q	5 Mar 15 11: [1] Ho [2] Ve Opk Li + Debug Meas Dist Spec Dist requency: M 0 MHz 192 de 30-10	3m MHz	
Formally	meas	ured en	nissior	n peaks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
265.174	48.5	4.6	-17.7	35.380	Peak [Scan]	V	100	361	46.0	-10.6	Pass	
								_				
Legend:	DIG =	Digital De		ISSION; IX =	I ransmitter Em	ission;	FUND) = ⊢uno	damental F	requency		
	IRNS	S= Transient Emission, Brbnd= Broadband emission										

NOTE: The emission breaking the limit line is the fundamental frequency. A notch filter was used to attenuate the fundamental frequency

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:40 of 43

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

§15.209 (a) and RSS-Gen §8.9 Limit Matrix

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.3. AC Wireline Conducted Emissions (150 kHz – 30 MHz)

NOTE: Test not applicable EUT is dc powered

FCC, Part 15 Subpart C §15.207 Industry Canada RSS-Gen §8.8

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Test Measurement Set up

Measurement set up for AC Wireline Conducted Emissions Test

Measurement Results for AC Wireline Conducted Emissions (150 kHz – 30 MHz)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Silver Spring Networks NIC 451To:FCC 47 CFR Part15.247 & IC RSS-210Serial #:SSNT92-U2A Rev AIssue Date:27th April 2015Page:42 of 43

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

RSS-Gen §8.8

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz-30 MHz, shall not exceed the limits in Table 3.

§15.207 (a) and RSS-Gen §8.8 Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dBµV)						
	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					

* Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	±2.64 dB
-------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

575 Boulder Court, Pleasanton, California 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306 www.micomlabs.com