EMISSIONS TEST REPORT FOR A LOW POWER TRANSMITTER

I. GENERAL INFORMATION

Requirement: Test Requirements:	Industry Canada FCC Part 15
Applicant:	Silver Spring Networks Inc.
FCC ID:	OWS-NIC41

FCC ID: OWS-NIC Model: NICv4.1

II. DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)

The Silver Spring Networks (SSN) model NICv4.1 is a 902-298 MHz RF module for use in utility meter wireless network applications.

Transmitter Specification

Max Peak TX Power	29.65 dBm
Antenna	4.5 dBi monopole
	-1 dBi sheet metal antenna
Frequency of operation	903.68 – 926.208 MHz
Modulation	Direct Sequence Spread Spectrum
6 dB bandwidth	1.392 MHz minimum
Emission designator	2M70G1D
99% bandwidth	2.7 MHz max
Power source	AC/DC

III. TEST DATES AND TEST LOCATION

Testing was performed on various dates between 3 Feb - 10 April 2006. All tests were performed at:

Compliance Certification Services 561F Monterey Road Morgan Hill, CA 95037

J.M. Cohen____

T.N. Cokenias EMC Consultant/Agent for Silver Spring Networks

5 May 2006

15.203 Antenna connector requirement

The EUT uses a unique antenna connector and all antennas are professionally installed by the manufacturer who incorporates the SSN module into his product(s).

Antenna description

The EUT was tested with two antennas, a commercially available monopole omni and a special sheet metal antenna manufactured by Silver Spring Networks for electric meters

Antenna description	Mfr.	Model No.	Gain
omni monopole	MaxRad		4.5 dBi
sheet metal electric meter	SSN	n/a	-1 dBi

TEST PROCEDURES

All tests were performed in accordance with the applicable procedures called out in the following documents, unless otherwise noted:

ANSI C63.4 – 2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

Tests were performed for three different transmit frequencies:

Channel 0 (LOW) – 903.680 MHz

Channel 6 (MID) - 915.968 MHz

Channel 11 (HIGH) – 926.208 MHz

NOTE: Several spectrum analyzer plots have center frequencies slightly different than those listed here, however, all testing was performed with the EUT tuned to one of the three frequencies listed above.

Report No. 06PR028REPFCC Rev 1.1

TEST RESULTS

Radiated Emissions Test Requirement: 15.205, 15.207

Out of Band Measurements Test Requirement: 15.247(d)

Measurement Equipment Used: Agilent 4446A Spectrum Analyzer, 9 kHz-40 GHz Sunol Sciences JB1 Biconolog antenna EMCO 3115 Horn antenna, 1-18 GHZ Miteq NSP2600-SP pre-amplifier, 1 – 26.5 GHz IFI High pass filter, fp = 1500 MHz **Radiated Test Set-up, 1-26 GHz**

Test Procedures

Radiated emissions generated by the transmitter portion of the EUT were measured.

1. The EUT was placed on a wooden table resting on a turntable on the test site. The search antenna was placed 3m from the EUT. The EUT antenna was mounted in the with the EUT TX antenna pointed directly to the search antenna.

2. The turntable was slowly rotated to locate the direction of maximum emission at each emission falling in the restricted bands of 15.205.

3. Emissions were investigated to the 10th harmonic of the fundamental.

4. Once maximum direction was determined, the search antenna was raised and lowered in both vertical and horizontal polarizations. The maximum readings so obtained are recorded in the data listed below.

Test Results: Worst case results are presented. Refer to data sheets below. Restricted band emissions meet 54 dBuV/m. Other undesired emissions from the transmitter meet the -20 dBc requirement in 15.247(d).

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505 (1)	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	
13.36 - 13.41	322 - 335.4		

15.205 Restricted Frequency Bands

15.209 General Field Strength Limits

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

Silver Spi	ring Networks
FCC ID:	OWS-NIC41

Report No. 06PR028REPFCC Rev 1.1

Model: NICv4.1 02/03/06 High Frequency Measurement Compliance Certification Services, Morgan Hill Open Field Site

Test Engr:William Z	huang
---------------------	-------

Project #:	06U1006	5													
Company	:Tom Co	kenias / Silve	er Spring Net	works											
EUT Desc	rip.:902-	928 MHz De	vice												
EUT M/N	NIC4.1														
Test Targ	et:FCC1	5.247													
Mode Op	er:Contir	ueos Sequen	ce Trasmit												
	f	Measuremen	nt Frequency			Amp	Preamp Ga	in				Avg Lim	Average F	ield Strength I	Limit
	Dist	Distance to	Antenna			D Corr	Distance C	orrect to	3 meters			Pk Lim	Peak Field	Strength Lim	it
	Read	Analyzer Re	eading			Avg	Average Fi	eld Stren	ngth @ 3 m			Avg Mar	Margin vs.	Average Lim	uit
	AF	Antenna Fao	ctor			Peak	Calculated	Peak Fie	ld Strength			Pk Mar	Margin vs.	Peak Limit	
	CL	Cable Loss				HPF	High Pass	Filter							
f	Dist	Read Pk	Read Avg.	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
GHz	(m)	dBuV	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	(V/H)
Low Ch. 9	903.68 M	Hz													
1.807	3.0	69.8	52.6	27.2	2.6	-37.1	0.0	0.0	62.4	45.2	74.0	54.0	-11.6	-8.8	v
2.711	3.0	64.3	47.4	29.2	2.9	-36.1	0.0	0.0	60.4	43.5	74.0	54.0	-13.6	-10.5	V
3.614	3.0	61.4	44.4	31.7	3.2	-35.3	0.0	0.0	61.0	44.0	74.0	54.0	-13.0	-10.0	V
4.518	3.0	49.3	36.6	33.3	3.5	-34.9	0.0	0.0	51.2	38.5	74.0	54.0	-22.8	-15.5	V
5.421	3.0	52.2	38.2	34.2	3.8	-34.7	0.0	0.0	55.5	41.5	74.0	54.0	-18.5	-12.5	V
6.325	3.0	65.4	42.7	35.0	4.1	-34.5	0.0	0.0	70.0	47.3	74.0	54.0	-4.0	-6.7	v
7.228	3.0	55.9	37.0	36.1	4.3	-34.1	0.0	0.0	62.2	43.3	74.0	54.0	-11.8	-10.7	v
8.132	3.0	63.2	44.7	36.9	4.6	-34.0	0.0	0.0	70.7	52.2	74.0	54.0	-3.3	-1.8	V
9.035	3.0	44.7	32.4	37.5	4.9	-35.2	0.0	0.0	52.0	39.6	74.0	54.0	-22.0	-14.4	V
1.807	3.0	67.9	52.1	27.2	2.6	-37.1	0.0	0.0	60.5	44.7	74.0	54.0	-13.5	-9.3	Н
2.711	3.0	58.2	43.6	29.2	2.9	-36.1	0.0	0.0	54.2	39.7	74.0	54.0	-19.8	-14.3	н
3.614	3.0	55.6	41.2	31.7	3.2	-35.3	0.0	0.0	55.2	40.7	74.0	54.0	-18.8	-13.3	Н
4.518	3.0	41.5	29.4	33.3	3.5	-34.9	0.0	0.0	43.4	31.3	74.0	54.0	-30.6	-22.7	Н
5.421	3.0	41.0	29.4	34.2	3.8	-34.7	0.0	0.0	44.3	32.7	74.0	54.0	-29.7	-21.3	Н
6.325	3.0	53.0	36.0	35.0	4.1	-34.5	0.0	0.0	57.6	40.6	74.0	54.0	-16.4	-13.4	Н
7.228	3.0	46.9	32.4	36.1	4.3	-34.1	0.0	0.0	53.2	38.7	74.0	54.0	-20.8	-15.3	H
8.132	3.0	54.4	38.5	36.9	4.6	-34.0	0.0	0.0	61.9	46.0	74.0	54.0	-12.1	-8.0	H
9.035	3.0	42.0	30.4	37.5	4.9	-35.2	0.0	0.0	49.5	3/./	74.0	54.0	-24.7	-16.3	н
1 020	15.908 N		51.2	27.2	26	27.1	0.0	0.0	20.0	44.0	74.0	51.0	15.2	10.0	N/
1.830	3.0	54.0	51.2	27.5	2.0	-37.1	0.0	0.0	50.0	44.0	74.0	54.0	-15.2	-10.0	V V
2.745	3.0	54.9	41.7	29.5	2.9	-30.1	0.0	0.0	51.1	37.9	74.0	54.0	-22.9	-10.1	V V
3.000	3.0	38.7	44.1	22.2	3.2	-35.3	0.0	0.0	50.5	43.9	74.0	54.0	-15.5	-10.1	V V
4.373	3.0	40.7	30.2	24.2	3.5	-34.9	0.0	0.0	50.7	30.2 43.5	74.0	54.0	-23.3	-13.0	V
6 405	3.0	55.0 69.1	40.1	25.1	3.9	-34.0	0.0	0.0	72.0	43.5	74.0	54.0	-14.7	-10.5	V
7 320	3.0	42.7	70.0	36.2	4.1	34.1	0.0	0.0	49.2	35.6	74.0	54.0	24.8	-5.2	V
8 235	3.0	59.9	43.3	37.0	4.4	-34.1	0.0	0.0	67.3	50.7	74.0	54.0	-24.0	-10.4	V V
9 150	3.0	42.7	31.6	37.6	5.0	-34.9	0.0	0.0	50.4	39.7	74.0	54.0	-23.6	-14.8	v
1 830	3.0	64.5	50.2	27.3	2.6	-34.5	0.0	0.0	57.2	43.0	74.0	54.0	-16.8	-14.0	н
2 745	3.0	61.1	46.1	29.3	2.9	-36.1	0.0	0.0	57.3	42.3	74.0	54.0	-16.7	-11.7	Н
3.660	3.0	57.2	42.6	31.8	3.2	-35.3	0.0	0.0	57.0	42.4	74.0	54.0	-17.0	-11.6	Н
4 575	3.0	43.8	32.9	33.3	3.5	-34.9	0.0	0.0	45.8	34.9	74.0	54.0	-28.2	-19.1	Н
5.490	3.0	45.0	31.9	34.3	3.9	-34.8	0.0	0.0	48.4	35.2	74.0	54.0	-25.6	-18.8	н
6.405	3.0	60.9	41.6	35.1	4.1	-34.5	0.0	0.0	65.7	46.4	74.0	54.0	-8.3	-7.6	Н
7.320	3.0	40.8	28.8	36.2	4.4	-34.1	0.0	0.0	47.3	35.2	74.0	54.0	-26.7	-18.8	Н
8.235	3.0	49.2	35.9	37.0	4.7	-34.2	0.0	0.0	56.7	43.4	74.0	54.0	-17.3	-10.6	Н
9.150	3.0	42.1	30.0	37.6	5.0	-34.9	0.0	0.0	49.8	37.7	74.0	54.0	-24.2	-16.3	Н
High Ch.	926.208 M	MHz													
1.853	3.0	64.8	51.4	27.4	2.6	-37.1	0.0	0.0	57.7	44.3	74.0	54.0	-16.3	-9.7	V
2.780	3.0	62.4	47.7	29.5	3.0	-36.1	0.0	0.0	58.7	44.0	74.0	54.0	-15.3	-10.0	V
3.706	3.0	58.0	43.2	31.9	3.2	-35.2	0.0	0.0	58.0	43.2	74.0	54.0	-16.0	-10.8	V
4.633	3.0	45.0	33.4	33.4	3.5	-34.9	0.0	0.0	47.1	35.5	74.0	54.0	-26.9	-18.5	V
5.559	3.0	51.7	38.1	34.3	3.9	-34.8	0.0	0.0	55.0	41.4	74.0	54.0	-19.0	-12.6	V
6.486	3.0	64.5	46.7	35.2	4.2	-34.4	0.0	0.0	69.4	51.6	74.0	54.0	-4.6	-2.4	V
7.412	3.0	41.8	29.1	36.3	4.4	-34.1	0.0	0.0	48.4	35.7	74.0	54.0	-25.6	-18.3	v
8.338	3.0	54.7	39.5	37.0	4.7	-34.3	0.0	0.0	62.1	46.9	74.0	54.0	-11.9	-7.1	v
9.265	3.0	41.7	29.5	37.7	5.0	-34.6	0.0	0.0	49.8	37.6	74.0	54.0	-24.2	-16.4	V
1.853	3.0	63.1	49.9	27.4	2.6	-37.1	0.0	0.0	55.9	42.8	74.0	54.0	-18.1	-11.2	Н
2.780	3.0	62.7	47.8	29.5	3.0	-36.1	0.0	0.0	59.0	44.2	74.0	54.0	-15.0	-9.8	Н
3.706	3.0	53.5	39.9	31.9	3.2	-35.2	0.0	0.0	53.5	39.9	74.0	54.0	-20.6	-14.1	Н
4.633	3.0	43.8	32.4	33.4	3.5	-34.9	0.0	0.0	45.9	34.5	74.0	54.0	-28.1	-19.5	Н
5.559	3.0	43.1	32.1	34.3	3.9	-34.8	0.0	0.0	46.5	35.4	74.0	54.0	-27.5	-18.6	Н
6.486	3.0	53.7	39.3	35.2	4.2	-34.4	0.0	0.0	58.6	44.2	74.0	54.0	-15.4	-9.8	Н
7.412	3.0	41.0	29.1	36.3	4.4	-34.1	0.0	0.0	47.6	35.7	74.0	54.0	-26.4	-18.3	Н
8.338	3.0	46.2	33.2	37.0	4.7	-34.3	0.0	0.0	53.6	40.7	74.0	54.0	-20.4	-13.3	Н
9.265	3.0	41.2	29.4	37.7	5.0	-34.6	0.0	0.0	49.3	37.5	74.0	54.0	-24.7	-16.5	Н
									L				0.0	0.0	
													0.0	0.0	

4.5 dBi Monopole Antenna

Electric meter antenna – Outdoor test 3/28/2006

03/28/06 Compliar	03/28/06 High Frequency Measurement Compliance Certification Services, Morgan Hill Open Field Site														
Test Engi Project # Company EUT Des EUT M/N Test Targ	r:William :06U1006 :Tom Co crip.:902- I: get:FCC1	Zhuang 5 kenias / Silve 928 MHz De 5.247	er Spring Network	works											
Mode Op	er:Contin	ueos Sequer	ice Trasmit												
	f Dist Read AF CL	Measurement Distance to Analyzer Ro Antenna Fao Cable Loss	nt Frequency Antenna eading ctor			Amp D Corr Avg Peak HPF	Preamp Ga Distance C Average Fi Calculated High Pass	in orrect to eld Strer Peak Fie Filter	3 meters ngth @ 3 m eld Strength			Avg Lim Pk Lim Avg Mar Pk Mar	Average F Peak Field Margin vs. Margin vs.	ield Strength Strength Lin Average Lin Peak Limit	Limit tit tit
f GHz	Dist (m)	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes (V/H)
Mid Ch.	915.968 M	Hz	25.4	26.7	26	20.2		0.2	(15	26.5	74.0	54.0	0.5	25.2	V
2.745	3.0	78.9	35.4	26.7	2.6	-38.3	0.0	0.5	64.5 74.3	28.8	74.0	54.0	-9.5	-27.3	V Ambient - re-test in chamber
3.660	3.0	58.0	32.0	31.9	3.2	-36.9	0.0	0.6	56.9	30.9	74.0	54.0	-17.1	-23.1	V
4.575	3.0	43.4	30.9 34.3	33.4	3.5	-36.5	0.0	0.6	44.5	31.9	74.0	54.0	-29.5	-22.1	V H
2.745	3.0	79.5	33.9	29.4	2.9	-37.4	0.0	0.6	75.0	29.3	74.0	54.0	1.0	-24.7	Ambient - re-test in chamber
3.660	3.0	57.7	33.1	31.9	3.2	-36.9	0.0	0.6	56.5	32.0	74.0	54.0	-17.5	-22.0	H
4.575 Low Ch.	5.0 903.680 N	43.3 IHz	30.7	33.4	3.5	-36.5	0.0	0.6	44.5	31./	/4.0	54.0	-29.7	-22.3	H
1.807	3.0	78.3	35.1	26.6	2.6	-38.3	0.0	0.3	69.4	26.3	74.0	54.0	-4.6	-27.7	V
2.711	3.0	60.3 52.3	33.9	29.3	2.9	-37.4	0.0	0.6	55.7	29.3	74.0	54.0	-18.3	-24.7	V V
4.518	3.0	48.6	31.2	33.4	3.5	-36.5	0.0	0.6	49.5	32.2	74.0	54.0	-24.5	-21.8	v
1.807	3.0	69.7 59.4	34.3	26.6	2.6	-38.3	0.0	0.3	60.9	25.4	74.0	54.0	-13.1	-28.6	H
3.614	3.0	55.4	32.9	31.8	3.2	-37.4	0.0	0.6	54.1	31.6	74.0	54.0	-19.5	-24.7	Н
4.518	3.0	42.8	30.6	33.4	3.5	-36.5	0.0	0.6	43.8	31.6	74.0	54.0	-30.2	-22.4	Н
High Ch. 1.853	926.208 N	4Hz 63.3	35.4	26.8	2.6	-38.3	0.0	0.3	54.7	26.8	74.0	54.0	-19.3	-27.2	V V
2.780	3.0	55.8	33.6	29.5	3.0	-37.4	0.0	0.6	51.4	29.2	74.0	54.0	-22.6	-24.8	V
3.706	3.0	59.6	33.1	32.0	3.2	-36.8	0.0	0.6	58.7	32.1	74.0	54.0	-15.3	-21.9	V
1.853	3.0	62.8	35.1	26.8	2.6	-38.3	0.0	0.0	54.2	26.5	74.0	54.0	-19.8	-27.5	Н
2.780	3.0	56.1	33.5	29.5	3.0	-37.4	0.0	0.6	51.7	29.1	74.0	54.0	-22.3	-24.9	Н
3.706 4.633	3.0	42.1	32.9	32.0	3.2	-36.8	0.0	0.6	56.5 43.2	32.0	74.0	54.0	-17.5	-22.0	H
													0.0	0.0	Н
													0.0	0.0	H
													0.0	0.0	Н
													0.0	0.0	Н
													0.0	0.0	H V
													0.0	0.0	V
													0.0	0.0	V
													0.0	0.0	V
													0.0	0.0	V
													0.0	0.0	V V
													0.0	0.0	v
													0.0	0.0	H
													0.0	0.0	Н
													0.0	0.0	H
													0.0	0.0	Н
	-												0.0	0.0	H H
													0.0	0.0	Н
													0.0	0.0	Н
													0.0	0.0	

Electric meter antenna – 5m chamber test 4/10/2006

02/02/06 Complia Test Eng Project # Company EUT Des EUT Des EUT M/7 EUT S/N Test Tary Mode Of Average Test Equ	High nce Cert ineer: : y: cription: v: : get: Operatio Power Mo ipment: prn 1-18	Frequency M ification Ser n: eter: Low = x: BGHz	Acasurement vices, Morga « dBm, Mid = » Pre-an	n Hill O cx dBm, 1 nplifer	Ppen Fi High = 3 1-260	eld Site a dBm GHz	Pre-amp	lifer 20	6-40GHz			Но	orn > 18(GHz		
T73; S	/N: 6717 @	23m 💂	T87 Mi	teq 924	342	-			-						-	
	H Frequency Cables 3 foot cable					12	foot c	able			HPF	Re	eject Filte	er <u>Pe</u> Ri	eak Measurements BW=VBW=1MHz	
Nin	ous 1770	79010	·			-	Ninous	208946	5002 <u>-</u>		HP	F_4.0GHz	-		- Ave RBW	rage Measurements =1MHz ; VBW=10Hz
f GHz	Dist (m)	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB	Peak dBuV/m	A dB	Avg uV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes (V/H)
2.745	3.0	67.8	39.1	29.4	2.4	-44.4	0.0	0.1	55.2	2	26.6	74	54	-18.8	-27.4	V
2.745	3.0	66.5	39.3	29.4	2.4	-44.4	0.0	0.1	53.9	2	26.7	74	54	-20.1	-27.3	H V
																V
																V
	-						-						1			V V
																V
	+						-									
																V
	+															
																V
	+						-									
																Н
-	-						1			-						H H
																Н
	+						-									H H
																Н
	+															H H
																H
	+						-									H H
																Н
	f Dist Read AF CL	Measuremer Distance to Analyzer Re Antenna Fac Cable Loss	nt Frequency Antenna eading :tor	1		Amp D Corr Avg Peak HPF	Preamp G Distance G Average H Calculated High Pass	ain Correct Field St d Peak I s Filter	to 3 meters rength @ 3 Field Streng	m ,th		1	Avg Lim Pk Lim Avg Mar Pk Mar	Average F Peak Field Margin vs. Margin vs.	ield Strength Strength Lir Average Lir Peak Limit	Limit nit nit

Radiated Emissions Test Requirement: 15.205, 15.209

Measurement Equipment Used:

HP 8542E Receiver, 9 kHz - 2.9 GHz Sunol Sciences JB1 Biconolog Antenna

Radiated Test Set-up, 30 - 1000 MHz

spectrum analyzer

Test Procedures

1. The EUT was placed on a wooden table resting on a turntable on the open air test site. The search antenna was placed 3m from the EUT. The EUT antenna was mounted vertically as per normal installation. The EUT was set to transmit continuously on the MID channel.

2. The turntable was slowly rotated to locate the direction of maximum emission at each emission falling in the restricted bands of 15.205.

3. Once maximum direction was determined, the search antenna was raised and lowered in both vertical and horizontal polarizations. The maximum readings so obtained are recorded in the data listed below.

Test Results: EUT meets requirements. All transmitter emissions in the 30-1000 MHz band are at least 20 below the carrier:

Note: 460.408 MHz is from TX multiplier chain and must be -20 dBc. At fundamental, 29.6 + x dBi = yy dBmeirp

E3m = 95.24 + yy dBm eirp = zz dBuV/m.

 $57.22 \text{ dBuV/m} - zz \ll -20 \text{ dBc}$

561F Monterey Road Morgan Hill, CA 95037 COMPLIANCE Tel: (408) 463-0888 Fax: (408) 463-0885 Data#: 12 File#: rad0301.EMI Date: 03-01-2006 Time: 19:12:36 Level (dBuV/m) 60 FCC CLASS-B 30 0 30 106 182 258 334 410 Frequency (MHz) (Audix ATC) Trace: 11 Ref Trace: Condition: FCC CLASS-B VERTICAL Test Operator : Frank Ibrahim Project # : 06U10065 Company : Silver Spring Networks EUT : 902-928 MHz Device : NIC4.1 : Stand Alone EUT Model No Configuration Mode of operation: TX ON at Mid Channel Target of Test : FCC Class B

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1 2 3 4	31.140 37.220 64.960 316.520	13.75 19.83 20.80 15.09	20.19 16.74 9.03 16.10	33.94 36.57 29.83 31.18	40.00 40.00 40.00 46.00	-6.06 -3.43 -10.17 -14.82	Peak Peak Peak Peak

Page: 1

		561F Morg Tel: Fax:	Monterey Road an Hill, CA 95037 (408) 463-0888 (408) 463-0885
Data#: 2 File#:	rad0301.EMI D	ate: 03-01-2006	Time: 18:31:12
00			
			FCC CLASS-B
2	4 An	a momentan	- marchen
30 Winner	where the man water and the second		
⁰ 30 204	379 Frequency (M	553 Hz)	728 902
(Audix ATC) Trace: 1		-	Ref Trace:
Condition: FCC CLASS Test Operator : F Project # : 0 Company : S EUT : 9 Model No : N Configuration : S	-B VERTICAL rank Ibrahim 6U10065 ilver Spring Networks 02-928 MHz Device IC4.1 tand Alone EUT		

Page: 1

		Read			Limit	Over	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1	33.488	13.76	19.58	33.34	40.00	-6.66	Peak
2	37.848	19.89	16.65	36.54	40.00	-3.46	Peak
3	66.624	21.44	9.14	30.58	40.00	-9.42	Peak
4	480.824	13.75	19.82	33.57	46.00	-12.43	Peak
5	725.856	11.72	23.54	35.25	46.00	-10.75	Peak
6	853.168	12.01	25.27	37.28	46.00	-8.72	Peak

	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1	608.000	9.46	21.63	31.09	46.00	-14.91	Peak
2	610.562	11.81	21.67	33.48	46.00	-12.52	Peak
3	614.000	9.14	21.70	30.84	46.00	-15.16	Peak

MHz dBuV dB dBuV/m dB 1 608.000 11.10 21.63 32.73 46.00 -13.27 Peak 2 611.396 10.79 21.68 32.47 46.00 -13.53 Peak 3 614.000 10.18 21.70 31.88 46.00 -14.12 Peak

	MHZ	abuv	uв	dBuv/m	aBuv/m	uв	
1	960.000	10.64	26.54	37.18	54.00	-16.82	Peak
2	984.760	13.03	26.78	39.81	54.00	-14.19	Peak
3	995.760	12.74	26.92	39.66	54.00	-14.34	Peak

AC Line Conducted Emissions Test Requirement: 15.207

Measurement Equipment Used:

Rhode & Schwarz EMI Receiver ESHS-20 Fischer Custom Communication LISN, FCC-LISN-50/250-25-2

AC Conducted Set-up

Test Procedure

1. The EUT was placed on a wooden table 40 cm from a vertical ground plane and approximately 80 cm above the horizontal ground plane on the floor. The EUT was set to transmit in normally.

2. Line conducted data was recorded for both NEUTRAL and HOT lines.

Test Results

PASS. Refer to data plot below.

Power Source : 115 VAC, 60 Hz

: Peak: L1(Green), L2(Blue)

6dB Bandwidth for DTS Test Requirement: 15.247 (a)2

Measurement Equipment Used:

Agilent 4446A Spectrum Analyzer, 9 kHz-40 GHz 20 dB attenuator

Test Set-up

Test Procedures

A modified EUT with a coaxial cable attached to the radio antenna port was configured on a test bench. The cable's SMA connector was connected to the spectrum analyzer. The EUT transmission was continuous at 903.68 MHz (LOW channel). While the transmitter broadcast a steady stream of digital data, the analyzer MAX HOLD function was used to capture the envelope of the transmission occupied bandwidth.

Test was repeated for MID and HIGH channels.

Test Results: Worst case measured easured approximately 1.4 MHz 6 dB BW. Refer to data plots below.

6dB Bandwidth LOW Channel

6 dB BW, MID Channel

6 dB BW, HIGH Channel

Silver Spring Networks FCC ID: OWS-NIC41 Model: NICv4.1 99% Bandwidth Test Requirement: IC RSS-210

Measurement Equipment Used:

Agilent 4446A Spectrum Analyzer, 9 kHz-40 GHz 20 dB attenuator

Test Setup

Limit

None: for reporting purposes only.

Test Procedure

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

Test Results

Refer to spectrum analyzer charts below. 99% bandwidth approximately 4.22 MHz.

99% Bandwidth MID Channel

99% Bandwidth HIGH Channel

RF Power Output Test Requirement: 15.247(b)

Measurement Equipment Used:

Agilent 4446A Spectrum Analyzer, 9 kHz-40 GHz 20 dB attenuator

Test Setup

Test Procedures

1. The EUT was configured on a test bench. The spectrum analyzer RBW and VBW were set to a value higher than the 2.69 MHz 99% bandwidth, 3MHz and 5MHz respectively.

2. The spectrum analyzer detector was set to PEAK and the highest value was recorded using the analyzer PEAK SEARCH function.

Test Results

Refer to spectrum analyzer graphs. Reference level offset corrects for external attenuation and cable loss.

Frequency, MHz	Output Power, dBm
903.680	29.65
915.968	29.50
926.208	28.86

🔆 Agilen	nt 09:40:51 I	Mar 14, 2	006					Т	Peak Search
Ref 40 dBi #Peak	m	Atten 3) dB			Mkr	1 902.8 29.6	8 MHz 5 dBm	Next Peak
Log 10 dB/			`						Next Pk Right
20.5 dB									Next Pk Lett
LgAv									Min Search
M1 S2 S3 FC AA									Pk-Pk Search
¤(i): FTun Swp									Mkr © CF
Center 903 #Res BW 3	3.95 MHz 3 MHz		#VBV	V 5 MHz	S	weep 1	Span ' ms (601	10 MHz pts)	More 1 ct 2
Copyright 2	2000-2003 Ad	ailent Tec	hnologies						

Peak Output Power LOW Channel

🔆 Ag	ilent 10	:54:43	Mar 14, 3	2006						Т	Peak Search
Ret 40 #Peak	dBm		Atten 3	0 dB				Mkr	1 916.2 29.50	1 MHz) dBm	Next Peak
Log 10 dB/ Offst						<	\				Next Pk Right
20.5 dB	r Tr	11									Next Pk Lett
LgAv											Min Search
V1 S2 S3 FC											Pk-Pk Search
¤(f): FTun Swp											Mkr © CF
Center #Res B	915.28 W 3 MH	MHz z		#\	/BW 5 N	IHz	#S	weep 1	Span ' ms (601	10 MHz pts)	More 1 ct 2
Copyright 2000-2003 Agilent Technologies											

Peak Output Power MID Channel

Report No. 06PR028REPFCC Rev 1.1

🔆 Ag	ilent 11	:37:42	Mar 14, 3	2006					F	₹ T	Peak Search
Ret 40 #Peak	dBm		Atten 3	0 dB				Mkr	1 926.3 28.86	3 MHz i dBm	Next Peak
Log 10 dB/ Offet						1 					Next Pk Right
20.5 dB										<u></u>	Next Pk Lett
LgAv											Min Search
V1 S2 S3 FC											Pk-Pk Search
¤(f): FTun Swp											Mkr © CF
Center #Res B	925.90 W 3 MH	MHz Iz		#\	/BW 5 N	IHz	# S1	weep 1	Span 1 ms (601	0 MHz pts)	More 1 ct 2
Copyrig	ht 2000-	-2003 A	gilent Te	chnolog	ies						

Peak Output Power HIGH Channel

Silver Spring Networks FCC ID: OWS-NIC41 Model: NICv4.1 Spurious Emissions, Conducted Test Requirement: 15.247 (d)

Measurement Equipment Used:

Agilent 4446A Spectrum Analyzer, 9 kHz-40 GHz 20 dB attenuator

Test Setup

Test Procedure

1. The EUT was configured on a test bench. The cable was connected between the EUT antenna port and the spectrum analyzer input port.

Spectrum analyzer RES BW was set to 100 kHz. While the transmitter broadcast a steady stream of digital data, the analyzer MAX HOLD function was used to capture the envelope of the transmission.

Readings were taken out to 10fo.

Test Results

Refer to spectrum analyzer plots. Data shows out of band emissions are suppressed well below the -20 dBc minimum required by the Rules.

Lower band edge, -20 dBc, LOW Channel

TX Spurious Emissions LOW Channel

-20 dBc MID Channel Reference

TX Spurious, MID Channel

Upper band edge, -20 dBc HIGH Channel

TX Spurious, HIGH Channel

Power Spectral Density Test Requirement: 15.247(e)

Measurement Equipment Used:

Agilent 4446A Spectrum Analyzer, 9 kHz-40 GHz 20 dB attenuator

Test Setup

Test Procedure

Test software limited ON time to approximately 40 seconds. As such, the standard test procedure for PSD was modified slightly to accommodate this limitation, without compromising the accuracy of the measurement:

1. Determine frequency at which maximum emission occurs during pre-scan.

2. Reduce SPAN to 120 kHz while adjusting tuning frequency so that peak remains at center of screen.

3. Set RES BW = 3 kHz, VID BW = 10 kHz, SWEEP = 40 sec.

4. Record highest reading and compare to 8 dBm limit.

Test Results

Maximum PSD was -2.27 dBm. Refer to attached spectrum analyzer charts.

Silver Spring Networks FCC ID: OWS-NIC41 Model: NICv4.1 **Power Spectral Density LOW Channel**

🔆 Ag	ilent 10	:10:29	Mar 14, 3	2006						Т	Tra	ace	
Ref 30	dBm		Atten 2	0 dB				Mkr1 9	02.963 2 -2.67	2 MHz dBm	1	Trace	, v
#Peak Log 10 dB/											_ Cle	∠ ear Write	e
Offst 20.5 dB DI		~	\sim	\sim	~~^		\sim	\sim	\sim	\sim	1	Max Hol	ld
8.0 dBm LgAv	\sim											Min Hol	ld
V1 S2 S3 FC												Viev	w
¤(1): 1<50k Swp												Blan	k
Center #Res B	902.963 W 3 kH	3 2 MHz z		#V	BW 10 I	(Hz	#S	weep 4	Span 1) 0 s (601	20 kHz pts)			
Соругід	ht 2000-	2003 Ag	gilent Te	chnologi	es								

Power Spectral Density MID Channel

Report No. 06PR028REPFCC Rev 1.1

🔆 Ag	ilent 11	:54:52	Mar 14, 3	2006						Т	Peak Search
Ref 30 #Peak	dBm		Atten 2	0 dB				Mkr1 9	25.881 4 -2.27	dBm	Next Peak
Log 10 dB/ Offst											Next Pk Right
20.5 dB DI		\sim	,~~~	\sim	~~~	• •	$\sim\sim$	\sim	\sim	~~	Next Pk Lett
8.0 dBm LgAv	~ `										Min Search
V1 S2 S3 FC											Pk-Pk Search
¤(1): 1<50k Swp											Mkr © CF
Center #Res B\	925.88(W 3 kH;) 0 MHz z		#V	BW 10 I	kHz	#S	weep 4	Span 12 0 s (601	20 kHz î pts)	More 1 ct 2
Соругід	ht 2000	-2003 Ag	gilent Te	chnolog	ies						

Power Spectral Density HIGH Channel

RF Exposure (MPE) Calculations

Silver Spring I	Vetworks								1	
FCC ID: OWS-	-NIC41									
IC: 5975A- N	IC41									
Utility Meter	VLAN Transcei	ver	902-928 MHz			Calculate mW/cm	2 here. Enter f	requency in MHz		
RF Hazard Dis	tance Calculati	on				Calculation of Limi	ts from 1.1310 T	able 1		
									Controlled	Uncontrolled
									Ave 6 min	Ave 30 min
mW/cm2 from	n Table1:	0.60	(E: 61 V/m)			F(MHz)	Actual F, MHz		Occ, mW/c2	Gen, mW/cm2
						0.3-3	0.5		100.0	100.0
Max RF Power	TX Antenna	MPE distance	S, mW/cm@	Comment		3.0 - 30.0	5		180.0	36.0
P, dBm	G, dBi	cm	at 20 cm			30.0-300	55		1.0	0.2
						300-1500	902		3.0	0.60
29.6	4.5	18.5	0.51			1500-100000	5555		5.0	1.0
						Enter P(mW)	Equivalent dBm	Enter dBm	Equivalent Watt	s
Basis of Calcu	lations:					64	18.1	<u>18.1</u>	64.6	
$E^{2/3770} = S$, mW/cm2									
E, V/m = (Pwa	tts*Ggain*30)/	.5/d, meters								
d = ((Pwatts*0	G*30)/3770*S))^0.5	Pwatts*Ggain = 1	0^(PdBm-30+G	dBi)/10)					
S@20cm = 20	log (MPE dist/	20cm)								
NOTE: For me	obile or fixed lo	ocation transmi	tters, minimum se	eparation distan	ce is for FCC	compliance is 20 ci	m,			
ever	if calculations	indicate MPE o	distance is less							
									<u> </u>	
									<u> </u>	
									<u> </u>	
									1	

REPORT REVISION HISTORY

Revision	Description	Revised By	Date
1.1	Initial Release	T.Cokenias	4/12/06
1.1	Minor editorial changes	T. Cokenias	5/5/06