Company: Silver Spring Networks

Test of: LNIC

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Report No.: SSNT136-U2 Rev A

COMPLETE TEST REPORT

TEST REPORT

Test of: Silver Spring Networks LNIC

to

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Test Report Serial No.: SSNT136-U2 Rev A

This report supersedes: NONE

Applicant: Silver Spring Networks

230 W Tasman Drive San Jose, CA 95134

USA

Product Function: Modular radio device, will

communicate over 900 MHz.

Issue Date: 2nd May 2017

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc.

575 Boulder Court Pleasanton California 94566 USA

Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 3 of 71

Table of Contents

1.	ACCREDITATION, LISTINGS & RECOGNITION	5
	1.1. TESTING ACCREDITATION	5
	1.2. RECOGNITION	
	1.3. PRODUCT CERTIFICATION	
	DOCUMENT HISTORY	
3.	TEST RESULT CERTIFICATE	9
4.	REFERENCES AND MEASUREMENT UNCERTAINTY	
	4.1. Normative References	
	4.2. Test and Uncertainty Procedure	11
5.	PRODUCT DETAILS AND TEST CONFIGURATIONS	
	5.1. Technical Details	
	5.2. Scope Of Test Program	.13
	5.3. Equipment Model(s) and Serial Number(s)	.15
	5.4. Antenna Details	
	5.5. Cabling and I/O Ports	
	5.6. Test Configurations	
	5.7. Equipment Modifications	16
	5.8. Deviations from the Test Standard	
	TEST SUMMARY	
7.	TEST EQUIPMENT CONFIGURATION(S)	
	7.1. Conducted	
_	7.2. Radiated Emissions	.20
	MEASUREMENT AND PRESENTATION OF TEST DATA	
9.	TEST RESULTS	
	9.1. 20 dB & 99% Bandwidth	
	9.2. Frequency Hopping Tests	25
	9.2.1. Number of Hopping Channels	26
	9.2.2. Channel Separation	
	9.2.3. Dwell Time & Channel Occupancy	28
40	9.3. Output Power	
I	10.1. Conducted Emissions	
	10.1.1. Conducted Unwanted Spurious Emissions	.33 21
	Conducted Low Band-Edge Emissions	
	Conducted Low Band-Edge Emissions	
	Conducted High Band-Edge Emissions Hopping	
	Conducted Low Band-Edge Emissions Hopping	
	10.2. Radiated Emissions	
	10.2.1. TX Spurious & Restricted Band Emissions	
	10.2.2. Radiated Emissions (0.03 - 1 GHz)	
ΔΙ	PPENDIX A - GRAPHICAL IMAGES	
~ !	A.1. 20 dB & 99% Bandwidth	
	A.2. Frequency Hopping Tests	
	A.2.1. Number of Hopping Channels	
	A.2.2. Channel Separation	
	A.2.3. Dwell Time and Occupancy	
	A.3. Emissions	

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 4 of 71

A.3.1. Conducted Emissions	58
A.3.1.1. Conducted Unwanted Spurious Emissions	
A.3.1.2. Conducted Band-Edge Emissions	
Conducted Low Band-Edge Emissions	
Conducted High Band-Edge Emissions	
A.3.2. Radiated Emissions	65
A.3.2.3. TX Spurious & Restricted Band Emissions	65
A.3.3. Radiated Emissions (0.03 - 1 GHz)	

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 5 of 71

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org/scopepdf/2381-01.pdf

Accredited Laboratory

A2LA has accredited

MICOM LABS

Pleasanton, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 4th day of February 2016.

Senior Director of Quality & Communications For the Accreditation Council Certificate Number 2381.01 Valid to November 30, 2017

For the tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A lssue Date: 2nd May 2017

Page: 6 of 71

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	TCB	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

EU MRA - European Union Mutual Recognition Agreement.

NB - Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 7 of 71

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-02.pdf

Accredited Product Certification Body

A2LA has accredited

MICOM LABS

Pleasanton, CA

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065:2012 Requirements for bodies certifying products, processes and services. This accreditation demonstrates technical competence for a defined scope and the operation of a management system.

Presented this 4^{th} day of February 2016.

Senior Director of Quality & Communications

For the Accreditation Council Certificate Number 2381.02 Valid to November 30, 2017

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 8 of 71

2. DOCUMENT HISTORY

Document History						
Revision	Date	Comments				
Draft 25th April 2017 Rev A 2 nd May 2017		Draft for client review.				
		Initial release.				

In the above table the latest report revision will replace all earlier versions.

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 9 of 71

3. TEST RESULT CERTIFICATE

Manufacturer: Silver Spring Networks

230 W Tasman Drive

San Jose,

CA 95134 USA

Pleasanton California 94566 USA

Fax: +1 925 462 0306

575 Boulder Court

Tested By: MiCOM Labs, Inc.

Model: LNIC Telephone: +1 925 462 0304

Type Of Equipment: Modular Plug-in radio device, will

communicate over 900 MHz

S/N's: 0917600463

Test Date(s): 06 - 07 April 2017 Website: www.micomlabs.com

STANDARD(S)

TEST RESULTS

FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

11

TESTING CERT #2381.01

Graeme Grieve

Quality Manager MiCOM Labs, Inc.

Gordon Hurst

President & CEO MiCOM Labs, Inc.

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 10 of 71

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE	
I	FCC 47 CFR Part 15.247	2016	Radio Frequency Devices; Subpart C – Intentional Radiators	
II	FCC 47 CFR Part 15, Subpart B	Title 47: Telecommunication PART 15—RADIO FREQUENCY DEVICES, SubPart B; Unintentional Radiators		
III	A2LA	June 2015	R105 - Requirement's When Making Reference to A2LA Accreditation Status	
IV	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices	
V	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	
VI	CISPR 32	2012	Electromagnetic compatibility of multimedia equipment - Emission requirements	
VII	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics	
VIII	FCC Public Notice DA 00-705	March 2000	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems	
IX	ICES-003	Issue 6 Jan 2016	Spectrum Management and Telecommunications; Interference-Causing Equipment Standard. Information Technology Equipment (Including Digital Apparatus) – Limits and methods of measurement.	
Х	M 3003	Edition 3 Nov.2012	Expression of Uncertainty and Confidence in Measurements	
XI	RSS-247 Issue 2	Feb 2017	Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices	
XII	RSS-Gen Issue 4	November 2014	General Requirements and Information for the Certification of Radiocommunication Equipment	
XIII	FCC 47 CFR Part 2.1033	2016	FCC requirements and rules regarding photographs and test setup diagrams.	

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 11 of 71

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 12 of 71

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

Details	Description
Purpose:	Test of the Silver Spring Networks LNIC to FCC CFR 47 Part
	15 Subpart C 15.247 (FHSS).
	Radio Frequency Devices; Subpart C – Intentional Radiators
Applicant:	
	230 W Tasman Drive
N	San Jose, CA 95134 USA
	Silver Spring Networks
Laboratory performing the tests:	
	575 Boulder Court
Took you and you have a convent on	Pleasanton California 94566 USA
Test report reference number:	
Date EUT received:	
	FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)
Dates of test (from - to):	·
No of Units Tested:	
Product Family Name:	
Model(s):	
Location for use:	
Declared Frequency Range(s):	
Type of Modulation:	2FSK
EUT Modes of Operation:	7
Declared Nominal Output Power:	
Transmit/Receive Operation:	Transceiver - Half Duplex
Rated Input Voltage and Current:	
Operating Temperature Range:	9
ITU Emission Designator:	
Equipment Dimensions:	
Weight:	
Hardware Rev:	1.0
Software Rev:	m1.0

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 13 of 71

5.2. Scope Of Test Program

Silver Spring Networks LNIC

The scope of the test program was to test the Silver Spring Networks, LNIC configurations in the frequency ranges 902 - 928 MHz; for compliance against the following specification:

FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Radio Frequency Devices; Subpart C – Intentional Radiators

Note:

The Silver Spring Networks LNIC incorporates the Milli 5 RF module to communicate within the SSNI mesh canopy to track asset locations and report sensor data and alerts.

The Milli 5 RF module was previously tested by MiCOM Labs in September 2016. The scope of this test program is to perform Conducted RF spot check measurements of the RF Module, along with Radiated Emission measurements of the L-NIC module to demonstrate compliance.

The following product description was supplied by the manufacturer

LNIC incorporates the Milli 5 module to communicate within the SSNI mesh canopy to track asset locations and report sensor data and alerts including shock, tilt, temperature, and humidity.

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 14 of 71

Silver Spring Networks LNIC

FCC CFR 47 Part 15 Subpart C 15.247 (FHSS) To:

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

15 of 71 Page:

5.3. Equipment Model(s) and Serial Number(s)

Туре	Description	Manufacturer	Model	Serial no.
EUT	Radio Module -Network Interface Card (NIC)	Silver Spring Networks	LNIC	0917600463
Support Equipment	Laptop	Lenovo		

5.4. Antenna Details

Туре	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
integral	Tai Sheng Chen	420- 0319-00	Dipole	0.0	-	360	-	902 - 928

BF Gain - Beamforming Gain Dir BW - Directional BeamWidth X-Pol - Cross Polarization

5.5. Cabling and I/O Ports

Port Type		Port Description	Qty	Screened (Yes/ No)
	Serial	Console – Maintenance Terminal	1	NO
	dc Input	3.3 Vdc Jack	1	NO

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A lssue Date: 2nd May 2017

Page: 16 of 71

5.6. Test Configurations

Results for the following configurations are provided in this report:

Operational Mode(s)	Data Rate with Highest Power								
(802.11a/b/g/n/ac)	MBit/s	Low	Mid	High					
	902 - 928 MHz								
2FSK	50	902.2	915.2	927.8					

5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 17 of 71

6. TEST SUMMARY

List of Measurements

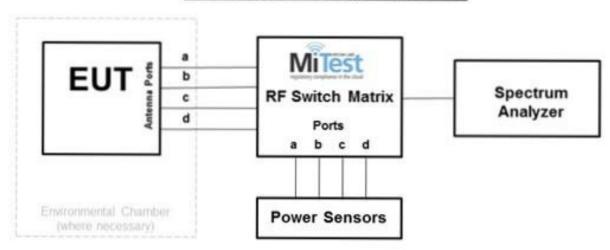
Test Header	Result	Data Link
20 dB & 99% Bandwidth	Complies	View Data
Frequency Hopping Tests	Complies	-
Number of Hopping Channels	Complies	View Data
Channel Separation	Complies	View Data
Dwell Time and Channel Occupancy	Complies	View Data
Output Power	Complies	View Data
Emissions	Complies	-
(1) Conducted Emissions	Complies	-
(i) Conducted Unwanted Spurious Emissions	Complies	View Data
(ii) Conducted Band-Edge Emissions	Complies	View Data
(2) Radiated Emissions	Complies	-
(i) TX Spurious & Restricted Band Emissions	Complies	View Data
(3) Digital Emissions (0.03 - 1 GHz)	Complies	View Data

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 18 of 71

7. TEST EQUIPMENT CONFIGURATION(S)


7.1. Conducted

Conducted RF Emission Test Set-up(s)

The following tests were performed using the conducted test set-up shown in the diagram below.

- 1. 20 dB & 99% Bandwidth
- 2. Number of Channels
- 3. Channel Spacing
- 4. Dwell Time & Channel Occupancy
- 5. Peak Output Power
- 6. Power Spectral Density
- 7. Conducted Spurious Emissions
- 8. Conducted Spurious Band-Edge Emissions

MiTest MiCOM Labs Automated Test System

Conducted Test Measurement Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

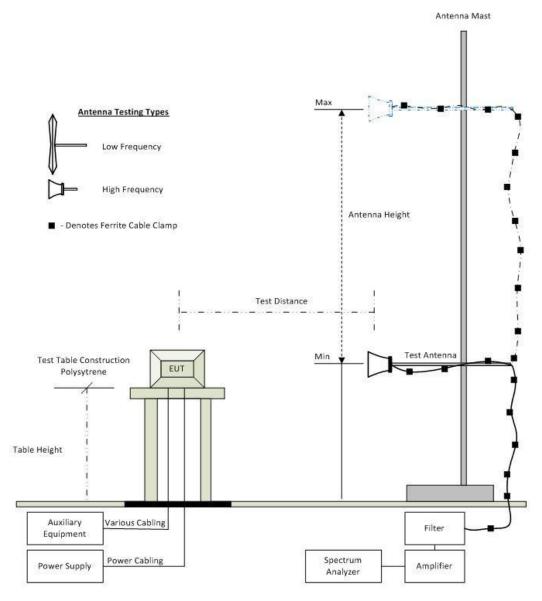
Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 19 of 71

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
#3 SA	MiTest Box to SA	Fairview Microwave	SCA1814- 0101-72	#3 SA	2 Jun 2017
#3P1	EUT to MiTest box port 1	Fairview Microwave	SCA1814- 0101-72	#3P1	2 Jun 2017
#3P2	EUT to MiTest box port 2	Fairview Microwave	SCA1814- 0101-72	#3P2	2 Jun 2017
#3P3	EUT to MiTest box port 3	Fairview Microwave	SCA1814- 0101-72	#3P3	2 Jun 2017
#3P4	EUT to MiTest box port 4	Fairview Microwave	SCA1812- 0101-72	#3P4	2 Jun 2017
158	Barometer/Thermometer	Control Company	4196	E2846	30 Nov 2017
249	Resistance Thermometer	Thermotronics	GR2105-02	9340 #2	23 Oct 2017
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	2 May 2017
361	Desktop for RF#1, Labview Software installed	Dell	Vostro 220	WS RF#1	Not Required
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	4 Aug 2017
390	USB Power Head 50MHz - 24GHz -60 to +20dBm	Agilent	U2002A	MY50000103	17 Oct 2017
398	MiTest RF Conducted Test Software	MiCOM	MiTest ATS	Version 4.1	Not Required
405	DC Power Supply 0-60V	Agilent	6654A	MY4001826	Cal when used
408	USB to GPIB interface	National Instruments	GPIB-USB HS	14C0DE9	Not Required
435	USB Wideband Power Sensor	Boonton	55006	8730	31 Jul 2017
436	USB Wideband Power Sensor	Boonton	55006	8731	14 Sep 2017
441	USB Wideband Power Sensor	Boonton	55006	9179	25 Sep 2017
443	4x4 RF Switch Box	MiCOM Labs	MiTest 4X4 RF Switch Box	MIC003	2 Jun 2017
445	PoE Injector	D-Link	DPE-101GL	QTAH1E2000625	Not Required
461	Spectrum Analyzer	Agilent	E4440A	MY46185537	13 Aug 2017
75	Environmental Chamber	Thermatron	SE-300-2-2	27946	24 Nov 2017

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017


Page: 20 of 71

7.2. Radiated Emissions

The following tests were performed using the radiated test set-up shown in the diagram below.

- 1).. Radiated Spurious and Band-Edge Emissions;
- 2) Digital Emissions

Radiated Emission Measurement Setup Pictorial Representation

Radiated Emission Test Setup

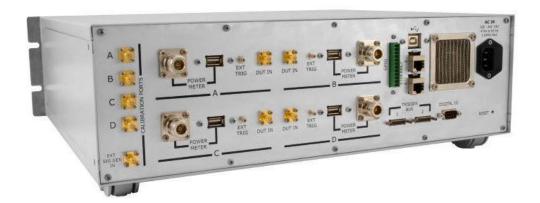
To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 21 of 71

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	30 Nov 2017
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	2 May 2017
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	15 Aug 2017
341	900MHz Notch Filter	EWT	EWT-14-0199	H1	16 Aug 2017
346	1.6 TO 10GHz High Pass Filter	EWT	EWT-57-0112	H1	16 Aug 2017
373	26III RMS Multimeter	Fluke	Fluke 26 series III	76080720	26 Oct 2017
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	9 Jun 2017
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	10 Jul 2017
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	9 Jun 2017
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
414	DC Power Supply 0-60V	HP	6274	1029A01285	Cal when used
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
447	MiTest Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0	447	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	31 May 2017
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	31 May 2017
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	31 May 2017
480	Cable - Bulkhead to Amp	SRC Haverhill	157-157- 3050360	480	2 Jun 2017
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-151- 3050787	481	2 Jun 2017
482	Cable - Amp to Antenna	SRC Haverhill	157-157- 3051574	482	2 Jun 2017
87	Uninterruptible Power Supply	Falcon Electric	ED2000-1/2LC	F3471 02/01	Cal when used

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 22 of 71


8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 23 of 71

9. TEST RESULTS

9.1. 20 dB & 99% Bandwidth

Conducted Test Conditions for 20 dB and 99% Bandwidth				
Standard:	FCC CFR 47:15.247 & RSS 247	Ambient Temp. (°C):	24.0 - 27.5	
Test Heading:	20 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45	
Standard Section(s):	15.247 (a)(2) & 5.1 Pressure (mBars): 999 - 1001			
Reference Document(s):	See Normative References			

Test Procedure for 20 dB and 99% Bandwidth Measurement

The bandwidth at 20 dB and 99 % was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Testing was performed under ambient conditions at nominal voltage

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits for 20 dB and 99% Bandwidth

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 24 of 71

Equipment Configuration for 20 dB & 99% Bandwidth

Variant:	FHSS	Duty Cycle (%):	99
Data Rate:	50 kbps	Antenna Gain (dBi):	Not Applicable
Modulation:	2FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:	None		

Test Measurement Results

Test	Ме	asured 20 dB	Bandwidth (KI	Hz)	20 dB Band	width (KUz)	Limit	Lowest	
Frequency		Por	Port(s)		20 dB Bandwidth (KHz)		Lilling	Margin	
MHz	а	b	С	d	Highest	Lowest	KHz	KHz	
902.2	<u>107</u>				107	107	≤500.0	-393	
915.2	<u>108</u>				108	108	≤500.0	-392	
927.8	<u>107</u>				107	107	≤500.0	-393	

Test		Measured 99% Bandwidth (KHz)			Maximum	
Frequency		Port(s)			99% Bandwidth	
MHz	а	b	С	d	(KHz)	
902.2	<u>107</u>				107	
915.2	<u>111</u>				111	
927.8	<u>110</u>				110	

Traceability to Industry Recognized Test Methodologies		
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK	
Measurement Uncertainty:	±2.81 dB	

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 25 of 71

9.2. Frequency Hopping Tests

Conducted Test Conditions for Frequency Hopping Measurements			
Standard:	FCC CFR 47:15.247	Ambient Temp. (°C):	24.0 - 27.5
Test Heading:	Frequency Hopping Tests	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.247 (a)(1)(i)/(ii) Pressure (mBars): 999 - 1001		
Reference Document(s):	See Normative References, FCC Public Notice DA 00-705		

Test Procedure for Frequency Hopping Measurements

These tests cover the following measurements:

- i) channel separation
- ii) channel occupancy
- iii) dwell time
- iv) number of hopping frequencies

Frequency hopping testing was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency or hopping mode.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits for Frequency Hopping Measurements

- (a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:
 - (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.
 - (i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.
 - (ii) Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies. The maximum 20 dB bandwidth of the hopping channel is 1 MHz. The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.
 - (iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A lssue Date: 2nd May 2017

Page: 26 of 71

9.2.1. Number of Hopping Channels

Equipment Configuration for Hopping Sequence

Variant:	FHSS	Duty Cycle (%):	99
Data Rate:	50 kbps	Antenna Gain (dBi):	Not Applicable
Modulation:	2FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results					
Modulation	Frequency Range	Number of Henning Channels	Limit	Total Number of	
Modulation	(MHz)	Number of Hopping Channels	No of Hopping Channels	Hops	Results
2FSK	900.00 - 916.00	70.0		70.0	
2FSK	916.00 - 928.00	58.0		58.0	
2FSK	902.00 - 928.00	Total No. of Hopping Channels:	≥50	128.0	Pass

Traceability to Industry Recognized Test Methodologies		
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK	
Measurement Uncertainty:	±2.81 dB	

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 27 of 71

9.2.2. Channel Separation

Equipment Configuration for Channel Spacing

Variant:	FHSS	Duty Cycle (%):	99
Data Rate:	50 kbps	Antenna Gain (dBi):	Not Applicable
Modulation:	2FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Center Frequency	Packet Type	Chan Separation	Limit (20 dB Occ. BW)	Result
MHz		MHz	MHz	
915.4 & 925.6	2FSK	0.200	> 0.100	Pass

Traceability to Industry Recognized Test Methodologies

Measurement Uncertainty: ±2.81 dB (Spectrum/Amplitude), ±0.86 ppm (Frequency)

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 28 of 71

9.2.3. <u>Dwell Time & Channel Occupancy</u>

Equipment Configuration for Dwell Time & Channel Occupancy

Variant:	FHSS	Duty Cycle (%):	99
Data Rate:	50 kbps	Antenna Gain (dBi):	Not Applicable
Modulation:	2FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

	Test Measurement Results									
Center										
Frequency	equency Variant Type (Single Channel) Channel Occupancy Limit Res									
MHz	MHz ms ms ms									
915.6	2FSK	<u>24.0</u>	<u>48.0</u>	400.00	Pass					

Traceability to Industry Recognized Test Methodologies						
Measurement Uncertainty: ±2.81 dB (Spectrum/Amplitude), ±0.86 ppm (Frequency)						

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 29 of 71

9.3. Output Power

Conducted Test Conditions for Fundamental Emission Output Power								
Standard:	FCC CFR 47:15.247 & RSS 247	CCC CFR 47:15.247 & Ambient Temp. (°C): 24.0 - 27.5						
Test Heading:	Output Power	Output Power Rel. Humidity (%): 32 - 45						
Standard Section(s):	5.247 (b) & (c) & 5.4 (1) Pressure (mBars): 999 - 1001							
Reference Document(s):	See Normative References							

Test Procedure for Fundamental Emission Output Power Measurement

In the case of average power measurements an average power sensor was utilized.

For peak power measurements the spectrum analyzer built-in power function was used to integrate peak power over the 20 dB bandwidth.

Testing was performed under ambient conditions at nominal voltage...

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document. Supporting Information

Calculated Power = $A + G + Y + 10 \log (1/x) dBm$

A = Total Power $[10*Log10 (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})]$

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Limits for Fundamental Emission Output Power

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following for non-frequency hopping systems:

- (3) For systems using digital modulation in the 902-928 MHz and 2400-2483.5 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
- (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (c) Operation with directional antenna gains greater than 6 dBi.
 - (1) Fixed point-to-point operation:
 - (i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.
 - (iii) Fixed, point-to-point operation, as used in paragraphs (c)(1)(i) and (c)(1)(ii) of this section, excludes the use of point-to-multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum or digitally modulated intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 30 of 71

(2) In addition to the provisions in paragraphs (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:

- (i) Different information must be transmitted to each receiver.
- (ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:
 - (A) The directional gain shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.
 - (B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.
- (iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB.
- (iv) Transmitters that emit a single directional beam shall operate under the provisions of paragraph (c)(1) of this section.

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 31 of 71

Equipment Configuration for Peak Output Power

Variant:	FHSS	Duty Cycle (%):	99
Data Rate:	50 kbps	Antenna Gain (dBi):	Not Applicable
Modulation:	2FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB

Test Measurement Results

Test	N	leasured Outp	ut Power (dBn	n)	Calculated Total Power	Limit	Maurin	
Frequency		Por	t(s)		Σ Port(s)	Limit	Margin	
MHz	a b c d				dBm	dBm	dBm	
902.2	23.73				23.73	30.00	-6.27	
915.2	23.61				23.61	30.00	-6.39	
927.8	23.77				23.77	30.00	-6.23	

Traceability to Industry Recognized Test Methodologies						
Work Instruction: WI-01 MEASURING RF OUTPUT POWER						
Measurement Uncertainty:	±1.33 dB					

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 32 of 71

10. Emissions

10.1. Conducted Emissions

Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions								
Standard:	FCC CFR 47:15.247	CC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5						
Test Heading:	Transmitter Conducted Spurious and Band-Edge Emissions Rel. Humidity (%): 32 - 45							
Standard Section(s):	Pressure (mBars): 999 - 1001							
Reference Document(s):	See Normative References							

Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

Transmitter Conducted Spurious and Band-Edge emissions were measured at a limit of 30 dBc (average detector) or 20 dBc (peak detector) below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in transmit mode of operation at the appropriate centre frequency closest to the band-edge. Emissions were maximized during the measurement and limits derived from the peak spectral power and drawn on each plot.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits Transmitter Conducted Spurious and Band-Edge Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 33 of 71

10.1.1. Conducted Unwanted Spurious Emissions

Equipment Configuration for Transmitter Conducted Spurious Emissions

Variant:	FHSS	Duty Cycle (%):	99
Data Rate:	50 kbps	Antenna Gain (dBi):	Not Applicable
Modulation:	2FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:	None		

Test Measurement Results

Test Frequency Transmitter Conducted Spurious Emissions (dBm)									
Frequency	Range	Port a		Po	rt b	Po	rt c	Po	rt d
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
902.2	30.0 - 26000.0	<u>-40.53</u>	3.24						
915.2	30.0 - 26000.0	<u>-36.52</u>	3.39						
927.8	30.0 - 26000.0	<u>-35.56</u>	3.46						
				•			•	•	•

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS					
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB					

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 34 of 71

10.1.2. Conducted Band-Edge Emissions

Conducted Low Band-Edge Emissions

Equipment Configuration for Conducted Low Band-Edge Emissions - Peak

Variant:	FHSS	Duty Cycle (%):	99
Data Rate:	50 kbps	Antenna Gain (dBi):	Not Applicable
Modulation:	2FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:	None		

Test Measurement Results

	Channel quency:	902.2 MHz					
Fre	nd-Edge equency:	902 MHz					
Test Fre	equency Range:	880.0 – 904.0 MH:	880.0 – 904.0 MHz				
		Band-Edge Markers and Limit			Revised Limit		Margin
Temp C		M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
20	3.3	<u>-5.93</u>	3.4	902.02			-0.02

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS			
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 35 of 71

Conducted High Band-Edge Emissions

Equipment Configuration for Conducted High Band-Edge Emissions - Peak

Variant:	FHSS	Duty Cycle (%):	99
Data Rate:	50 kbps	Antenna Gain (dBi):	Not Applicable
Modulation:	2FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:	None		

Test Measurement Results

(Channel	927.8 MHz					
Free	quency:	927.0 IVIDZ					
Bar	nd-Edge	928.0 MHz	020 0 MLI-				
Free	quency:						
Test Fre	equency Range:	927.0 – 935.0 MHz					
		Band-	Edge Markers and	Limit	Revise	d Limit	Margin
Temp C		M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)		M1 Amplitude (dBm)	Plot Limit (dBm)
20	3.3	<u>-1.033</u>	1.310	927.97			

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS			
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 36 of 71

Conducted Low Band-Edge Emissions Hopping

Equipment Configuration for Conducted Low Band-Edge Emissions - Peak

Variant:	FHSS	Duty Cycle (%):	99
Data Rate:	50 kbps	Antenna Gain (dBi):	Not Applicable
Modulation:	2FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:	None		

Test Measurement Results

C Freq	hannel juency:	902.2 MHz					
Freq	luency:	902 MHz					
Test Free	quency Range:	880.0 – 904.0 MHz					
_		Band-Edge Markers and Limit			Revise	d Limit	Margin
Temp C		M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
20	3.3	<u>-3.6</u>	4.6	902.98			-0.98

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS			
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 37 of 71

Conducted High Band-Edge Emissions Hopping

Equipment Configuration for Conducted High Band-Edge Emissions - Peak

Variant:	FHSS	Duty Cycle (%):	99
Data Rate:	50 kbps	Antenna Gain (dBi):	Not Applicable
Modulation:	2FSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:	None		

Test Measurement Results

(Channel	927.8 MHz								
Free	quency:	927.0 IVII IZ								
Bar	nd-Edge	928.0 MHz								
Free	quency:									
Test Fre	equency Range:	927.0 – 935.0 MHz	Z							
		Band-	-Edge Markers and	Limit	Revise	d Limit	Margin			
Tem	рС	M3 Amplitude (dBm)	' Piot i imit (dBm) ' ' ' Piot i imit (dBm)							
20	3.3	<u>-2.3</u>	5.00	927.0			-0.50			

Traceability to Industry Recognized Test Methodologies								
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS							
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB							

Note: click the links in the above matrix to view the graphical image (plot).

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A lssue Date: 2nd May 2017

Page: 38 of 71

10.2. Radiated Emissions

Radiated Test Conditions for Radiated Spurious and Band-Edge Emissions (Restricted Bands)											
Standard:	FCC CFR 47:15.247	CC CFR 47:15.247 Ambient Temp. (°C): 20.0 - 24.5									
Test Heading:	Radiated Spurious and Band- Edge Emissions	Rel. Humidity (%):	32 - 45								
Standard Section(s):	15.205, 15.209										
Reference Document(s):	See Normative References	ee Normative References									

Test Procedure for Radiated Spurious and Band-Edge Emissions (Restricted Bands)

Radiated emissions for restricted bands above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned. Measurements on any restricted band frequency or frequencies above 1 GHz are based on the use of measurement instrumentation employing peak and average detectors. All measurements were performed using a resolution bandwidth of 1 MHz.

Test configuration and setup for Radiated Spurious and Band-Edge Measurement were per the Radiated Test Set-up specified in this document.

Limits for Restricted Bands Peak emission: 74 dBuV/m Average emission: 54 dBuV/m

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

where:

FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

Example:

Given receiver input reading of 51.5 dBmV; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength (FS) of the measured emission is:

FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dBmV/m

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are as follows: Level (dBmV/m) = 20 * Log (level (mV/m))

40 dBmV/m = 100 mV/m48 dBmV/m = 250 mV/m

Restricted Bands of Operation (15.205)

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 39 of 71

Frequency Band								
MHz	MHz	MHz	GHz					
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15					
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46					
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75					
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5					
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2					
1.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5					
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7					
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4					
6.31175-6.31225	123-138	2200-2300	14.47-14.5					
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2					
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4					
3.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12					
3.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0					
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8					
2.51975-12.52025	240-285	3345.8-3358	36.43-36.5					
2.57675-12.57725	322-335.4	3600-4400	Above 38.6					
13.36-13.41								

- (b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.
- (c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhere in this subpart, the provisions of this section apply to emissions from any intentional radiator.
- (d) The following devices are exempt from the requirements of this section:
 - (1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section more than 99% of the time the device is actively transmitting, without compensation for duty cycle.
 - (2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.
 - (3) Cable locating equipment operated pursuant to §15.213.
 - (4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GHz, or §15.257 of this part.
 - (5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.
 - (6) Transmitters operating under the provisions of subparts D or F of this part.

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 40 of 71

(7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

- (8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §15.245(b).
- (9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in §15.249(a).
- (e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of §15.245 shall not exceed the limits specified in §15.245(b).

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

41 of 71

10.2.1. TX Spurious & Restricted Band Emissions

Equipment Configuration for TX Spurious & Restricted Band Emissions

Page:

Antenna:	Integral	Variant:	2FSK
Antenna Gain (dBi):	0.00	Modulation:	2FSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	902.20	Data Rate:	50.00 KBit/s
Power Setting:	Max	Tested By:	JMH

	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1804.44	65.59	2.45	-13.63	54.41	Peak (NRB)	Horizontal	200	0		-	Pass
#2	2706.67	57.57	2.86	-11.38	49.05	Max Peak	Horizontal	198	110	74.0	-25.0	Pass
#3	2706.67	54.04	2.86	-11.38	45.52	Max Avg	Horizontal	198	110	54.0	-8.5	Pass
#4	6315.47	53.67	3.93	-8.34	49.26	Peak (NRB)	Horizontal	151	0			Pass
#5	7217.80	55.07	4.31	-7.35	52.03	Peak (NRB)	Horizontal	200	74			Pass
Test No	tes: LNIC pov	wered by	3V DC									

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 42 of 71

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	Integral	Variant:	2FSK
Antenna Gain (dBi):	0.00	Modulation:	2FSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	915.20	Data Rate:	50.00 KBit/s
Power Setting:	Max	Tested By:	JMH

	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1830.41	61.77	2.45	-13.53	50.69	Peak (NRB)	Horizontal	100	0			Pass
#2	2745.59	58.59	2.84	-11.35	50.08	Max Peak	Horizontal	187	97	74.0	-23.9	Pass
#3	2745.59	55.58	2.84	-11.35	47.07	Max Avg	Horizontal	187	97	54.0	-6.9	Pass
#4	6406.25	54.52	3.97	-8.03	50.46	Peak (NRB)	Horizontal	151	91			Pass
#5	7321.75	58.10	4.26	-7.26	55.10	Max Peak	Horizontal	194	96	74.0	-18.9	Pass
#6	7321.75	53.60	4.26	-7.26	50.60	Max Avg	Horizontal	194	96	54.0	-3.4	Pass
Test No	tes: LNIC pov	wered by	3V DC							•		

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 43 of 71

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	Integral	Variant:	2FSK
Antenna Gain (dBi):	0.00	Modulation:	2FSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	927.80	Data Rate:	50.00 KBit/s
Power Setting:	Max	Tested By:	JMH

	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1855.67	66.93	2.49	-13.41	56.01	Peak (NRB)	Horizontal	151	0			Pass
#2	2783.42	58.86	2.85	-11.33	50.38	Max Peak	Horizontal	179	108	74.0	-23.6	Pass
#3	2783.42	55.93	2.85	-11.33	47.45	Max Avg	Horizontal	179	108	54.0	-6.6	Pass
#4	6494.35	53.78	4.02	-7.92	49.88	Peak (NRB)	Horizontal	200	37		-	Pass
#5	7422.32	54.24	4.34	-7.14	51.44	Max Peak	Horizontal	188	306	74.0	-22.6	Pass
#6	7422.32	48.93	4.34	-7.14	46.13	Max Avg	Horizontal	188	306	54.0	-7.9	Pass
Test No	est Notes: LNIC powered by 3V DC											

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 44 of 71

10.2.2. Radiated Emissions (0.03 - 1 GHz)

Radiated Test Conditions for Radiated Digital Emissions (0.03 – 1 GHz)									
Standard:	FCC CFR 47:15.247 Ambient Temp. (°C): 20.0 - 24.5								
Test Heading:	Digital Emissions	Rel. Humidity (%):	32 - 45						
Standard Section(s):	15.209	Pressure (mBars):	999 - 1001						
Reference Document(s):	See Normative References								

Test Procedure for Radiated Digital Emissions (0.03 - 1 GHz)

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

Test configuration and setup for Radiated Spurious and Band-Edge Measurement were per the Radiated Test Set-up specified in this document.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

FS = R + AF + CORR

where:

FS = Field Strength
R = Measured Receiver Input Amplitude
AF = Antenna Factor
CORR = Correction Factor = CL - AG + NFL
CL = Cable Loss

AG = Amplifier Gain

For example:

Given a Receiver input reading of 51.5dBmV; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3dBmV/m

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are done as:

Level (dBmV/m) = 20 * Log (level (mV/m))

40 dBmV/m = 100 mV/m48 dBmV/m = 250 mV/m

Limits for Radiated Digital Emissions (0.03 – 1 GHz)

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 45 of 71

	Field S		
Frequency (MHz)	μV/m (microvolts/meter)	dBμV/m (dB microvolts/meter)	Measurement Distance (m)
0.009-0.490	2400/F(kHz)		300
0.490-1.705	24000/F(kHz)		30
1.705-30.0	30.0 30 29.5		30
30-88	100**	40	3
88-216	150**	43.5	3
216-960	200**	46.0	3
Above 960	500	54.0	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241. (b) In the emission table above, the tighter limit applies at the band edges. (c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency. (d) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. (e) The provisions in §§15.31, 15.33, and 15.35 for measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part. (f) In accordance with §15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in §15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in §15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit. Emissions which must be measured above the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator and which fall within the restricted bands shall comply with the general radiated emission limits in §15.109 that are applicable to the incorporated digital device. (g) Perimeter protection systems may operate in the 54-72 MHz and 76-88 MHz bands under the provisions of this section. The use of such perimeter protection systems is limited to industrial, business and commercial applications.

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 46 of 71

Equipment Configuration for Radiated - Radiated Digital Emissions

Antenna:	Integral	Variant:	2FSK
Antenna Gain (dBi):	0.00	Modulation:	2FSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	902.20	Data Rate:	50.00 KBit/s
Power Setting:	Max	Tested By:	JMH

	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	902.18	45.83	6.34	-7.79	44.38	Fundamental	Vertical	100	0			
Test Not	Test Notes: LNIC on 80 cm table powered by 3V DC. TX on 902.2											

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 47 of 71

Equipment Configuration for Radiated Digital Emissions

Antenna:	Integral	Variant:	2FSK
Antenna Gain (dBi):	0.00	Modulation:	2FSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	915.20	Data Rate:	50.00 KBit/s
Power Setting:	Max	Tested By:	JMH

	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	915.18	38.23	6.39	-7.75	36.87	Fundamental	Vertical	100	0			
Test Not	es: LNIC on 8	30 cm tab	le powere	d by 3V D	C. TX on	915.2						

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 48 of 71

Equipment Configuration for Radiated Digital Emissions

Antenna:	Integral	Variant:	2FSK
Antenna Gain (dBi):	0.00	Modulation:	2FSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	927.80	Data Rate:	50.00 KBit/s
Power Setting:	Max	Tested By:	JMH

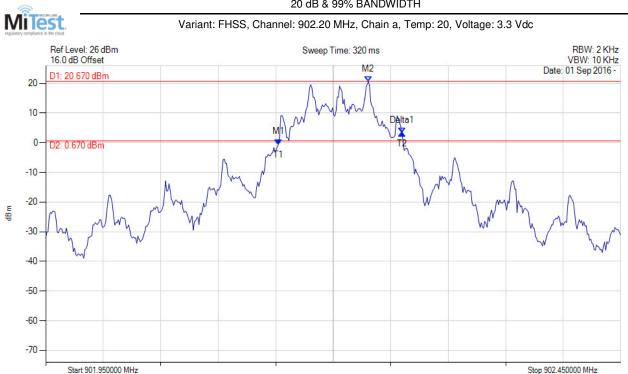
	30.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	927.82	53.16	6.43	-7.44	52.15	Fundamental	Vertical	100	0			
Test Not	es: LNIC on 8	30 cm tab	le powere	d by 3V D	C. TX on	927.8				•		

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A lssue Date: 2nd May 2017

Page: 49 of 71

APPENDIX A - GRAPHICAL IMAGES


FCC CFR 47 Part 15 Subpart C 15.247 (FHSS) To:

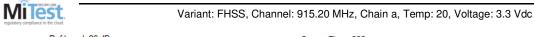
Span 500 KHz

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 50 of 71

A.1. 20 dB & 99% Bandwidth

20 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0 RF Atten (dB) = 20	M1: 902.152 MHz: -0.549 dBm M2: 902.231 MHz: 20.668 dBm Delta1: 107 KHz: 3.817 dB T1: 902.152 MHz: -0.549 dBm T2: 902.260 MHz: 3.269 dBm OBW: 107 KHz	Channel Frequency: 902.20 MHz


Step 50 KHz

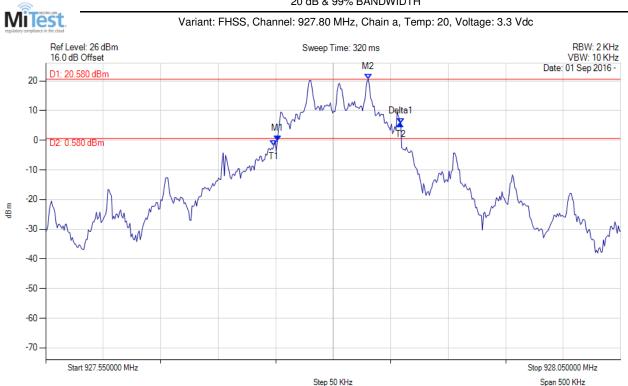


To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 51 of 71

20 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1: 915.153 MHz: 0.865 dBm M2: 915.231 MHz: 20.334 dBm Delta1: 108 KHz: -0.958 dB T1: 915.149 MHz: -2.025 dBm T2: 915.261 MHz: -0.093 dBm OBW: 111 KHz	Channel Frequency: 915.20 MHz



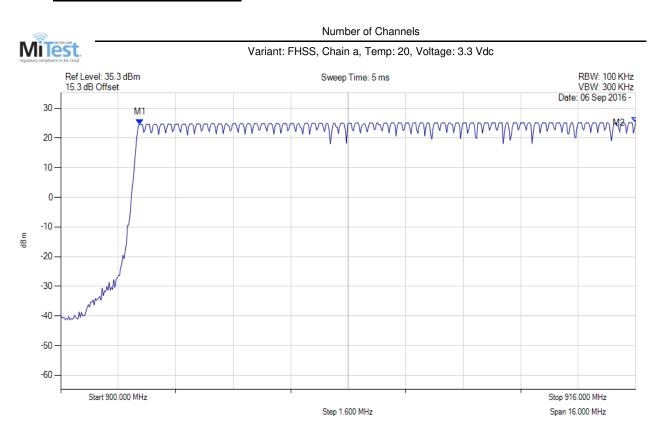
FCC CFR 47 Part 15 Subpart C 15.247 (FHSS) To:

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

52 of 71 Page:

20 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
	M1:927.751 MHz:-0.298 dBm M2:927.831 MHz:20.637 dBm Delta1:107 KHz:5.939 dB T1:927.748 MHz:-1.816 dBm T2:927.859 MHz:5.640 dBm OBW:110 KHz	Channel Frequency: 927.80 MHz

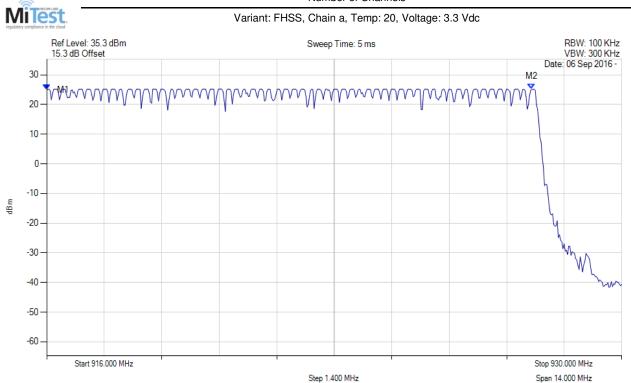


To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 53 of 71

A.2. Frequency Hopping Tests

A.2.1. Number of Hopping Channels

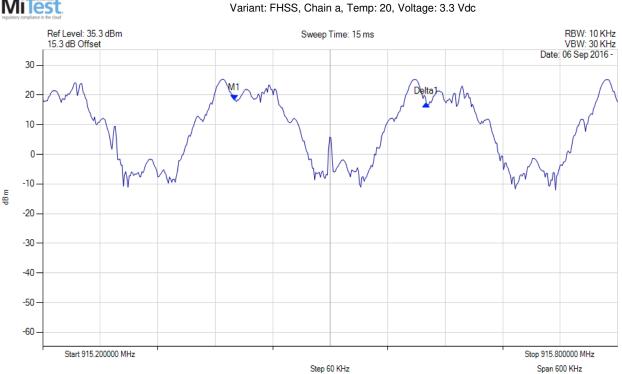

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1:902.200 MHz:24.615 dBm	Channel Frequency: 0 Hz
Sweep Count = 0	M2: 916.000 MHz: 25.125 dBm	
RF Atten (dB) = 30		
Trace Mode = MAX HOLD		

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 54 of 71

Number of Channels

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 916.000 MHz : 25.028 dBm M2 : 927.800 MHz : 25.146 dBm	Channel Frequency: FHSS 902-928 MHz


FCC CFR 47 Part 15 Subpart C 15.247 (FHSS) To:

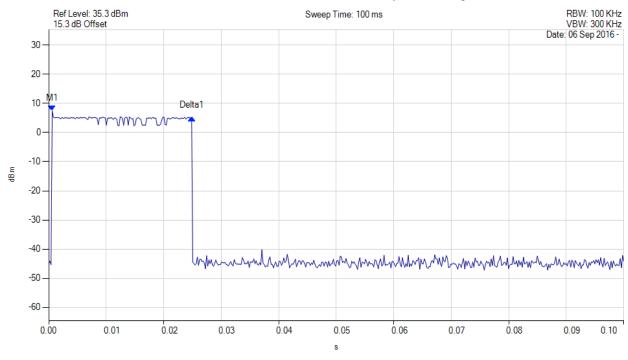
Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 55 of 71

A.2.2. Channel Separation

Channel Spacing

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1: 915.400 MHz: 18.296 dBm	Channel Frequency: 915.4 MHz
Sweep Count = 0	Delta1: 200 KHz: -1.269 dB	
RF Atten (dB) = 30		
Trace Mode = MAX HOLD		

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)


Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 56 of 71

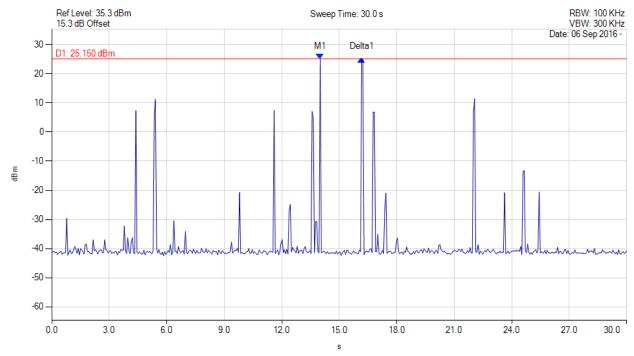
A.2.3. <u>Dwell Time and Occupancy</u>

MÎTEST.

Dwell Time

Variant: FHSS, Channel: 915.60 MHz, Chain a, Temp: 20, Voltage: 3.3 Vdc

Analyzer Setup	Marker:Time:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0	M1(915.60 MHz) : 0.000 s : 7.415 dBm	Channel Frequency: 915.60 MHz
RF Atten (dB) = 30	Delta1(915.60 MHz) : 0.024 s : - 2.264 dB	


To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 57 of 71

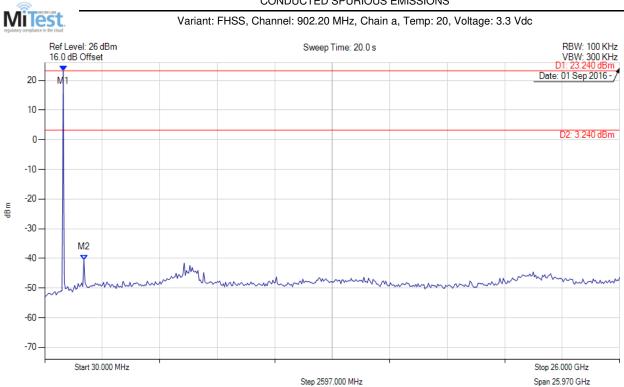
MÎTEST.

Channel Occupancy

Variant: FHSS, Channel: 915.60 MHz, Chain a, Temp: 20, Voltage: 3.3 Vdc

Analyzer Setup	Marker:Time:Amplitude	Test Results
Detector = MAX PEAK	M1(915.60 MHz) : 14.008 s :	Channel Frequency: 915.60 MHz
Sweep Count = 0	25.137 dBm	
RF Atten (dB) = 30	Delta1(915.60 MHz) : 2.164 s :	
Trace Mode = CLR/WRITE	0.012 dB	

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)


Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 58 of 71

A.3. Emissions

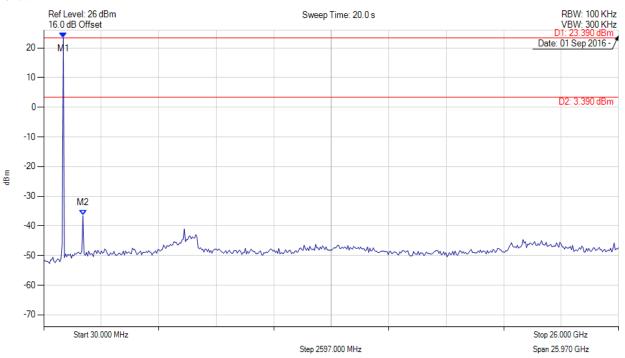
A.3.1. Conducted Emissions

A.3.1.1. Conducted Unwanted Spurious Emissions

CONDUCTED SPURIOUS EMISSIONS

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1:862.705 MHz:23.240 dBm	Channel Frequency: 902.20 MHz
Sweep Count = 0	M2: 1799.499 MHz: -40.530 dBm	·
RF Atten (dB) = 20		
Trace Mode = MAX HOLD		

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

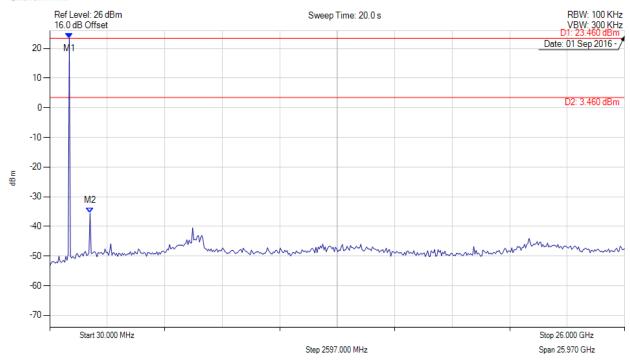

Serial #: SSNT136-U2 Rev A
Issue Date: 2nd May 2017

Page: 59 of 71

CONDUCTED SPURIOUS EMISSIONS

Variant: FHSS, Channel: 915.20 MHz, Chain a, Temp: 20, Voltage: 3.3 Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1:914.749 MHz:23.389 dBm	Channel Frequency: 915.20 MHz
Sweep Count = 0	M2: 1799.499 MHz: -36.515 dBm	
RF Atten (dB) = 20		
Trace Mode = MAX HOLD		

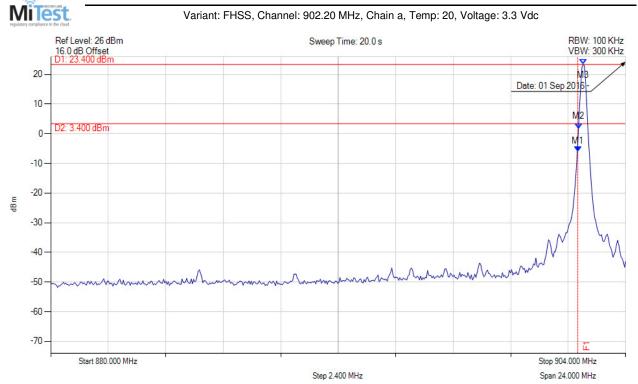

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 60 of 71

CONDUCTED SPURIOUS EMISSIONS

Variant: FHSS, Channel: 927.80 MHz, Chain a, Temp: 20, Voltage: 3.3 Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1:914.749 MHz:23.462 dBm	Channel Frequency: 927.80 MHz
Sweep Count = 0	M2: 1851.543 MHz: -35.564 dBm	
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		


To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

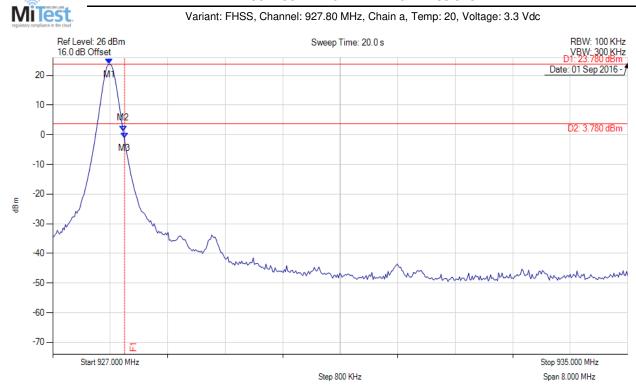
Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 61 of 71

A.3.1.2. Conducted Band-Edge Emissions

Conducted Low Band-Edge Emissions

CONDUCTED LOW BAND-EDGE EMISSIONS

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1:902.000 MHz:-5.934 dBm	Channel Frequency: 902.20 MHz
Sweep Count = 0	M2: 902.028 MHz: 1.640 dBm	
RF Atten (dB) = 20	M3: 902.220 MHz: 23.397 dBm	
Trace Mode = MAX HOLD		



To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

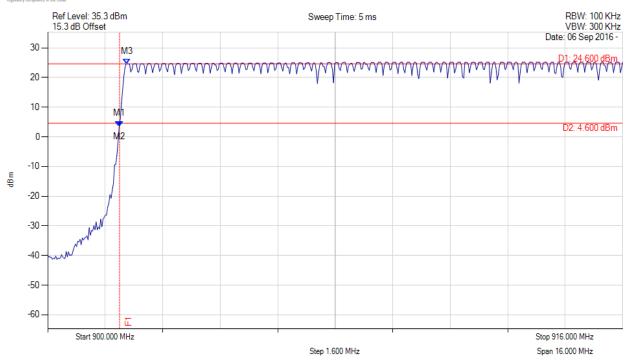
Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 62 of 71

Conducted High Band-Edge Emissions

CONDUCTED HIGH BAND-EDGE EMISSIONS

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 927.786 MHz : 23.781 dBm M2 : 927.978 MHz : 1.310 dBm	Channel Frequency: 927.80 MHz
	M3 : 928.000 MHz : -1.033 dBm	
Trace Mode = CLR/WRITE		

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

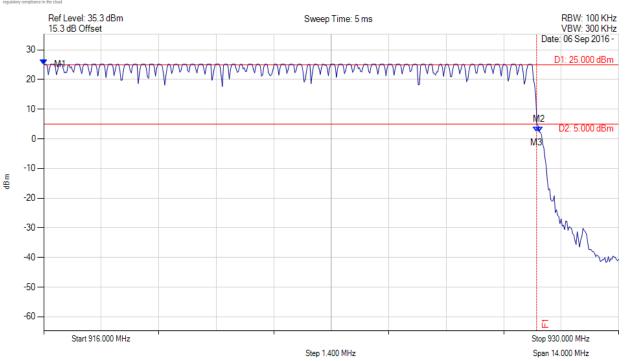

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 63 of 71

CONDUCTED LOW BAND-EDGE EMISSIONS HOPPING

Variant: FHSS, Channel: 902.2 MHz, Chain a, Temp: 20, Voltage: 3.3 Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1:902.000 MHz:3.600 dBm	Channel Frequency: 0 Hz
Sweep Count = 0	M2: 902.988 MHz: 3.600 dBm	
RF Atten (dB) = 30	M3: 902.200 MHz: 24.615 dBm	
Trace Mode = MAX HOLD		

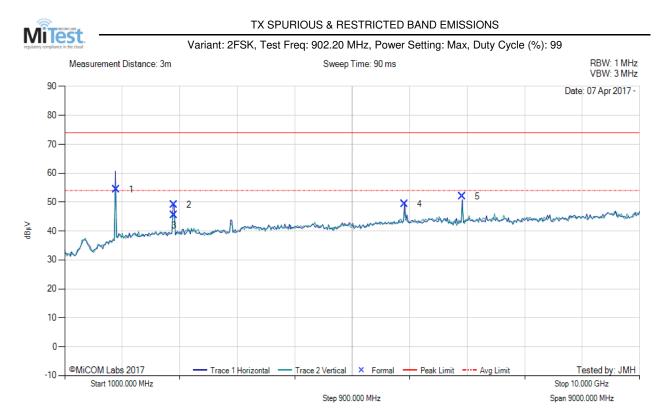

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 64 of 71

CONDUCTED HIGH BAND-EDGE EMISSIONS HOPPING

Variant: FHSS, Channel: 927.80 MHz, Chain a, Temp: 20, Voltage: 3.3 Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 916.000 MHz : 25.070 dBm M2 : 927.064 MHz : 2.300 dBm	Channel Frequency: 0 Hz
	M3 : 928.000 MHz : 2.300 dBm	
Trace Mode = MAX HOLD		



To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

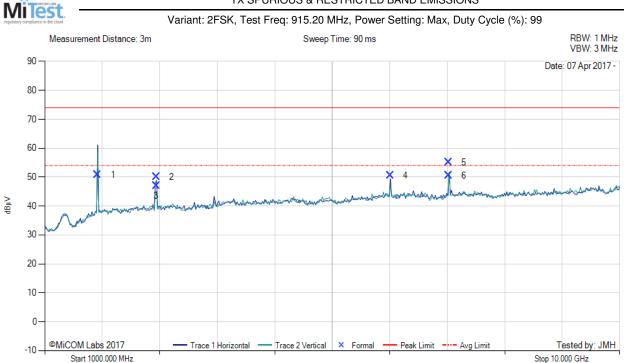
Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 65 of 71

A.3.2. Radiated Emissions

A.3.2.3. TX Spurious & Restricted Band Emissions

	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1804.44	65.59	2.45	-13.63	54.41	Peak (NRB)	Horizontal	200	0		-	Pass
2	2706.67	57.57	2.86	-11.38	49.05	Max Peak	Horizontal	198	110	74.0	-25.0	Pass
3	2706.67	54.04	2.86	-11.38	45.52	Max Avg	Horizontal	198	110	54.0	-8.5	Pass
4	6315.47	53.67	3.93	-8.34	49.26	Peak (NRB)	Horizontal	151	0			Pass
5	7217.80	55.07	4.31	-7.35	52.03	Peak (NRB)	Horizontal	200	74			Pass

Test Notes: LNIC powered by 3V DC



FCC CFR 47 Part 15 Subpart C 15.247 (FHSS) To:

Span 9000.000 MHz

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 66 of 71

TX SPURIOUS & RESTRICTED BAND EMISSIONS

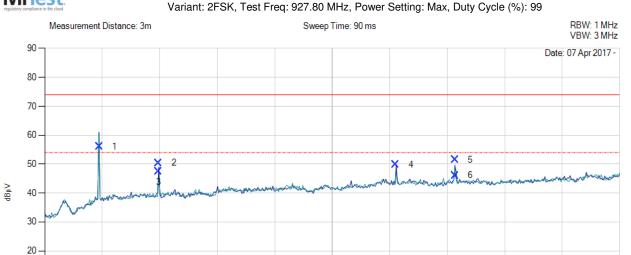
	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1830.41	61.77	2.45	-13.53	50.69	Peak (NRB)	Horizontal	100	0		1	Pass
2	2745.59	58.59	2.84	-11.35	50.08	Max Peak	Horizontal	187	97	74.0	-23.9	Pass
3	2745.59	55.58	2.84	-11.35	47.07	Max Avg	Horizontal	187	97	54.0	-6.9	Pass
4	6406.25	54.52	3.97	-8.03	50.46	Peak (NRB)	Horizontal	151	91			Pass
5	7321.75	58.10	4.26	-7.26	55.10	Max Peak	Horizontal	194	96	74.0	-18.9	Pass
6	7321.75	53.60	4.26	-7.26	50.60	Max Avg	Horizontal	194	96	54.0	-3.4	Pass

Step 900.000 MHz

Test Notes: LNIC powered by 3V DC

FCC CFR 47 Part 15 Subpart C 15.247 (FHSS) To:

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 67 of 71


MiTest

10

0-

-10 -

TX SPURIOUS & RESTRICTED BAND EMISSIONS

Peak Limit ---- Avg Limit Stop 10.000 GHz Step 900.000 MHz Span 9000.000 MHz

Tested by: JMH

	1000.00 - 10000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	1855.67	66.93	2.49	-13.41	56.01	Peak (NRB)	Horizontal	151	0		-	Pass	
2	2783.42	58.86	2.85	-11.33	50.38	Max Peak	Horizontal	179	108	74.0	-23.6	Pass	
3	2783.42	55.93	2.85	-11.33	47.45	Max Avg	Horizontal	179	108	54.0	-6.6	Pass	
4	6494.35	53.78	4.02	-7.92	49.88	Peak (NRB)	Horizontal	200	37		-	Pass	
5	7422.32	54.24	4.34	-7.14	51.44	Max Peak	Horizontal	188	306	74.0	-22.6	Pass	
6	7422.32	48.93	4.34	-7.14	46.13	Max Avg	Horizontal	188	306	54.0	-7.9	Pass	

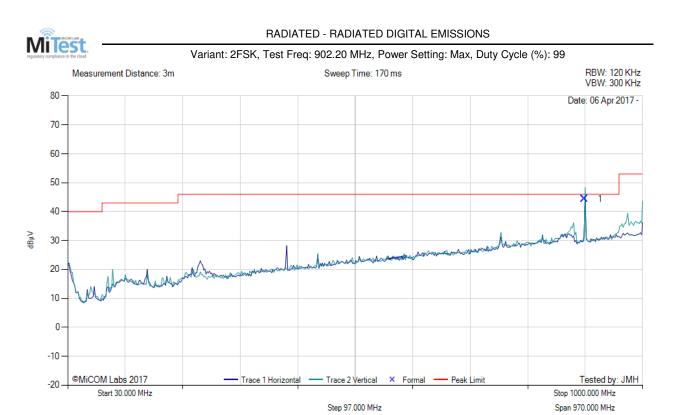
Trace 2 Vertical

Trace 1 Horizontal

× Formal •

Test Notes: LNIC powered by 3V DC

©MiCOM Labs 2017


Start 1000.000 MHz

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)

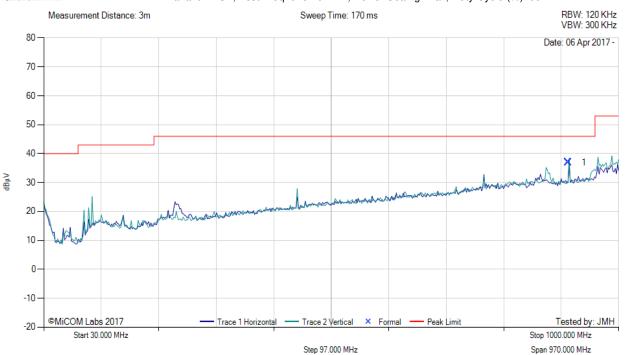
Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 68 of 71

A.3.3. Radiated Emissions (0.03 - 1 GHz)

	30.00 - 1000.00 MHz												
Nu	ım	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1	902.18	45.83	6.34	-7.79	44.38	Fundamental	Vertical	100	0			

Test Notes: LNIC on 80 cm table powered by 3V DC. TX on 902.2

To: FCC CFR 47 Part 15 Subpart C 15.247 (FHSS)


Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017

Page: 69 of 71

RADIATED DIGITAL EMISSIONS

30.00 - 1000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	915.18	38.23	6.39	-7.75	36.87	Fundamental	Vertical	100	0			

Test Notes: LNIC on 80 cm table powered by 3V DC. TX on 915.2

FCC CFR 47 Part 15 Subpart C 15.247 (FHSS) To:

Serial #: SSNT136-U2 Rev A Issue Date: 2nd May 2017 Page: 70 of 71

RADIATED DIGITAL EMISSIONS

Step 97.000 MHz Span 970.000 MHz

	30.00 - 10000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	927.82	53.16	6.43	-7.44	52.15	Fundamental	Vertical	100	0				

Test Notes: LNIC on 80 cm table powered by 3V DC. TX on 927.8

575 Boulder Court Pleasanton, California 94566, USA Tel: +1 (925) 462 0304 Fax: +1 (925) 462 0306 www.micomlabs.com