Model: IMU 200

EMISSIONS TEST REPORT FOR A LOW POWER TRANSMITTER

I. GENERAL INFORMATION

Requirement: FCC, Industry Canada

Test Requirements: FCC: Part 2, Part 15 IC: RSS-Gen, RSS-210,

Applicant: Silver Spring Networks

575 Broadway Street Redwood City, CA 94063

FCC ID: OWS-IMU517 IC: 5975A-IMU517

Model No.: IMU 200

II. DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)

The Silver Spring Networks (SSN) IMU517 is a battery-operated radio module for gas meter communications use. The board incorporates a 900 MHz FHSS radio.

III. TEST DATES AND TEST LOCATION

Testing was performed on 7 and 17 September 2010. Antenna port conducted and radiated emissions tests were performed at:

Compliance Certification Services 47173 Benicia Street Fremont, CA 94538

J.M. Cohen

Hopping mode tests were performed at Silver Spring Networks on 27 September 2010.

T.N. Cokenias

24 February 2011

EMC Consultant/Agent for Silver Spring Networks

Model: IMU 200

15.203 Antenna connector requirement

The EUT uses a custom permanently attached integral antenna,

Antenna description	Mfr.	Model No.	Gain
Built-in sheet metal electric meter	SSN	n/a	3 dBi at 902 MHz

TEST PROCEDURES

All tests were performed in accordance with the applicable procedures called out in the following documents, unless otherwise noted:

FCC 47CFR15

RSS-210 Issue 7: Low power license exempt radio frequency devices (July 2007) RSS-212: Test Facilities and Test Methods for Radio Equipment

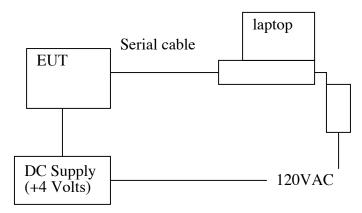
ANSI C63.4 – 2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

Tests were performed at three frequencies:

Channel 0 (LOW) – 902.3 MHz Channel 43 (MID) -915.2 MHz Channel 82 (HIGH) – 926.9 MHz

Model: IMU 200

Test Equipment


Compliance Certification Services:

TEST EQUIPMENT LIST									
Description	Manufacturer	Model	Asset Number	Cal Due					
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01179	08/18/11					
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	07/12/11					
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	01/06/11					
Antenna, Horn, 18 GHz	EMCO	3115	C00945	06/29/11					
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	07/14/11					
Power Meter	Agilent / HP	437B	N02778	08/11/12					

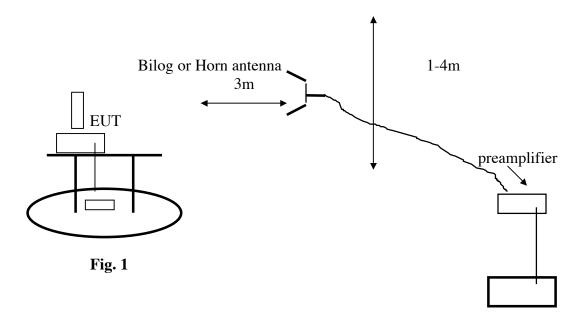
Silver Spring Networks:

Equipment	Mfr	Model	Asset No.	Cal Due
Spectrum analyzer	Agilent	CXA	MY49370322	03/07/2011

Test Set-up Diagram

Support Equipment

Equipment	Mfr	Model	Asset No.
DC Power Supply	Agilent	E3610A	2844
Laptop PC	Dell	PP01L	TW-0791UH1280- OC9-6558
AC/DC adapter	CUI Inc.	DSA-60W-20	2607HB


Model: IMU 200

FREQUENCY HOPPING SPREAD SPECTRUM RADIO EMISSIONS

Silver Spring Networks FCC ID: OWS-IMU517 Model: IMU 200

TEST RESULTS

Radiated Test Set-up, 30 MHz-9.3 GHz

Test Procedures

Radiated emissions generated by the transmitter portion of the EUT were measured.

- 1. The EUT was placed on a wooden table resting on a turntable on the test site. The search antenna was placed 3m from the EUT. The EUT antenna was mounted in the with the EUT TX antenna pointed directly to the search antenna.
- 2. The turntable was slowly rotated to locate the direction of maximum emission at each emission falling in the restricted bands of 15.205.
- 3. Emissions were investigated to the 10th harmonic of the fundamental.
 - 4. Once maximum direction was determined, the search antenna was raised and lowered in both vertical and horizontal polarizations. The maximum readings so obtained are recorded in the data listed below.

Test Results: Worst-case results are presented. Refer to data sheets below. Restricted band emissions meet 54 dBuV/m. Other undesired emissions from the transmitter meet the -20 dBc requirement in 15.247(d).

Model: IMU 200

15.205 Restricted Frequency Bands

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505 (1)	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	
13.36 - 13.41	322 - 335.4		

15.209 General Field Strength Limits

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

Model: IMU 200

Transmitter Radiated Emissions Above 1 GHz

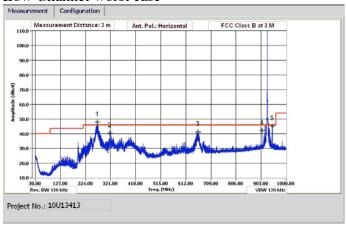
Model: IMU 200

High Frequency Measurement Compliance Certification Services, Fremont 5m Chamber

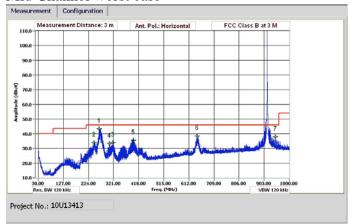
William Zhuang 09/07/10

10U13415 Silver Spring Networks (T. Cokenias) FCC 15.205 Tx On Actaris IMU

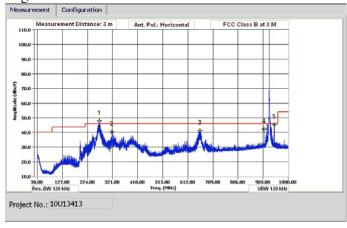
Test Engr: Date: Project #: Company: Test Target: Mode Oper: Model Name:


Amp Preamp Gain
D Corr Distance Correct to 3 meters
Average Field Strength @ 3 m
Peak Calculated Peak Field Strength
HPF High Pass Filter Measurement Frequency Average Field Strength Limit Dist Read AF CL Distance to Antenna Analyzer Reading Antenna Factor Cable Loss Peak Field Strength Limit Margin vs. Average Limit Margin vs. Peak Limit

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz Low Ch. 902.	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
2.707	3.0	52.8	29.1	4.1	-37.4	0.0	0.6	49.1	74.0	-24.9	v	P	
2.707	3.0	50.8	29.1	4.1	-37.4	0.0	0.6	47.2	54.0	-6.8	v	A	
2.707	3.0	49.7	29.1	4.1	-37.4	0.0	0.6	46.0	74.0	-28.0	H	P	
2.707	3.0	46.7	29.1	4.1	-37.4	0.0	0.6	43.1	54.0	-10.9	H V	A P	
3.609 3.609	3.0	53.6 52.0	31.4	4.8	-36.9 -36.9	0.0	0.6	53.5 51.9	74.0 54.0	-20.5 -2.1	v	A	
3.609	3.0	47.5	31.4	4.8	-36.9	0.0	0.6	47.4	74.0	-26.6	H	P	
3.609	3.0	44.6	31.4	4.8	-36.9	0.0	0.6	44.5	54.0	-9.5	H	A	
4.511	3.0	44.3	32.7	5.6	-36.5	0.0	0.6	46.6	74.0	-27.4	H	P	
4.511 4.511	3.0	39.6	32.7	5.6	-36.5	0.0	0.6	42.0	54.0	-12.0	H V	A P	
4.511	3.0	48.5 46.2	32.7 32.7	5.6 5.6	-36.5 -36.5	0.0	0.6	50.9 48.5	74.0 54.0	-23.1 -5.5	V V	A	
5.414	3.0	47.6	33.8	6.2	-36.3	0.0	0.5	51.8	74.0	-22.2	v	P	
5.414	3.0	45.0	33.8	6.2	-36.3	0.0	0.5	49.3	54.0	-4.7	V	A	
5.414	3.0	41.8	33.8	6.2	-36.3	0.0	0.5	46.1	74.0	-27.9	H	P	
5.414 8.121	3.0	36.3 39.2	33.8 36.4	6.2 7.7	-36.3 -36.2	0.0	0.5	40.5 47.8	54.0 74.0	-13.5 -26.2	H H	A P	
8.121	3.0	30.5	36.4	7.7	-36.2	0.0	0.7	39.1	54.0	-14.9	H	A	
8.121	3.0	45.3	36.4	7.7	-36.2	0.0	0.7	53.9	74.0	-20.1	V	P	
8.121	3.0	41.4	36.4	7.7	-36.2	0.0	0.7	50.0	54.0	-4.0	V	A	
9.023 9.023	3.0	43.4 37.8	37.2 37.2	8.2 8.2	-36.7 -36.7	0.0	0.7	52.8 47.2	74.0 54.0	-21.2 -6.8	V V	P	
9.023	3.0	37.8	37.2	8.2	-36.7	0.0	0.7	47.2	74.0	-6.8	H H	P	
9.023	3.0	26.1	37.2	8.2	-36.7	0.0	0.7	35.5	54.0	-18.5	H	A	
Mid Ch. 915.													
2.746	3.0	48.9	29.2	4.1	-37.4	0.0	0.6	45.4	74.0	-28.6	Н	P	
2.746	3.0	45.2	29.2 29.2	4.1	-37.4 -37.4	0.0	0.6	41.7 45.8	54.0	-12.3	H V	A P	
2.746 2.746	3.0	49.3 46.1	29.2	4.1 4.1	-37.4	0.0	0.6	42.7	74.0 54.0	-28.2 -11.3	v V	A	
3.661	3.0	48.8	31.5	4.9	-36.9	0.0	0.6	48.9	74.0	-25.1	v	P	
3.661	3.0	45.4	31.5	4.9	-36.9	0.0	0.6	45.5	54.0	-8.5	V	A	
3.661	3.0	45.9	31.5	4.9	-36.9	0.0	0.6	46.0	74.0	-28.0	Н	P	
3.661 4.576	3.0	41.6 43.3	31.5 32.8	4.9 5.6	-36.9 -36.5	0.0	0.6	41.7 45.8	54.0 74.0	-12.3 -28.2	H H	A P	
4.576	3.0	38.1	32.8	5.6	-36.5	0.0	0.6	40.6	54.0	-13.4	H	A	
4.576	3.0	47.2	32.8	5.6	-36.5	0.0	0.6	49.7	74.0	-24.3	v	P	
4.576	3.0	44.6	32.8	5.6	-36.5	0.0	0.6	47.0	54.0	-7.0	V	A	
7.322 7.322	3.0	44.8 41.0	35.3 35.3	7.3 7.3	-36.2	0.0	0.6	51.8 48.0	74.0 54.0	-22.2	v V	P A	
7.322	3.0	37.8	35.3	7.3	-36.2 -36.2	0.0	0.6	48.0	74.0	-6.0 -29.3	H H	P	
7.322	3.0	28.1	35.3	7.3	-36.2	0.0	0.6	35.1	54.0	-18.9	H	A	
8.237	3.0	37.2	36.5	7.8	-36.3	0.0	0.7	45.9	74.0	-28.1	H	P	
8.237	3.0	26.3	36.5	7.8	-36.3	0.0	0.7	35.1	54.0	-18.9	H	A	
8.237 8.237	3.0	42.1 36.5	36.5 36.5	7.8 7.8	-36.3 -36.3	0.0	0.7	50.8 45.3	74.0 54.0	-23.2 -8.7	v V	P A	
9.152	3.0	40.8	37.2	8.3	-36.7	0.0	0.7	50.3	74.0	-23.7	v	P	
9.152	3.0	33.7	37.2	8.3	-36.7	0.0	0.7	43.2	54.0	-10.8	v	A	
9.152	3.0	36.6	37.2	8.3	-36.7	0.0	0.7	46.1	74.0	-27.9	Н	P	
9.152	3.0	24.5	37.2	8.3	-36.7	0.0	0.7	34.0	54.0	-20.0	Н	A	
High Ch. 926. 2.781	9 MHz 3.0	49.2	29.3	4.2	-37.4	0.0	0.6	45.9	74.0	-28.1	Н	P	
2.781	3.0	46.5	29.3	4.2	-37.4	0.0	0.6	43.1	54.0	-10.9	H	A	
2.781	3.0	53.1	29.3	4.2	-37.4	0.0	0.6	49.8	74.0	-24.2	V	P	
2.781	3.0	51.1	29.3	4.2	-37.4	0.0	0.6	47.8	54.0	-6.2	V	A	
3.708 3.708	3.0	43.4 38.5	31.6 31.6	4.9 4.9	-36.8 -36.8	0.0	0.6	43.6 38.8	74.0 54.0	-30.4 -15.2	v	P	
3.708	3.0	38.5 44.9	31.6	4.9	-36.8	0.0	0.6	45.2	74.0	-15.2	H	P	
3.708	3.0	38.7	31.6	4.9	-36.8	0.0	0.6	39.0	54.0	-15.0	Н	A	
4.635	3.0	38.9	32.9	5.7	-36.5	0.0	0.6	41.5	74.0	-32.5	H	P	
4.635	3.0	29.6	32.9	5.7	-36.5	0.0	0.6	32.2	54.0	-21.8	H	A	
4.635 4.635	3.0	43.0 38.9	32.9 32.9	5.7 5.7	-36.5 -36.5	0.0	0.6	45.6 41.5	74.0 54.0	-28.4 -12.5	v V	P A	
7.415	3.0	41.3	35.5	7.3	-36.2	0.0	0.6	48.5	74.0	-12.5	V	P	
7.415	3.0	35.7	35.5	7.3	-36.2	0.0	0.6	42.9	54.0	-11.1	V	A	
7.415	3.0	37.2	35.5	7.3	-36.2	0.0	0.6	44.4	74.0	-29.6	H	P	
7.415	3.0	25.4	35.5	7.3	-36.2	0.0	0.6	32.6	54.0	-21.4	H	A	
8.342 8.342	3.0	38.3 29.9	36.6 36.6	7.8 7.8	-36.3 -36.3	0.0	0.7	47.1 38.7	74.0 54.0	-26.9 -15.3	v	P A	
8.342 8.342	3.0	37.1	36.6	7.8	-36.3	0.0	0.7	45.9	74.0	-15.3	H	P	
8.342	3.0	24.9	36.6	7.8	-36.3	0.0	0.7	33.7	54.0	-20.3	H	A	
Rev. 4.1.2.7													
Note: No ot	her emis	sions were	detected	l above	the syste	em noise f	loor.						
							_			_			


Model: IMU 200

Radiated Emissions Below 1 GHZ


Low Channel worst case

Mid Channel worst case

High Channel worst case

Model: IMU 200

30-1000MHz Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

William Zhuang 09/07/10 10U13413 Silver Spring Networks (T. Cokenias) FCC 15.205 Test Engr: Date: Project #:

Company: Test Target: Mode Oper: Model Name: Tx On Actaris IMU

> Measurement Frequency Amp Preamp Gain Margin Margin vs. Limit

Dist Distance to Antenna D Corr Distance Correct to 3 meters Filter Insert Loss Calculated Field Strength Read Analyzer Reading Filter AF CL Antenna Factor Corr. Cable Loss Field Strength Limit Limit

f	Dist	Read	AF	CL	Amp	D Corr	Pad	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
MHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low Ch. 902.3													
211.567	3.0	50.4	12.0	1.3	28.2	0.0	0.0	35.4	43.5	-8.1	v	P	
299.411	3.0	52.3	13.4	1.5	28.1	0.0	0.0	39.1	46.0	-6.9	V	P	
602.904	3.0	39.2	18.5	2.2	27.5	0.0	0.0	32.4	46.0	-13.6	V	P	
666.146	3.0	38.5	19.2	2.4	27.3	0.0	0.0	32.7	46.0	-13.3	V	P	
784.951	3.0	35.4	20.8	2.6	27.4	0.0	0.0	31.4	46.0	-14.6	V	P	
960.038	3.0	37.6	22.2	2.9	27.9	0.0	0.0	34.8	54.0	-19.2	V	P	
245.409	3.0	50.9	11.8	1.4	28.2	0.0	0.0	35.9	46.0	-10.1	H	P	
291.251	3.0	51.6	13.1	1.5	28.1	0.0	0.0	38.1	46.0	-7.9	H	P	
323.052	3.0	46.8	13.8	1.6	28.1	0.0	0.0	34.0	46.0	-12.0	H	P	
620.784	3.0	39.6	18.7	2.3	27.5	0.0	0.0	33.0	46.0	-13.0	H	P	
642.865	3.0	38.9	18.9	2.3	27.4	0.0	0.0	32.7	46.0	-13.3	H	P	
652.706	3.0	38.1	19.0	2.4	27.3	0.0	0.0	32.1	46.0	-13.9	Н	P	
960.038	3.0	37.8	22.2	2.9	27.9	0.0	0.0	35.1	54.0	-18.9	Н	P	
Mid Ch. 915.2	MHz												
245.529	3.0	49.0	11.8	1.4	28.2	0.0	0.0	33.9	46.0	-12.1	Н	P	
266.41	3.0	57.7	12.3	1.4	28.2	0.0	0.0	43.3	46.0	-2.7	Н	P	
305.051	3.0	46.3	13.5	1.5	28.1	0.0	0.0	33.2	46.0	-12.8	Н	P	
318.972	3.0	46.8	13.7	1.6	28.1	0.0	0.0	34.0	46.0	-12.0	Н	P	
397.335	3.0	47.0	14.9	1.8	28.1	0.0	0.0	35.6	46.0	-10.4	Н	P	
644.665	3.0	44.6	18.9	2.3	27.4	0.0	0.0	38.4	46.0	-7.6	Н	P	
947.198	3.0	40.6	22.1	2.9	27.9	0.0	0.0	37.8	46.0	-8.2	Н	P	
30.6	3.0	34.0	19.8	0.5	28.4	0.0	0.0	26.0	40.0	-14.0	V	P	
268.81	3.0	50.5	12.4	1.4	28.2	0.0	0.0	36.2	46.0	-9.8	v	P	
395.655	3.0	40.3	14.9	1.8	28.1	0.0	0.0	28.9	46.0	-17.1	V	P	
644.785	3.0	37.6	18.9	2.3	27.4	0.0	0.0	31.5	46.0	-14.5	v	P	
883.235	3.0	37.5	21.7	2.8	27.7	0.0	0.0	34.3	46.0	-11.7	v	P	
947.198	3.0	39.7	22.1	2.9	27.9	0.0	0.0	36.9	46.0	-9.1	V	P	
High Ch. 926.9	MHz												
244.569	3.0	45.4	11.8	1.3	28.2	0.0	0.0	30.3	46.0	-15.7	V	P	
265.09	3.0	51.7	12.3	1.4	28.2	0.0	0.0	37.2	46.0	-8.8	V	P	
319.812	3.0	43.6	13.7	1.6	28.1	0.0	0.0	30.8	46.0	-15.2	v	P	
392.175	3.0	42.8	14.8	1.8	28.1	0.0	0.0	31.3	46.0	-14.8	v	P	
661.826	3.0	39.7	19.1	2.4	27.3	0.0	0.0	33.8	46.0	-12.2	v	P	
907.716	3.0	41.8	21.9	2.8	27.8	0.0	0.0	38.7	46.0	-7.3	v	P	
945.998	3.0	44.5	22.1	2.9	27.8	0.0	0.0	41.7	46.0	-4.3	v	P	
270.61	3.0	62.0	12.5	1.4	28.2	0.0	0.0	47.7	46.0	1.7	Н	P	
270.61	3.0	57.5	12.5	1.4	28.2	0.0	0.0	43.2	46.0	-2.8	H	OP	
318.252	3.0	53.1	13.7	1.6	28.1	0.0	0.0	40.2	46.0	-5.8	H	P	
660.026	3.0	47.0	19.1	2.4	27.3	0.0	0.0	41.2	46.0	-4.8	H	P	
907.716	3.0	45.1	21.9	2.8	27.8	0.0	0.0	42.1	46.0	-3.9	H	P	
946.118	3.0	47.9	22.1	2.9	27.8	0.0	0.0	45.1	46.0	-0.9	H	P	
Doy 1 27 00						V.0	V.V		.0.0	***		-	

Rev. 1.27.09

Note: No other emissions were detected above the system noise floor.

Model: IMU 200

Receiver Radiated Emissions

Below1GHz

30-1000MHz Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang

Date: 09/17/10 Project #: 10U13413

Company: Test Target: Mode Oper:

Measurement Frequency Amp Preamp Gain Margin Margin vs. Limit

Dist Distance to Antenna D Corr Distance Correct to 3 meters
Read Analyzer Reading Filter Filter Insert Loss

AF Antenna Factor Corr. Calculated Field Strength

 $\begin{array}{ccc} & & & & & & \\ \text{Field Strength} \\ \text{CL} & & \text{Cable Loss} & & \text{Limit} & \text{Limit} \end{array}$

Dist AF \mathbf{CL} D Corr Pad Limit Ant. Pol. Read Amp Corr. Margin Det. MHz (m) dBuV dB/m dB dB dB dB dBuV/m dBuV/m dB V/H P/A/QP 30.24 3.0 29.5 20.2 0.5 29.7 0.0 0.0 20.5 40.0 -19.5 Н 114.603 3.0 36.9 12.7 1.0 29.5 0.0 0.021.2 43.5 -22.3 Н P 143.165 3.0 36.7 13.0 1.1 29.3 0.0 0.021.5 43.5 -22.0 Н P 214.808 3.0 37.6 11.9 1.3 28.9 0.0 0.022.0 43.5 -21.5 Н P 243.369 3.0 37.6 11.8 1.4 28.8 0.0 0.022.0 46.0 -24.0 Н P 30.96 3.0 29.4 19.9 0.5 29.7 0.0 0.020.2 40.0 -19.8 \mathbf{V} P 7.9 40.0 \mathbf{v} 56.641 3.0 45.6 0.6 29.6 0.0 0.024.5 -15.5 P 100.203 \mathbf{v} 3.0 37.4 10.1 0.9 29.5 0.00.018.8 43.5 -24.7 P -23.5 V P 195.367 3.0 36.1 11.6 1.3 28.9 0.00.020.0 43.5 243.369 33.5 17.9 46.0 -28.1 \mathbf{v} 3.0 11.8 1.4 28.8 0.0 0.0 P

Rev. 1.27.09

Note: No other emissions were detected above the system noise floor.

Above 1 GHz

All emissions to 9.3 GHz more than 20 dB below limits

Model: IMU 200

20 dB Bandwidth

15.247(a)1(i)

LIMIT

500 kHz maximum

99% Bandwidth

RSS-210, RSS-Gen

LIMIT

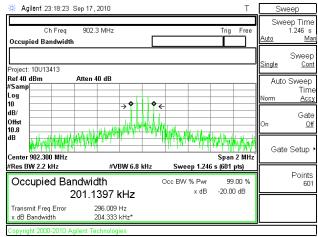
None, for reporting purposes only

TEST PROCEDURE

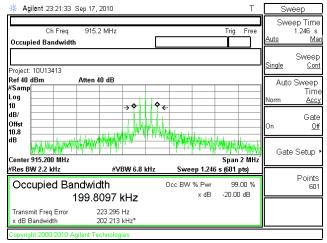
The transmitter output is connected to a spectrum analyzer. The analyzer OCC BW function was activated to measure and display both the -20 dB and the 99% Occupied Bandwidth.

RESULTS

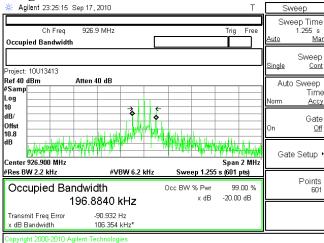
No non-compliance noted:


Channel	Frequency	20 dB Bandwidth
	(MHz)	(kHz)
Low	902.3	204.33
Middle	915.2	202.2
High	926.9	186.35

Channel	Frequency (MHz)	99% Occ BW (kHz)
Low	902.3	201.1
Middle	915.2	199.8
High	926.9	196.9


Emission Designator: 201KF1D

Model: IMU 200


Low Channel 99% Occ BW

Mid Channel 99% Occ BW

High Channel 99% Occ BW

Emission designator: 201KF1D

Model: IMU 200

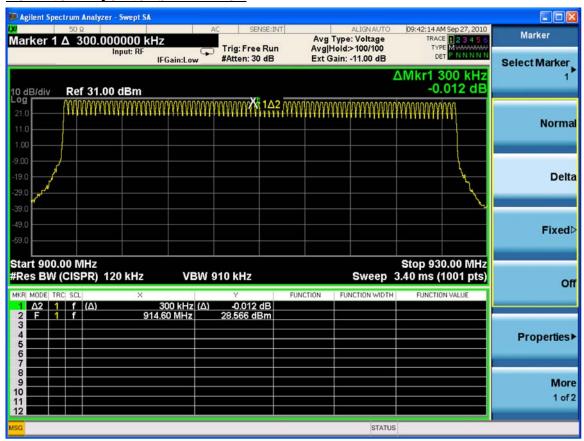
HOPPING FREQUENCY SEPARATION

LIMIT

§15.247 (a) (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 30 kHz and the VBW is set to 100 kHz. The sweep time is coupled.


RESULTS

No non-compliance noted:

The separation is 300 kHz.

Model: IMU 200

HOPPING FREQUENCY SEPARATION

Model: IMU 200

NUMBER OF HOPPING CHANNELS

LIMIT

§15.247 (a) (1) (i) For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to 30 kHz. The analyzer is set to Max Hold.

RESULTS

No non-compliance noted:

86 channels total, channels 0-82 are US channels (902.3 – 926.9 MHz). Channels 43 – 86 are frequencies authorized for use in Australia.

Model: IMU 200

NUMBER OF HOPPING CHANNELS

Model: IMU 200

AVERAGE TIME OF OCCUPANCY

LIMIT

§15.247 (a) (1) (i) For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

TEST PROCEDURE

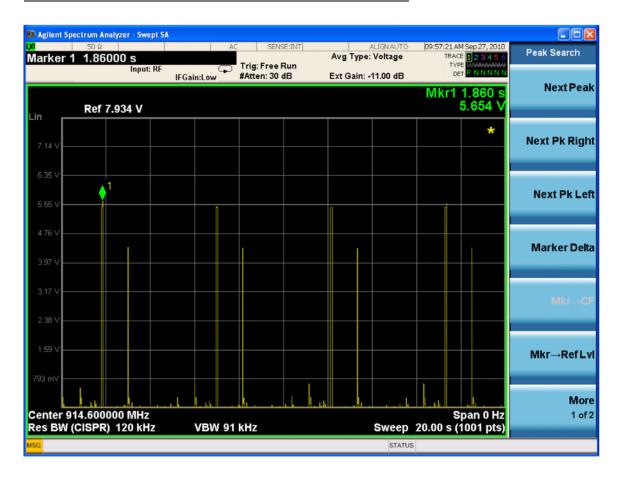
The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 20 second scan, to enable resolution of each occurrence.

RESULTS

No non-compliance noted:

There are 4 pulses within the 20-second period. The on time for each pulse is 58.5 msec.

Therefore, the average time of occupancy in the specified 20-second period is 234 sec.


Model: IMU 200

PULSE WIDTH

Model: IMU 200

NUMBER OF PULSES IN 20 SECOND OBSERVATION PERIOD

Silver Spring Networks FCC ID: OWS-IMU517 Model: IMU 200

PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

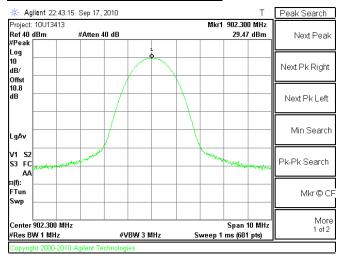
§15.247 (b) (2) For frequency hopping systems operating in the 902-928 MHz band, employing at least 50 hopping channels: 1 watt; and employing less than 50 hopping channels, but at least 25 hopping channels: 0.25 watt.

§15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

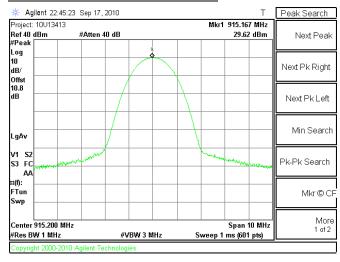
The maximum antenna gain is 0 dBi, therefore the power limit is 30 dBm.

TEST PROCEDURE

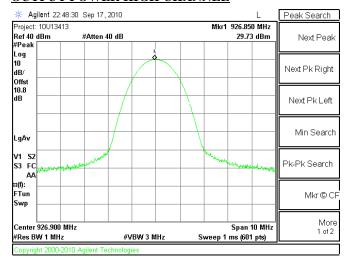
The transmitter output is connected to a spectrum analyzer and the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.


RESULTS

No non-compliance noted:


Channel	Frequency	P out
Low	902.3	29.47
Mid	915.2	29.62
High	926.9	29.73

Model: IMU 200


OUTPUT POWER LOW CHANNEL

OUTPUT POWER MID CHANNEL

OUTPUT POWER HIGH CHANNEL

Model: IMU 200

MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)					
(A) Limits for Occupational/Controlled Exposures									
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842# 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6					
(B) Limits for General Population/Uncontrolled Exposure									
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30					

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

† = frequency in MHz

* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their
employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure.
Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposure or can not exercise control over their exposure.

exposure or can not exercise control over their exposure.

Model: IMU 200

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

and

 $S = E ^2 / 3770$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

$$d = \sqrt{(30 * P * G) / (3770 * S)}$$

Changing to units of Power to mW and Distance to cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d (cm) = 100 * d (m)$$

yields

$$d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$$

$$d = 0.282 * \sqrt{(P * G / S)}$$

where

d = distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power Density in mW/cm^2$

Substituting the logarithmic form of power and gain using:

$$P(mW) = 10 \land (P(dBm) / 10)$$
 and

$$G \text{ (numeric)} = 10 ^ (G \text{ (dBi)} / 10)$$

yields

$$d = 0.282 * 10 \land ((P + G) / 20) / \sqrt{S}$$
 Equation (1)

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

 $S = Power Density Limit in mW/cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance.

Model: IMU 200

LIMITS

From $\S1.1310$ Table 1 (B), S = 0.6 mW/cm²

RESULTS

No non-compliance noted:

Power Density	Output	Antenna	S, mW/cm2
Limit	Power	Gain	at 20cm
(mW/cm^2)	(dBm)	(dBi)	
0.6	29.73	3.00	0.37

MPE Distance: 15.76 cm

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Model: IMU 200

CONDUCTED SPURIOUS EMISSIONS

LIMITS

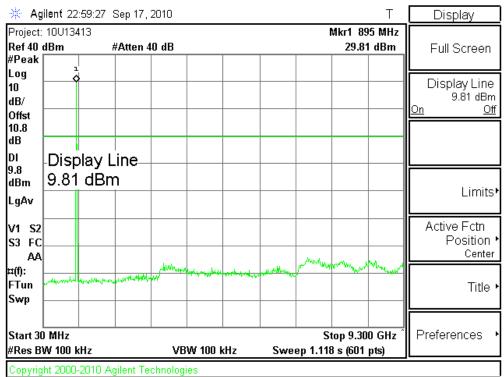
§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

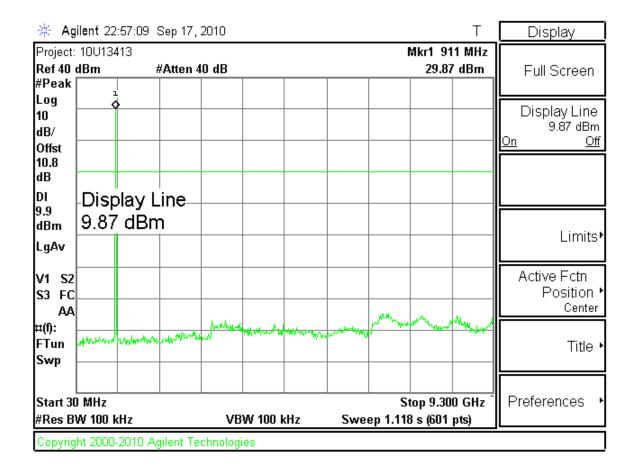
The spectrum from 30 MHz to 10 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS


No non-compliance noted:

Model: IMU 200

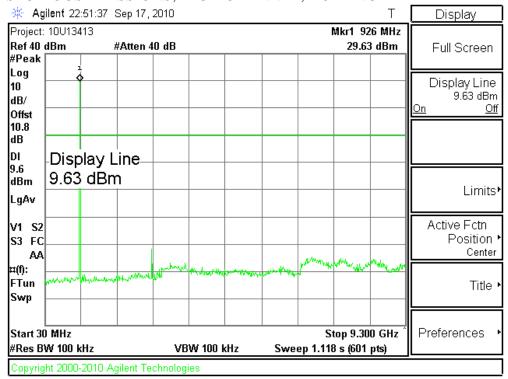
SPURIOUS EMISSIONS, LOW CHANNEL, HOPPING



SPURIOUS EMISSIONS, LOW CHANNEL

Model: IMU 200

SPURIOUS EMISSIONS, MID CHANNEL



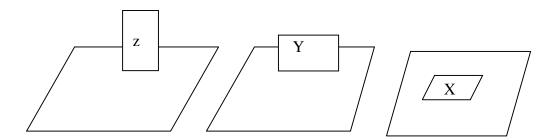
Silver Spring Networks FCC ID: OWS-IMU517 Model: IMU 200

SPURIOUS EMISSIONS, HIGH CHANNEL, HOPPING

SPURIOUS EMISSIONS, HIGH CHANNEL, HOPPING

Model: IMU 200

4.4 POWERLINE CONDUCTED EMISSIONS

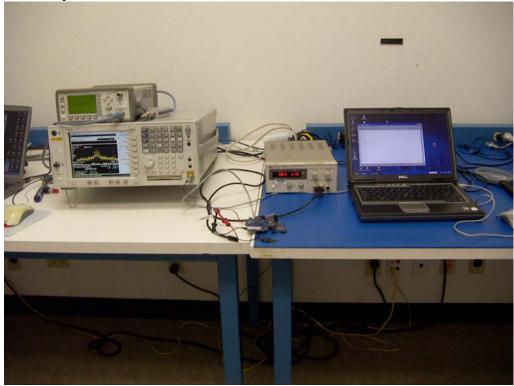

LIMIT

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

TEST NOT REQUIRED. EUT is battery powered only.

Model: IMU 200

RADIATED RF MEASUREMENT SETUP


Silver Spring Networks FCC ID: OWS-IMU517 Model: IMU 200

SETUP PHOTOS

Radiated Emissions Test Setup, Worst-case Orientation ("X" orientation) - power supply

Antenna port conducted emissions

Model: IMU 200

END OF REPORT

Report Revision History

Revision No.	Revision Description	Pages Revised	Revised by	Date
-	Original Issue		T. Cokenias	12/06/2010
1	Correct model number		T. Cokenias	02/24/2011