

FCC Part 15.247(b)(4) RF Exposure Calculation for ITC Engineering Services, Inc. Report Number 20030327-01-F15

on Gas Pulse Interface [Model Number/FCC ID: OWS-963]

part number **1620-05002**

manufacturer Silver Spring Networks, Inc. 13000 West Silver Spring Drive Butler, WI 53007

tests and report by ITC Engineering Services, Inc. (ITC) 9959 Calaveras Road, P.O. Box 543 Sunol, California 94586 Tel.: (925) 862-2944 Fax: (925) 862-9013 E-Mail: docs@itcemc.com Web Site: www.itcemc.com

EN45001 Accredited Compliance Laboratory (RES-GmbH) Registration number: TTI-P-G 159/98-00 (RES-GmbH) ITC Engineering Services, Inc.Tel: 925-862-29449959Calaveras Road, Box 543Fax: 925-862-9013Sunol, CA 94586-0543Email: docs@itcemc.com

RF Safety Exposure Calculation per FCC Requirement

Test Requirement:		FCC 47 CFR PART 1.1307(b)1	Measurement Guide:	EIA/IS-19-B-1988
		FCC 47 CFR PART 15.247(b)4		TIA/EIA/IS-137-A-1996
Site Use	ed			
	Test Site 1 - S	hielded Room: 16' x 12' x 9'		
\boxtimes	Test Site 1 - 3	m Open Field Radiated Site		
	Test Site 1 - 1	0m Open Field Radiated Site		
	Test Site 2 - E	nvironmental Lab		
	EMC Lab 1 - 1	Fest Laboratory		

- Semi-Anechoic Absorber Lined Shielded Room
- □ Other:

Administrative Details

Test Date:	March 04, 2004
Test Engineer:	Bandele Adepoju

Environmental Conditions

Temperature	63°C
Humidity	58%

Test Equipment

Equipment Description	Manufacturer	Model Name	Serial Number	Calibration Due
L.p. Ant (200 -1000MHz)	EMCO	3146	1596/1001	01-28-2005
Spectrum Analyzer	Hewlett-Packard	8591A	3149A02541	Cal before Test
Signal Generator	Hewlett-Packard	8656B	2623A04271	12-09-2004

Test Procedure

The Gas Pulse Meter (or the EUT) was set up at 3 meters from the search antenna in accordance with the suggested configuration given in FCC Measurement Procedure ANSI C63.4-1992. The measurement instrumentation used was a

Spectrum Analyzer with bandwidth parameters as stipulated in ANSI C63.4-1992. The EUT was rotated 360 degrees azimuth and also rotated in its x-y-z axis positions to determine the precise amplitude of the emissions. The equipment under test was placed on a wooden turntable 3 meters away from the calibrated receiving antenna, which was in turn connected to the spectrum analyzer. For each transmitter frequency, the received signal was maximized by rotating the turntable and adjusting the height of the receiving antenna. The Maximum Peak Output Power was calculated from the formula below.

$$P = (Exd)^2/(30xG)$$

Note: "E" is the measured maximum field strength in V/m.

"G" is the numeric gain of the transmitting antenna over an isotropic radiator.

"d" is the distance from which the field strength was measured in meters.

"P" is the power in watts

The process was repeated with the EUT antenna in horizontal polarity and receive antenna also in horizontal polarity.

The EUT was tested for Maximum Peak Output Power at high, middle, and low frequencies with the Maximum Peak Output Power obtained at channels (Numbers. 2, 8 and 14) with frequencies being 906MHz, 915MHz and 924MHz respectively. The test data is presented in this report under the section.

Maximum Peak Output Power ERP Calculation

Test Name: Maximum Peak Output Power calculation

a. 906.00 MHz (Low End)

E = 111.07dBuV = 0.357V/m

906.06

 $P = (0.357 \times 3)^2 / 30 \times 4.27 = 1.15/128 = 8.98 \text{mW}$

77.10

23.0

10.97

111.07

45

1.4

HL

Ρ

Tested and Prepared By:

Tel: 925-862-2944 ITC Engineering Services, Inc. 9959Calaveras Road, Box 543 Fax: 925-862-9013 Sunol, CA 94586-0543 Email: docs@itcemc.com

b. 915.06 MHz (Mid-Range)

INDI	CATED	CORRE	CTION	CORR	TURNT	ABLE	ANT	
FREQ	AMPL	ANT	CAB	AMPL	ANG	ΗT	POL	DET
MHz	dBuV/m	dB	dB	dBuV/m	DEG	m	-	MODE
914.83	73.86	23.1	11.17	108.13	180	1.0	HL	Р

E = 108.13dBuV = 0.257V/m

 $P = (0.257 \times 3)^2 / 30 \times 4.31 = 0.594/129.3 = 4.60 \text{mW}$

c. 927.803 MHz (High-End)

dBuV/m

105.00

DEG

45

m

1.0

-

HL

MODE

Ρ

dB

9.29

dB

22.8

MHz

dBuV/m

72.81

ITC Engineering Services, Inc.	Tel: 925-862-2944
9959Calaveras Road, Box 543	Fax: 925-862-9013
Sunol, CA 94586-0543	Email: docs@itcemc.com

c. 927.803 MHz (High-End)

E = 105.00dBuV = 0.178V/m P = $(0.178 \times 3)^2 / 30 \times 4.71 = 0.285/141.3 = 2.00$ mW

Maximum RF Safety Exposure Calculation

The Maximum Permissible Exposure (MPE) power density per ANSI C95.1 table 2 for uncontrolled cellular phone environment is $f/1500 \text{ [mW/cm}^2$]. The numeric value of the gain for the antenna is 4.0. Therefore, by using the formula of the power density

$S = ERP \times G / 4\pi R^2, M$	PE=	
8.98 mW x $4.27/(4\pi r^2)$	=	906.06 MHz/1500[mW/cm ²]
$\frac{8.98 \text{mW}^{*}(4.27)}{4 \pi r^{2}}$	=	<u>906.06 MHz</u> 1500 mW/cm ²
r^2	=	$\frac{8.89 \text{mW}^{*}(4.27)^{*}(1500 \text{ cm}^{2}/\text{mW})}{906.06^{*}(4\pi)}$
$r = (5)^{\frac{1}{2}}$	=	2.24cm

Therefore, the calculated MPE distance (r) is 8.72cm (2.24 + 6.48 margin uncertainty). The installation instructions shall indicate that at least 20cm separation shall be provided between the antennas and the people.

Measurement Uncertainty

150kHz to 30MHz:					
Combined standard uncertainty uc(y)	± 1.68 dB	Normal			
Expanded uncertainty U	± 3.36 dB	Normal (k = 2)			
30MHz to 1GHz:					
Combined standard uncertainty uc(y)	± 3.24 dB	Normal			
Expanded uncertainty U	± 6.48 dB	Normal (k = 2)			
1GHz to 18GHz:					
Combined standard uncertainty uc(y)	± 2.48 dB	Normal			
Expanded uncertainty U	± 4.96 dB	Normal (k = 2)			
Above 18GHz:					
Radiated emission up to 26 GHz	± 3 dB				
Radiated emission up to 40 GHz	. ± 3 dB				
Radiated emission up to 75 GHz	± 3 dB				