



# **Test report**

Number:

T251-0909/15

Project file:

C20151793

Date:

2015-12-16

Pages:

66

**Product:** 

**Customer Evaluation Board** 

Type reference:

**PNEV5180B** 

Ratings:

5 Vdc ±5%; 500 mA (via USB) or

external power supply 7.5 Vdc ±15%; 500 mA

Protection class: III.

Maximum clock frequency: 13.56 MHz

Trademark:

**NXP** 

Applicant:

NXP SEMICONDUCTORS GmbH

Mikron - Weg 1, AT-8101 Gratkorn, Austria

Manufacturer:

ČETRTA POT, d.o.o., Kranj

Planina 3, SI-4000 Kranj, Slovenia

Place of manufacture: ČETRTA POT, d.o.o., Kranj

Planina 3, SI-4000 Kranj, Slovenia

**Summary of testing** 

Testing method:

FCC Part 15, Subpart C

Testing location:

SIQ Ljubljana, Trpinčeva ulica 37 A, SI-1000 Ljubljana, Slovenia

Remarks:

Date of receipt of test items: 2015-08-12

Number of items tested: 2

Date of performance of tests: 2015-10-12 - 2015-11-23

The test results presented in this report relate only to the items tested. The product complies with the requirements of the testing methods.

Tested by: Andrej Škof

Approved by: Marjan Ma

The report shall not be reproduced except in full.

Page: 2 (66)



| CO       | INIENIS                                               | page |
|----------|-------------------------------------------------------|------|
| <u>1</u> | GENERAL                                               | 3    |
| 1.1      | EQUIPMENT UNDER TEST                                  | 3    |
| 1.2      |                                                       | 4    |
| 1.3      |                                                       | 4    |
| 1.4      |                                                       | 4    |
| 1.5      |                                                       | 4    |
| 1.6      |                                                       | 4    |
| 1.7      | PEAK, RMS, AND AVERAGE DETECTORS                      | 4    |
| <u>2</u> | LIMITS FOR ALL SUBPARTS                               | 5    |
| 2.1      | SUBPART C: INTENTIONAL RADIATORS                      | 5    |
| <u>3</u> | ALL TEST EQUIPMENT AND THEIR DESCRIPTION              | 7    |
| 3.1      | GENERAL INFORMATION                                   | 7    |
| <u>4</u> | CONVERSION FACTORS AND ALL OTHER FORMULAS             | 8    |
| <u>5</u> | GENERAL AND SPECIAL CONDITIONS DESCRIPTION            | 9    |
| 5.1      | GENERAL CONDITION DESCRIPTION                         | 9    |
| 5.2      | SPECIAL CONDITION DESCRIPTION                         | 12   |
| <u>6</u> | TEST SUMMARY                                          | 13   |
| 6.1      | OPERATING VOLTAGES/FREQUENCIES USED FOR TESTING       | 13   |
| <u>7</u> | EMISSION TESTS                                        | 14   |
| 7.1      | CONDUCTED EMISSION MEASUREMENT (INTENTIONAL RADIATOR) | 14   |
| 7.2      | ,                                                     | 32   |
| 7.3      |                                                       | 53   |
| 7.4      |                                                       | 58   |
| 7.5      | FREQUENCY TOLERANCE OF THE CARRIER SIGNAL             | 64   |



# 1 GENERAL

| History sheet |                                 |                             |  |  |  |
|---------------|---------------------------------|-----------------------------|--|--|--|
| Date          | Date Report No. Change Revision |                             |  |  |  |
| 2015-12-16    | T251-0909/15                    | Initial Test Report issued. |  |  |  |

## **Environmental conditions:**

Ambient temperature: 15°C to 35°C Relative humidity: 30% to 60%

Atmospheric pressure: 860 mbar to 1060 mbar

# 1.1 Equipment under test

**Customer Evaluation Board** 

Type: PNEV5180B FCC ID: OWRPNEV5180B

# 1.1.1 General product information

Tested sample number: S20156422 (Antenna Board 65 x 65 mm), Measurements done with HP EliteBook 8560p and NPX\_PN518\_SupportTool\_v1\_7 software.



**Picture of EUT** 



# 1.2 ANSI C63.4 Subpart selection

## Subpart C: Intentional Radiators

#### Section 15.203: Antenna Requirement

PNEV5180B has permanently attached antenna and can not be replaced.

## 1.3 Class statement requirements

- The Class A statement cautions that operation of the device in a residential area is likely to cause harmful interference.
- The Class B statement offers several suggestions for minimizing interference to radio or TV receivers, including reorienting the receiving antenna and moving the Class B device farther away from the receiver.

# 1.4 List of measurements performed

| PART 15 section | Test name                 |
|-----------------|---------------------------|
| 15.207          | Conducted emission        |
| 15.209          | Radiated emission         |
| 15.215          | Bandwidth of the emission |
| 15.225          | Radiated emission         |

# 1.5 Occupied bandwidth measurement

| Fundamental frequency | Minimum resolution bandwidth |  |
|-----------------------|------------------------------|--|
| 9 kHz to 30 MHz       | 1 kHz                        |  |
| 30 to 1000 MHz        | 10 kHz                       |  |
| 1000 MHz to 40 GHz    | 100 kHz                      |  |

# 1.6 Quasi-peak detector

| Frequency range   | Bandwidth (-6dB)      |  |
|-------------------|-----------------------|--|
| 10 Hz to 20 kHz   | Full range (wideband) |  |
| 10 kHz to 150 kHz | 200 Hz                |  |
| 150 kHz to 30 MHz | 9 kHz                 |  |
| 30 MHz to 1 GHz   | 120 kHz               |  |

# 1.7 Peak, rms, and average detectors

| Frequency range   | Bandwidth (-6dB)    |  |
|-------------------|---------------------|--|
| 10 Hz to 20 kHz   | 10, 100, 1000 Hz    |  |
| 10 kHz to 150 kHz | 1 and 10 kHz        |  |
| 150 kHz to 30 MHz | 1 and 10 kHz        |  |
| 30 MHz to 1 GHz   | 10 and 100 kHz      |  |
| 1 GHz to 40 GHz   | 0.1, 1.0 and 10 MHz |  |



## 2 LIMITS FOR ALL SUBPARTS

## 2.1 Subpart C: Intentional Radiators

## 2.1.1 Conducted emission limits:

#### Limits:

| Frequency Range | Limits (dBμV) |          |  |
|-----------------|---------------|----------|--|
| (MHz)           | Quasi-peak    | Average  |  |
| 0.15 to 0.5     | 66 – 56*      | 56 – 46* |  |
| 0.5 to 5.0      | 56            | 46       |  |
| 5.0 to 30.0     | 60            | 50       |  |

<sup>\*</sup> Decreases with the logarithm of the frequency.

The shown limits in table shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:

- For carrier current systems containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.
- For all other carrier current systems: 1000  $\mu$ V within the frequency band 535-1705 kHz, as measured using a 50  $\mu$ H/50 ohms LISN.
- Carrier current systems operating below 30 MHz are also subject to the radiated emission limits as appropriate.

## 2.1.2 Radiated emission limits:

#### Limits:

| Frequency Range | Limits (c           | Test distance       |     |
|-----------------|---------------------|---------------------|-----|
| (MHz)           | VERTICAL HORIZONTAL |                     | (m) |
| 0,009 to 0,490  | 20*log(2400/F(kHz)) | 20*log(2400/F(kHz)) | 300 |
| 0,490 to 1,705  | 20*log(2400/F(kHz)) | 20*log(2400/F(kHz)) | 30  |
| 1,705 to 30,0   | 30                  | 30                  | 30  |
| 30 to 88        | 40**                | 40**                | 3   |
| 88 to 216       | 43.5**              | 43.5**              | 3   |
| 216 to 960      | 46**                | 46**                | 3   |
| Above 960       | 54                  | 54                  | 3   |

<sup>\*\*</sup> Except as provided in paragraph below, fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz.

Perimeter protection systems may operate in the 54-72 MHz and 76-88 MHz bands under the provisions of this section. The use of such perimeter protection systems is limited to industrial, business and commercial applications.

## Additional FCC requirements per clause 15.215.

Intentional radiators operating under the alternative provisions to the general emission limits must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

Page: 6 (66)



# Additional FCC requirements per clause 15.225.

| Fundamental Frequency (MHz)     | Field strength of fundamental (μV/m) | Test distance (m) |
|---------------------------------|--------------------------------------|-------------------|
| 13.553-13.567                   | 15,848                               | 30                |
| 13.410-13.553 and 13.567-13.710 | 334                                  | 30                |
| 13.110-13.410 and 13.710-14.010 | 106                                  | 30                |
| Outside band 13.110-14.010      | As per clause 15.209                 | 30                |

The frequency tolerance of the carrier signal shall be maintained within  $\pm 0.01\%$  of the operating frequency over a temperature variation of -20 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.



# 3 ALL TEST EQUIPMENT AND THEIR DESCRIPTION

# 3.1 General information

| Description                                    | Model No. | SIQ No. | Last calibration | Calibrated until | Calibration period | Used |
|------------------------------------------------|-----------|---------|------------------|------------------|--------------------|------|
| Rohde-Schwarz,<br>RFI receiver                 | ESU8      | 105187  | 2015-10          | 2017-10          | 24 months          |      |
| Rohde-Schwarz,<br>RFI receiver                 | ESU26     | 100428  | 2014-01          | 2016-01          | 24 months          | Х    |
| Rohde &<br>Schwarz, Artificial<br>main network | ESH2-Z5   | 106899  | 2015-05          | 2017-05          | 24 months          | X    |
| ETS, Anechoic chamber                          | 3m        | 103949  | 2014-11          | 2016-11          | 24 months          | X    |
| R&S, Antenna                                   | HFH2-Z2   | /       | 2015-09          | 2017-09          | 24 months          | Х    |
| EMCO, Antenna                                  | 3142B     | 104351  | 2015-09          | 2017-09          | 24 months          | Х    |
| EMCO, Antenna                                  | 3115      | 103002  | 2015-09          | 2017-09          | 24 months          | Х    |
| Heinrich Deisel,<br>Turn table                 | DS 420.00 | 103337  | NA               | NA               | NA                 | Х    |
| Antenna tower                                  | 1         | /       | NA               | NA               | NA                 | Χ    |
| Controller for turn table and antenna tower    | 1         | 1       | NA               | NA               | NA                 | Х    |

Page: 8 (66)



# 4 CONVERSION FACTORS AND ALL OTHER FORMULAS

| Unit Conversion unit |        | Formula of conversion                  |  |
|----------------------|--------|----------------------------------------|--|
| dBμV                 | dBμV/m | $dB\mu V/m = dB\mu V + AF$             |  |
| μV/m                 | dBμV/m | $dB\mu V/m = 20log(X(\mu V/m)/1\mu V)$ |  |

| Test distance stated in standard |      | Test distance of measurement | Conversion factor |
|----------------------------------|------|------------------------------|-------------------|
| Class B                          | 3 m  | 3 m                          | /                 |
| Class A                          | 10 m | 3 m                          | 20dB/decade       |



## 5 GENERAL AND SPECIAL CONDITIONS DESCRIPTION

# 5.1 General condition description

Interconnect and power cabling (or wiring)

## 5.1.1 Test arrangement for conducted emissions

Interconnecting cables that hang closer than 40 cm to the ground-plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50  $\Omega$ . LISN can be placed on top of, or immediately beneath, reference ground-plane.

All other equipment powered from additional LISN(s).

Multiple outlet strip can be used for multiple power cords of non-EUT equipment.

LISN at least 80 cm from nearest part of EUT chassis.

Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.

Non-EUT components of EUT system being tested.

Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.

Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground-plane.

## 5.1.2 Test arrangement for conducted emissions- floor-standing equipment

Excess I/O cables shall be bundled in the center. If bundling is not possible, the cables shall be arranged in serpentine fashion. Bundling shall not exceed 40 cm in length.

Excess power cords shall be bundled in the center or shortened to appropriate length.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. If bundling is not possible, the cable shall be arranged in serpentine fashion.

EUT and all cables shall be insulated, if required, from the ground-plane by up to 12 mm of insulating material.

EUT connected to one LISN. LISN can be placed on top of, or immediately beneath, the ground-plane.

All other equipment powered from a second LISN or additional LISN(s).

Multiple outlet strip can be used for multiple power cords of non-EUT equipment.

Page: 10 (66)



# 5.1.3 Test arrangement for radiated emissions tabletop equipment

Interconnecting cables that hang closer than 40 cm to the ground-plane shall be folded back and forth in the center, forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated if required using the correct terminating impedance. The total length shall not exceed 1 m.

If LISNs are kept in the test setup for radiated emissions, it is preferred that they be installed under the ground-plane with the receptacle flush with the ground-plane.

Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.

Non-EUT components of EUT system being tested.

Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.

No vertical conducting plane used.

Power cords drape to the floor and are routed over to receptacle.

# 5.1.4 Test arrangement for radiated emissions floor-standing equipment

Excess I/O cables shall be bundled in center. If bundling is not possible, the cables shall be arranged in serpentine fashion. Bundling not to exceed 40 cm in length.

Excess power cords shall be bundled in the center or shortened to appropriate length.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. If bundling is not possible, the cable shall be arranged in a serpentine fashion.

EUT and all cables shall be insulated, if required, from the ground-plane by up to 12 mm of insulating material.

If LISNs are kept in the test setup for radiated emissions, it is preferred that they be installed under the groundplane with the receptacle flush with the ground plane.



Page: 11 (66)



# Overhead cable trays and suspended ceilings

# 5.1.5 Test arrangement for floor-standing equipment

Only one vertical riser may be used where typical of system under test.

Excess power cord shall be bundled in the center or shortened to appropriate length.

- EUT and cables shall be insulated from ground-plane by up to 12 mm. Where the manual has specified or there exists a code of practice for installation of the EUT, the test arrangement shall allow the use of this practice for the tests.
- Power cords being measured connected to one LISN. All other system power cords powered through other LISN(s). A multiple receptacle strip may be used for other power cords.
- For *conducted* tests, the LISNs may be placed on top of or immediately beneath and bonded directly to the ground-plane. For *radiated* tests, the LISN(s), if used, should be installed under, with the receptacle flush with the ground-plane.

# 5.1.6 Placement and manipulation of interconnect cabling (or wiring) of tabletop equipment

- LISN(s) may have to be positioned to the side of the table to meet the criterion that the LISN receptacle shall be 80 cm away from the EUT. LISN(s) may be above ground-plane only for conducted emission measurements.
- Accessories, such as ac power adapter, if typically table-mounted, shall occupy peripheral positions as is applicable.
- Accessories, which are typically floor-mounted, shall occupy a floor position directly below the portion of the EUT to which they are typically connected. T
- Table length may be extended beyond 1.5 m with peripherals aligned with the back edge. The table depth may be extended beyond 1 m. The 40 cm distance to the vertical conducting plane shall be maintained for conducted emission testing.

Page: 12 (66)



# Placement of wall-mounted equipment

# 5.1.7 Test configuration/arrangement for combination floor-standing and tabletop equipment

- Interconnecting cables that hang closer than 40 cm to the ground-plane shall be folded back and forth in the center, forming a bundle 30 to 40 cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated if required using the correct terminating impedance.
- If LISNs are kept in the test setup for radiated emissions, it is preferred that they be installed under the groundplane with the receptacle flush with the ground-plane.
- Cables of hand-operated devices, such as keyboards, mice, etc., have to be placed as for normal use.
- Non-EUT components of EUT system being tested.
- I/O cable to floor-standing unit drapes to the ground-plane and shortened or excess bundled. Cables not reaching the metal ground-plane are draped to the height of the connector or 40 cm, whichever is lower.
- Power cords and signal cables shall drape to the floor. No extension cords shall be used to the power receptacles.

The floor-standing unit can be placed under the table if its height permits.

# 5.2 Special condition description

If for some reason the above measurement conditions can't be met, the description below should be used as an appropriate measurement condition and placement.

(Description is written additionally as the measurements differ – all is within test procedure)



Page: 13 (66)



# 6 TEST SUMMARY

| STANDARDS (details on first page)       | Tested |    | Sa   | mple     |
|-----------------------------------------|--------|----|------|----------|
|                                         | yes    | no | pass | not pass |
| ANSI C63.4-2009; FCC Part 15, Subpart C | Ø      |    | Ø    |          |

| Test               | Section within the report | Class | Conclusion |
|--------------------|---------------------------|-------|------------|
| Conducted emission | 3.1                       | В     | PASS       |
| Radiated emission  | 3.2                       | В     | PASS       |

# 6.1 Operating voltages/frequencies used for testing

| Section                                          | Test              | Operating conditions          |  |  |  |  |
|--------------------------------------------------|-------------------|-------------------------------|--|--|--|--|
| 7.1 Conducted emission 5 VDC via USB 7.5 VDC ext |                   | 5 VDC via USB<br>7.5 VDC ext. |  |  |  |  |
| 7.2                                              | Radiated emission | 5 VDC via USB<br>7,5 VDC ext. |  |  |  |  |

Page: 14 (66)



## **7 EMISSION TESTS**

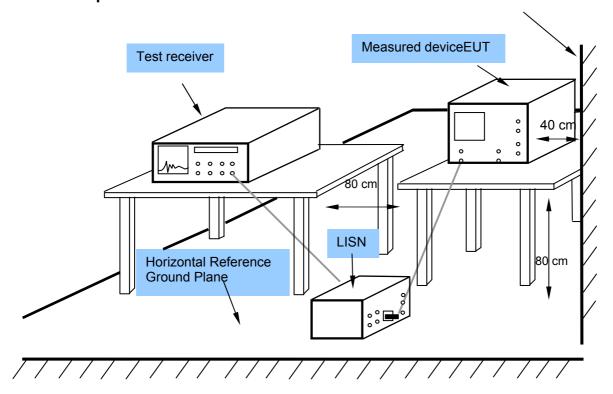
# 7.1 Conducted emission measurement (intentional radiator)

## Section 15.207 Conducted limits

## 7.1.1 Test instruments

| Description                                    | Model No. | SIQ No. | Last calibration | Calibrated<br>until | Calibration period | Used |
|------------------------------------------------|-----------|---------|------------------|---------------------|--------------------|------|
| Rohde-Schwarz,<br>RFI receiver                 | ESU26     | 100428  | 2014-01          | 2016-01             | 24 months          | Х    |
| Rohde & Schwarz,<br>Artificial main<br>network | ESH2-Z5   | 100406  | 2015-05          | 2017-05             | 24 months          | Х    |

# 7.1.2 Test procedure


- The EUT is placed on a non-conductive 0.8 meters high table, 0.4 meters from the vertical conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). LISN provide 50 Ohm / 50  $\mu$ H + 5 Ohm of coupling impedance for the measuring instrument.
- Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition.
- AC power lines of EUT are checked for maximum conducted interference.
- The frequency range from 150 kHz to 30 MHz is searched using PEAK, QUASI-PEAK and AVERAGE function of the receiver. Bandwidth is set to 9kHz.
- If applicable functions are changed (data transfer speed, clock speed,...)



Page: 15 (66)



# 7.1.3 Test setup



For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

Page: 16 (66)



## 7.1.4 Test results



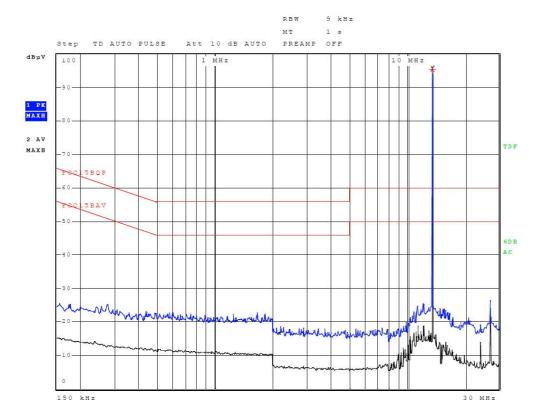
**C20151793** 01.Dec 15 10:34

Meas Type CONDUCTED EMISSION

Equipment under Test PNEV5180B

ManufacturerCETRTA POT, D.O.O.OP ConditionWAITING A TAGOperatorANDREJ SKOF

**Test Spec** 


NEUTRAL, Uin: 7,5 V

## Time Domain Scan (1 Range)

Scan Start: 150 kHz Scan Stop: 30 MHz

Detector: Trace 1: MAX PEAK Trace 2: Average

| Start          | Stop      | Step         | Meas     | Meas RF |       |        |        |
|----------------|-----------|--------------|----------|---------|-------|--------|--------|
| Frequency      | Frequency | Size         | Res BW   | Time    | Atten | Preamp | Input  |
| 150.000000 kHz | 30.000000 | MHz 2.25 kHz | 9.00 kHz | 30 ms   | Auto  | 0 dB   | INPUT2 |











**C20151793** 01.Dec 15 10:34

Meas Type CONDUCTED EMISSION

Equipment under Test PNEV5180B

ManufacturerCETRTA POT, D.O.O.OP ConditionWAITING A TAGOperatorANDREJ SKOF

**Test Spec** 

NEUTRAL, Uin: 7,5 V

# **Final Measurement**

Meas Time: 1 s Margin: 6 dB Peaks: 2

| Trace | Frequency Level (dBµV) |       | Detector    | Delta Limit/dB |  |
|-------|------------------------|-------|-------------|----------------|--|
| 1     | 13.560000000 MHz       | 95.27 | Quasi Peak  | 35.27          |  |
| 2     | 13.560000000 MHz       | 95.42 | CISPR Avera | 45.42          |  |

Page: 18 (66)





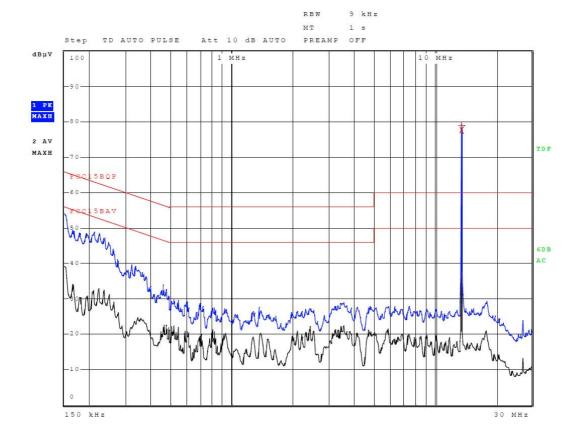
**C20151793** 01.Dec 15 10:46

Meas Type CONDUCTED EMISSION

Equipment under Test PNEV5180B

ManufacturerCETRTA POT, D.O.O.OP ConditionWAITING A TAGOperatorANDREJ SKOF

**Test Spec** 


PHASE, Uin: 7,5 V

# Time Domain Scan (1 Range)

Scan Start: 150 kHz Scan Stop: 30 MHz

Detector: Trace 1: MAX PEAK Trace 2: Average

| Start          | Stop         | Step       | Step     |       | RF    |        |        |
|----------------|--------------|------------|----------|-------|-------|--------|--------|
| Frequency      | Frequency    | Size       | Res BW   | Time  | Atten | Preamp | Input  |
| 150.000000 kHz | 30.000000 MH | z 2.25 kHz | 9.00 kHz | 30 ms | Auto  | 0 dB   | INPUT2 |





Page: 19 (66)





**C20151793** 01.Dec 15 10:46

Meas Type CONDUCTED EMISSION

Equipment under Test PNEV5180B

ManufacturerCETRTA POT, D.O.O.OP ConditionWAITING A TAGOperatorANDREJ SKOF

**Test Spec** 

PHASE, Uin: 7,5 V

# **Final Measurement**

Meas Time: 1 s Margin: 6 dB Peaks: 2

| Trace | Frequency        | Frequency Level (dBµV) |              | Delta Limit/dB |  |
|-------|------------------|------------------------|--------------|----------------|--|
| 1     | 13.560000000 MHz | 78.87                  | Quasi Peak   | 18.87          |  |
| 2     | 13.560000000 MHz | 77.59                  | CISPR Averac | 27.59          |  |

Page: 20 (66)





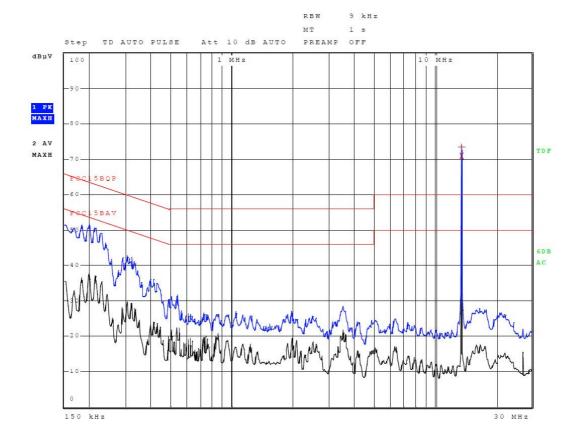
**C20151793** 01.Dec 15 10:48

Meas Type CONDUCTED EMISSION

Equipment under Test PNEV5180B

ManufacturerCETRTA POT, D.O.O.OP ConditionREADING A TAGOperatorANDREJ SKOF

**Test Spec** 


NEUTRAL, Uin: 7,5 V

# Time Domain Scan (1 Range)

Scan Start: 150 kHz Scan Stop: 30 MHz

Detector: Trace 1: MAX PEAK Trace 2: Average

| Start          | Stop         | Step       | Step     |       | RF    |        |        |
|----------------|--------------|------------|----------|-------|-------|--------|--------|
| Frequency      | Frequency    | Size       | Res BW   | Time  | Atten | Preamp | Input  |
| 150.000000 kHz | 30.000000 MH | z 2.25 kHz | 9.00 kHz | 30 ms | Auto  | 0 dB   | INPUT2 |





Page: 21 (66)





**C20151793** 01.Dec 15 10:48

Meas Type CONDUCTED EMISSION

Equipment under Test PNEV5180B

ManufacturerCETRTA POT, D.O.O.OP ConditionREADING A TAGOperatorANDREJ SKOF

**Test Spec** 

NEUTRAL, Uin: 7,5 V

# **Final Measurement**

Meas Time: 1 s Margin: 6 dB Peaks: 2

| Trace Frequency |                  | Level (dBμV) | Detector     | Delta Limit/dB |
|-----------------|------------------|--------------|--------------|----------------|
| 1               | 13.560000000 MHz | 73.46        | Quasi Peak   | 13.46          |
| 2               | 13.560000000 MHz | 70.95        | CISPR Averac | 20.95          |

Page: 22 (66)





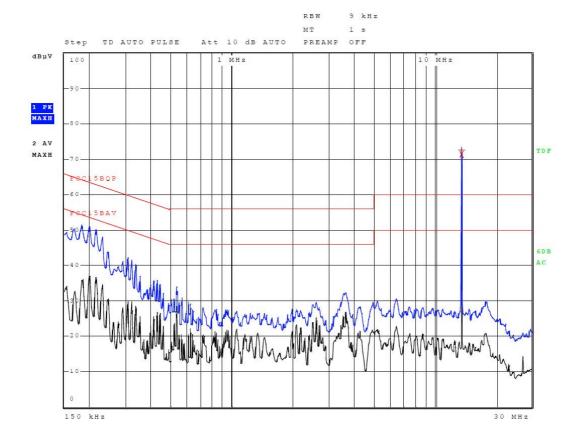
**C20151793** 01.Dec 15 10:47

Meas Type CONDUCTED EMISSION

Equipment under Test PNEV5180B

ManufacturerCETRTA POT, D.O.O.OP ConditionREADING A TAGOperatorANDREJ SKOF

**Test Spec** 


PHASE, Uin: 7,5 V

# Time Domain Scan (1 Range)

Scan Start: 150 kHz Scan Stop: 30 MHz

Detector: Trace 1: MAX PEAK Trace 2: Average

| Start          | Stop        | Step        |          | Meas  | RF    |        |        |
|----------------|-------------|-------------|----------|-------|-------|--------|--------|
| Frequency      | Frequency   | Size        | Res BW   | Time  | Atten | Preamp | Input  |
| 150.000000 kHz | 30.000000 M | Hz 2.25 kHz | 9.00 kHz | 30 ms | Auto  | 0 dB   | INPUT2 |











**C20151793** 01.Dec 15 10:47

Meas Type CONDUCTED EMISSION

Equipment under Test PNEV5180B

ManufacturerCETRTA POT, D.O.O.OP ConditionREADING A TAGOperatorANDREJ SKOF

**Test Spec** 

PHASE, Uin: 7,5 V

# **Final Measurement**

Meas Time: 1 s Margin: 6 dB Peaks: 2

| Trace | Frequency        | Level (dBμV) | Detector     | Delta Limit/dB |
|-------|------------------|--------------|--------------|----------------|
| 1     | 13.560000000 MHz | 72.49        | Quasi Peak   | 12.49          |
| 2     | 13.560000000 MHz | 71.24        | CISPR Averag | 21.24          |

Page: 24 (66)



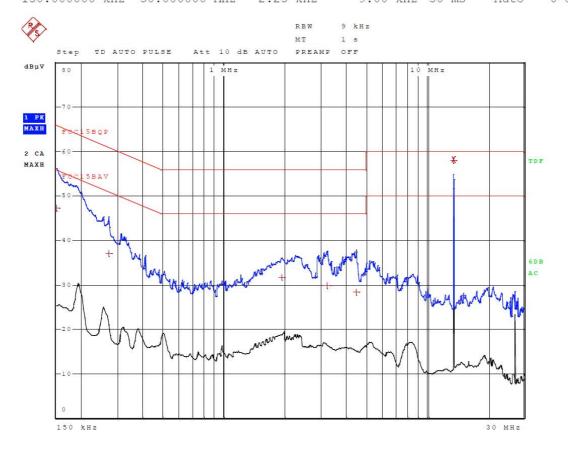
**C20151793** 29.Oct 15 13:42

Meas Type CONDUCTED EMISSION

Equipment under Test PNEV5180B

ManufacturerCETRTA POT, d.o.o.OP ConditionWAITING A TAGOperatorANDREJ SKOF

**Test Spec** 


NEUTRAL 120 V, 60 Hz

# Time Domain Scan (1 Range)

Scan Start: 150 kHz Scan Stop: 30 MHz

Detector: Trace 1: MAX PEAK Trace 2: CISPR Average

| Start          | Stop        | Step                                 |          | Meas  | RF    |        |        |
|----------------|-------------|--------------------------------------|----------|-------|-------|--------|--------|
| Frequency      | Frequency   | Size                                 | Res BW   | Time  | Atten | Preamp | Input  |
| 150 000000 kHz | 30 000000 M | IH <sub>7</sub> 2 25 kH <sub>7</sub> | 9 00 kHz | 50 ms | Auto  | 0 dB   | TMPHT2 |







**C20151793** 29.Oct 15 13:42

Equipment under Test PNEV5180B

ManufacturerCETRTA POT, d.o.o.OP ConditionWAITING A TAGOperatorANDREJ SKOF

**Test Spec** 

NEUTRAL 120 V, 60 Hz

# **Final Measurement**

Meas Time: 1 s Margin: 20 dB Subranges: 7

| Trace | Frequenc      | у   | Level (dBμV) | Detector    | Delta Limit/dB |
|-------|---------------|-----|--------------|-------------|----------------|
| 2     | 13.560000000  | MHz | 58.29        | CISPR Avera | ıg 8.29        |
| 1     | 13.560000000  | MHz | 58.03        | Quasi Peak  | -1.97          |
| 1     | 150.000000000 | kHz | 47.39        | Quasi Peak  | -18.61         |
| 1     | 269.250000000 | kHz | 37.11        | Quasi Peak  | -24.03         |
| 1     | 1.936500000   | MHz | 31.63        | Quasi Peak  | -24.37         |
| 1     | 3.223500000   | MHz | 29.89        | Quasi Peak  | -26.11         |
| 1     | 4.492500000   | MHz | 28.39        | Quasi Peak  | -27.61         |

Page: 26 (66)



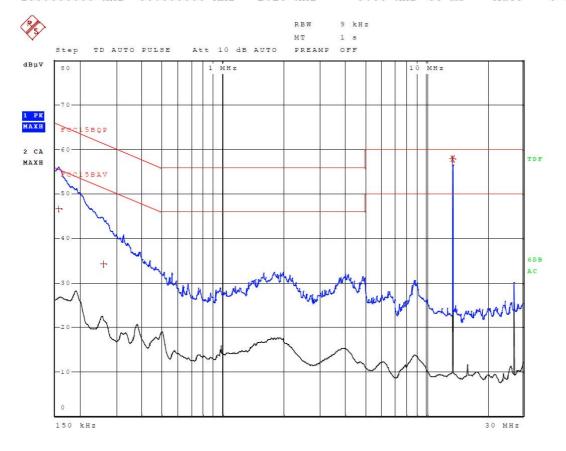
**C20151793** 29.Oct 15 13:44

Meas Type CONDUCTED EMISSION

Equipment under Test PNEV5180B

ManufacturerCETRTA POT, d.o.o.OP ConditionWAITING A TAGOperatorANDREJ SKOF

**Test Spec** 


PHASE 120 V, 60 Hz

# Time Domain Scan (1 Range)

Scan Start: 150 kHz Scan Stop: 30 MHz

Detector: Trace 1: MAX PEAK Trace 2: CISPR Average

| Start          | Stop         | Step        |          | Meas  | RF    |        |        |
|----------------|--------------|-------------|----------|-------|-------|--------|--------|
| Frequency      | Frequency    | Size        | Res BW   | Time  | Atten | Preamp | Input  |
| 150.000000 kHz | 30.000000 MH | Iz 2.25 kHz | 9.00 kHz | 50 ms | Auto  | 0 dB   | INPUT2 |







**C20151793** 29.Oct 15 13:44

Equipment under Test PNEV5180B

ManufacturerCETRTA POT, d.o.o.OP ConditionWAITING A TAGOperatorANDREJ SKOF

**Test Spec** 

PHASE 120 V, 60 Hz

# **Final Measurement**

Meas Time: 1 s Margin: 20 dB Subranges: 4

| Trace | Frequency     | 3    | Level (dBµV) | Detector    | Delta Limit/dB |
|-------|---------------|------|--------------|-------------|----------------|
| 2     | 13.560000000  | MHz  | 57.97        | CISPR Avera | ag 7.97        |
| 1     | 13.560000000  | MHz  | 57.82        | Quasi Peak  | -2.18          |
| 1     | 154.500000000 | kHz  | 46.56        | Quasi Peak  | -19.19         |
| 1     | 255.750000000 | kHz. | 34.23        | Ouasi Peak  | -27.34         |

Page: 28 (66)



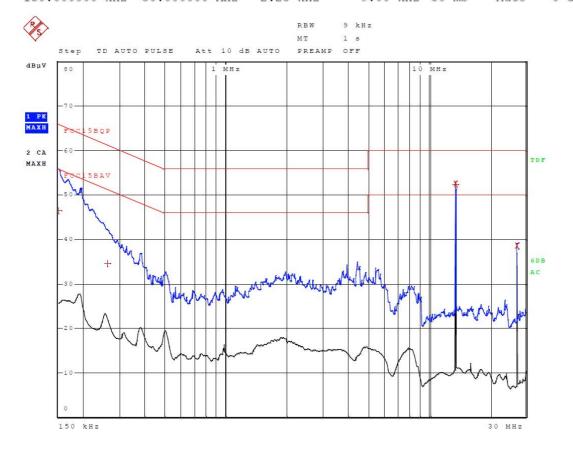
**C20151793** 29.Oct 15 13:40

Meas Type CONDUCTED EMISSION

Equipment under Test PNEV5180B

ManufacturerCETRTA POT, d.o.o.OP ConditionREADING A TAGOperatorANDREJ SKOF

**Test Spec** 


NEUTRAL 120 V, 60 Hz

# Time Domain Scan (1 Range)

Scan Start: 150 kHz Scan Stop: 30 MHz

Detector: Trace 1: MAX PEAK Trace 2: CISPR Average

| Start          | Stop        | Step                                 |          | Meas  | RF    |        |        |
|----------------|-------------|--------------------------------------|----------|-------|-------|--------|--------|
| Frequency      | Frequency   | Size                                 | Res BW   | Time  | Atten | Preamp | Input  |
| 150 000000 kHz | 30 000000 M | IH <sub>7</sub> 2 25 kH <sub>7</sub> | 9 00 kHz | 50 ms | Auto  | 0 dB   | TMPHT2 |







**C20151793** 29.Oct 15 13:40

Equipment under Test PNEV5180B

ManufacturerCETRTA POT, d.o.o.OP ConditionREADING A TAGOperatorANDREJ SKOF

**Test Spec** 

NEUTRAL 120 V, 60 Hz

# **Final Measurement**

Meas Time: 1 s Margin: 20 dB Subranges: 5

| Trace | Frequenc      | y   | Level (dBµV) | Detector   | Delta Limit/dB |
|-------|---------------|-----|--------------|------------|----------------|
| 2     | 13.560000000  | MHz | 52.54        | CISPR Aver | ag 2.54        |
| 1     | 13.560000000  | MHz | 52.40        | Quasi Peak | -7.60          |
| 2     | 27.120750000  | MHz | 38.54        | CISPR Aver | rag -11.46     |
| 1     | 150.000000000 | kHz | 46.52        | Quasi Peak | -19.48         |
| 1     | 258.000000000 | kHz | 34.45        | Quasi Peak | -27.04         |

Page: 30 (66)



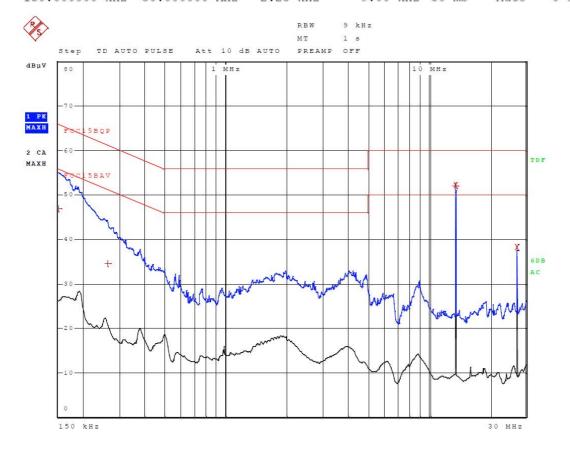
**C20151793** 29.Oct 15 13:37

Meas Type CONDUCTED EMISSION

Equipment under Test PNEV5180B

ManufacturerCETRTA POT, d.o.o.OP ConditionREADING A TAGOperatorANDREJ SKOF

**Test Spec** 


PHASE, 120 V, 60 Hz

# Time Domain Scan (1 Range)

Scan Start: 150 kHz Scan Stop: 30 MHz

Detector: Trace 1: MAX PEAK Trace 2: CISPR Average

| Start          | Stop        | Step          |          | Meas  | RF    |        |        |
|----------------|-------------|---------------|----------|-------|-------|--------|--------|
| Frequency      | Frequency   | Size          | Res BW   | Time  | Atten | Preamp | Input  |
| 150 000000 kHz | 30 000000 M | MH 2 2 25 kHz | 9 00 kHz | 50 ms | Auto  | 0 dB   | TNPHT2 |







**C20151793** 29.Oct 15 13:37

Equipment under Test PNEV5180B

ManufacturerCETRTA POT, d.o.o.OP ConditionREADING A TAGOperatorANDREJ SKOF

**Test Spec** 

PHASE, 120 V, 60 Hz

# **Final Measurement**

Meas Time: 1 s Margin: 20 dB Subranges: 5

| Trace | Frequenc      | y   | Level (dBµV) | Detector   | Delta Limit/dB |
|-------|---------------|-----|--------------|------------|----------------|
| 2     | 13.560000000  | MHz | 52.24        | CISPR Aver | ag 2.24        |
| 1     | 13.560000000  | MHz | 52.07        | Quasi Peak | -7.93          |
| 2     | 27.120750000  | MHz | 38.31        | CISPR Aver | ag -11.69      |
| 1     | 150.000000000 | kHz | 46.93        | Quasi Peak | -19.07         |
| 1     | 260.250000000 | kHz | 34.54        | Quasi Peak | -26.88         |

Page: 32 (66)



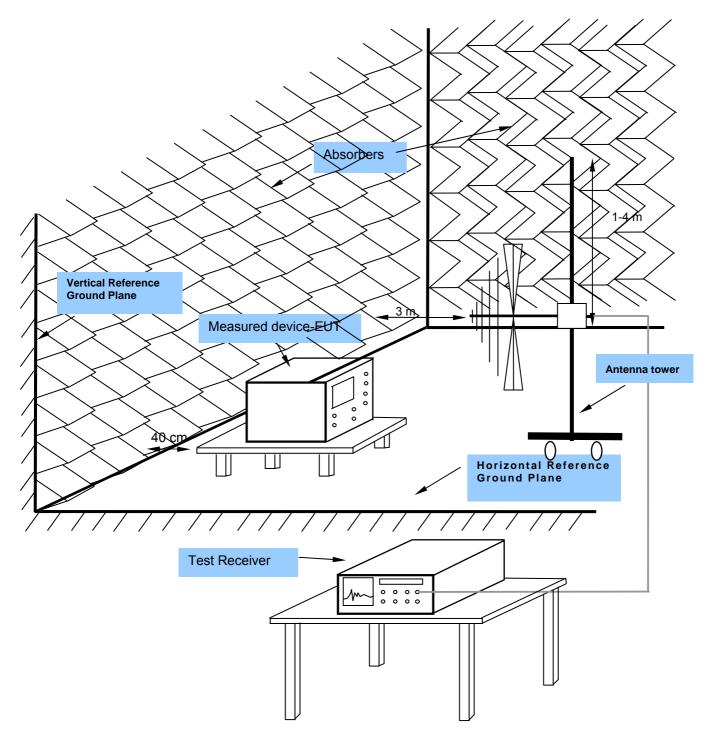
## 7.2 Radiated emission measurement (intentional radiator)

# Section 15.209 Radiated emission limits; general requirements

#### 7.2.1 Test instruments

| Description & Manufacturer                  | Model No. | SIQ No. | Last calibration | Calibrated<br>until | Calibration period | Used |
|---------------------------------------------|-----------|---------|------------------|---------------------|--------------------|------|
| ETS, Anechoic chamber                       | 3m        | 103949  | 2014-11          | 2016-01             | 24 months          | Х    |
| Rohde-Schwarz,<br>RFI receiver              | ESU8      | 105187  | 2015-10          | 2017-10             | 24 months          |      |
| Rohde-Schwarz,<br>RFI receiver              | ESU26     | 100428  | 2014-01          | 2016-01             | 24 months          | Х    |
| R&S, Antenna                                | HFH2-Z2   | /       | 2015-09          | 2017-09             | 24 months          | Х    |
| EMCO, Antenna                               | 3142B     | 104351  | 2015-09          | 2017-09             | 24 months          | Х    |
| EMCO, Antenna                               | 3115      | 103002  | 2015-09          | 2017-09             | 24 months          | Х    |
| Heinrich Deisel,<br>Turn table              | DS 420.00 | 103337  | NA               | NA                  | NA                 | Х    |
| Antenna tower                               | /         | 1       | NA               | NA                  | NA                 | Х    |
| Controller for turn table and antenna tower | 1         | 1       | NA               | NA                  | NA                 | Х    |

# 7.2.2 Test procedure


- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground in an Anechoic Chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 m and 10 m away from the interference-receiving antenna, which was mounted on the top of variable-height antenna tower. Highest peaks were recalculated to proper distance requirement.
- 3. The antenna is a loop and a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to PEAK and QUAS-PEAK Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The highest points would be re-tested one by one using the quasi-peak method.



Page: 33 (66)



# 7.2.3 Test setup



For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.