

Report No.: KSCR221100235501

Page: 1 of 127

FCC SAR TEST REPORT

KSCR2211002355AT(FYCR2211000460AT) Application No.:

Applicant: Vanstone Electronic (Beijing) Co., Ltd.

3F No.2 Building, Aisino Corporation Park 18A, Xingshikou Road, Haidian **Address of Applicant:**

District, Beijing, China 100195

Manufacturer: Vanstone Electronic (Beijing) Co., Ltd.

3F No.2 Building, Aisino Corporation Park 18A, Xingshikou Road, Haidian **Address of Manufacturer:**

District, Beijing, China 100195

Android MiniPOS Terminal **Product Name:**

08A Model No.(EUT):

FCC ID: OWL-A80

FCC 47CFR §2.1093 Standard(s):

2022-12-15 **Date of Receipt:**

2022-12-16 to 2023-03-03 **Date of Test:**

Date of Issue: 2023-03-08

Test Result: Pass*

* In the configuration tested, the EUT complied with the standards specified above.

Form fin

Eric Lin

EMC Laboratory Manager

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cilent's instructions, if any. The Company's sole responsibility is to its Cilent and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced to transaction from exercising all their rights and obligations under the transaction force of this document cannot be reproduced to the supplier of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

REF-55-830-1443.

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 t(86-512)57355888 f(86-512)57370818 www.sgsgroup.com.cn 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com

Report No.: KSCR221100235501

Page: 2 of 127

REVISION HISTORY

	Revision Record			
Version	Description	Date	Remark	
00	Original	2023-03-08	1	

Authorized for issue by:		
	Richard. Kong	
	Richard.Kong/ Project Engineer	
	Eria fri	
	Eric.Lin/Reviewer	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 3 of 127

TEST SUMMARY

	Maximum Reported SAR(W/kg)		
Frequency Band	Body (1-g)	Extremity (10-g)	
GSM850	0.62	1.06	
GSM1900	0.67	2.04	
WCDMA Band II	0.70	2.37	
WCDMA Band IV	0.43	0.83	
WCDMA Band V	0.59	0.87	
LTE Band 2	0.48	1.44	
LTE Band 4	0.56	2.31	
LTE Band 5	0.41	0.75	
LTE Band 7	0.66	0.99	
LTE Band 38	0.48	0.60	
WI-FI (2.4GHz)	0.07	0.30	
ВТ	0.02	0.01	
WI-FI (5GHz)	0.83	1.02	
Sum SAR	1.53	3.40	
SAR Limited(W/kg)	1.6	4.0	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国•江苏•昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 4 of 127

CONTENTS

1	GENERAL INFORMATION	6
	1.1 GENERAL DESCRIPTION OF EUT	
	1.2 Test Specification	
	1.3 RF EXPOSURE LIMITS	
	1.4 TEST LOCATION	
	1.5 TEST FACILITY	
2		
3		
3		
	3.1 THE SAR MEASUREMENT SYSTEM	
	3.3 DATA ACQUISITION ELECTRONICS (DAE)	
	3.4 SAM TWIN PHANTOM	
	3.5 ELI PHANTOM	
	3.6 DEVICE HOLDER FOR TRANSMITTERS	
	3.7 MEASUREMENT PROCEDURE	
	3.7.1 Scanning procedure	
	3.7.2 Data Storage	
	3.7.3 Data Evaluation by SEMCAD	21
4		
	4.1 SAR MEASUREMENT VARIABILITY	
	4.2 SAR MEASUREMENT UNCERTAINTY	24
5	DESCRIPTION OF TEST POSITION	25
	5.1 EXTREMITY EXPOSURE CONDITIONS	25
6		
	6.1 TISSUE SIMULATE LIQUID	26
	6.1.1 Recipes for Tissue Simulate Liquid	26
	6.1.2 Test Liquids Confirmation	
	6.1.3 Measurement for Tissue Simulate Liquid	
	6.2 SAR SYSTEM CHECK	
	6.2.1 Justification for Extended SAR Dipole Calibrations	
	6.2.2 Summary System Check Result(s)	
7	•	
	7.1 3G SAR TEST REDUCTION PROCEDURE	32
	7.2 OPERATION CONFIGURATIONS	
	7.2.1 WCDMA Test Configuration	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 5 of 127

	7.2.2	WI-FI Test Configuration	
	7.2.3	LTE Test Configuration	
	7.2.4	BluetoothTest Configuration	46
8	TEST	RESULT	47
	8.1 N	MEASUREMENT OF RF CONDUCTED POWER	47
	8.1.1	Conducted Power Of GSM	
	8.1.2	Conducted Power Of WCDMA	
	8.1.3	Conducted Power Of LTE	
	8.1.4	Conducted Power Of Wi-Fi	
	8.1.5	Conducted Power Of BT	
	8.2 N	MEASUREMENT OF SAR DATA	64
	8.2.1	SAR Result Of GSM 850	65
	8.2.2	SAR Result Of PCS 1900	66
	8.2.3	SAR Result Of WCDMA Band II	67
	8.2.4	SAR Result Of WCDMA Band IV	68
	8.2.5	SAR Result Of WCDMA Band V	69
	8.2.6	SAR Result Of LTE Band 2	70
	8.2.7	SAR Result Of LTE Band 4	
	8.2.8	SAR Result Of LTE Band 5	
	8.2.9	SAR Result Of LTE Band 7	
	8.2.10		
	8.2.11		
	8.2.12		
	8.2.13		
	8.3 N	MULTIPLE TRANSMITTER EVALUATION	
	8.3.1	Simultaneous SAR SAR test evaluation	83
9	EQUIF	PMENT LIST	87
10	CALIE	BRATION CERTIFICATE	89
11	PHOT	OGRAPHS	89
ΑF	PENDIX	A: DETAILED SYSTEM CHECK RESULTS	90
ΑF	PENDIX	B: DETAILED TEST RESULTS	99
ΑF	PPENDIX	C: CALIBRATION CERTIFICATE	126
Δι	PPFNDIY	D: PHOTOGRAPHS	126
\sim	:1	. D	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 6 of 127

1 General Information

1.1 General Description of EUT

Device Type:	Portable device			
Exposure Category:	Uncontrolled environment / general population			
SN:	00043120800			
Hardware Version:	V1.03	V1.03		
Software Version:	V1.03			
Antenna Gain:	GSM850: -2.9dBi, PCS:1900: -0.4dBi WCDMA B2: -0.4dBi; B4: -0.4dBi; B5: -2.9dBi LTE B2: -0.4dBi; B4: -0.4dBi; B5: -2.9dBi; B7: 2.6dBi; B38:2.9dBi 2.4G/BT: -1.2dBi 5G: U-NII-1: -0.2dBi; U-NII-2A: 2.9dBi; U-NII-2C: 0.6dBi; U-NII-3: -0.9dBi (Provided by Manufacturer)			
Antenna Type:	PIFA antenna			
Device Operating Configuration	ons:			
Modulation Mode:	GSM: GMSK, 8PSK WCDMA: QPSK LTE: QPSK,16QAM WIFI: CCK, DSSS, OFD BT: GFSK, π/4DQPSK,	8DPSK		
GPRS Multi-slots Class:	12	EGPRS Multi-slots Class:	12	
HSDPA UE Category:	14	HSUPA UE Category	6	
	4,tested with power level 5(GSM850)			
	1,tested with power level 0(GSM1900)			
Power Class:	3,tested with power control "all 1"(WCDMA Band II/IV/V)			
Fuwer Class.	3, tested with power control Max Power (LTE Band 2/4/5/7/38)			
	Band	Tx (MHz)	Rx (MHz)	
	GSM850	824-849	869-894	
	GSM1900	1850-1910	1930-1990	
	WCDMA Band II	1850-1910	1930-1990	
	WCDMA Band IV	1710-1755	2110- 2155	
Face and Decorated	WCDMA Band V	824-849	869-894	
Frequency Bands:	LTE Band 2	1850-1910	1930-1990	
	LTE Band 4	1710-1755	2110- 2155	
	LTE Band 5	824-849	869-894	
	LTE Band 7	2500-2570	2620- 2690	
	LTE Band 38	2570~2620	2570~2620	
	WIFI2.4G	2412-2462	2412-2462	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 7 of 127

	BT	2402-2480	2402-2480
	WIFI(U-NII-1)	5150~5250	5150~5250
	WIFI(U-NII-2A)	5250~5350	5250~5350
	WIFI(U-NII-2C)	5470~5725	5470~5725
WIFI(U-NII-3)		5725~5850	5725~5850
	Model:	lel: BT-801	
	Normal Voltage:	DC3.85V	
Battery Information:	Rated capacity:	3000mAh	
	Battery Type:	Rechargeable Li-ion Polymer Battery	
	Manufacturer:	Hunan Gaoyuan Battery Co., Ltd.	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮編 215300

Report No.: KSCR221100235501

Page: 8 of 127

1.1.1 DUT Antenna Locations

Please see the Appendix D

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 9 of 127

1.2 Test Specification

Identity	Document Title
FCC 47CFR §2.1093	Radio frequency Radiation Exposure Evaluation: Portable Devices
IEEE Std C95.1 – 1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz
IEEE 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
KDB 447498 D04 v01	RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices
KDB 865664 D01 v01r04	SAR Measurement Requirements for 100 MHz to 6 GHz
KDB 865664 D02 v01r02	RF Exposure Compliance Reporting and Documentation Considerations
KDB 248227 D01 v02r02	SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS
KDB 941225 D01 v03r01	3G SAR Measurement Procedures
KDB 941225 D05 v02r05	SAR EVALUATION CONSIDERATIONS FOR LTE DEVICES
KDB 941225 D06 v02r01	SAR EVALUATION PROCEDURES FOR PORTABLE DEVICES WITH WIRELESS ROUTER CAPABILITIES

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 10 of 127

1.3 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR*	1.60 W/kg	8.00 W/kg
(Brain*Trunk)	1.00 W/kg	8.00 W/kg
Spatial Average SAR**	0.08 W/kg	0.40 W/kg
(Whole Body)	0.08 W/kg	
Spatial Peak SAR***	4.00 W/kg	20.00 W/kg
(Hands/Feet/Ankle/Wrist)	4.00 W/kg	20.00 W/kg

Notes:

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.)

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issue defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

^{*} The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

^{**} The Spatial Average value of the SAR averaged over the whole body.

^{***} The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Report No.: KSCR221100235501

Page: 11 of 127

1.4 Test Location

All tests were performed at:

Compliance Certification Services (Kunshan) Inc.

No.10 Weiye Rd, Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China.

Tel: +86 512 5735 5888 Fax: +86 512 5737 0818

No tests were sub-contracted.

Note:

1.SGS is not responsible for wrong test results due to incorrect information (e.g. max. clock frequen cy, highest internal frequency, antenna gain, cable loss, etc.) is provided by the applicant. (if applic able).

2.SGS is not responsible for the authenticity, integrity and the validity of the conclusion based on re sults of the data provided by applicant. (if applicable).

1.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• A2LA

Compliance Certification Services (Kunshan) Inc. is accredited by the American Association for Laboratory Accreditation (A2LA). Certificate No. 2541.01.

• FCC

Compliance Certification Services (Kunshan) Inc. has been recognized as an accredited testing laboratory. Designation Number: CN1172.

• ISED

Compliance Certification Services (Kunshan) Inc. has been recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory

CAB Identifier: CN0072.

VCCI

The 3m and 10m Semi-anechoic chamber and Shielded Room of Compliance Certification Services (Kunshan) Inc. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-20134, R-11600, C-11707, T-11499, G-10216 respectively.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 12 of 127

2 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C	
Relative humidity	Min. = 30%, Max. = 70%	
Ground system resistance	< 0.5 Ω	
Ambient noise is checked and found very low and in compliance with requirement of standards.		
Reflection of surrounding objects is minimized and in compliance with requirement of standards.		

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 13 of 127

3 SAR Measurements System Configuration

3.1 The SAR Measurement System

This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY5 professional system). A E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-Simulate.

The DASY5 system for performing compliance tests consists of the following items:

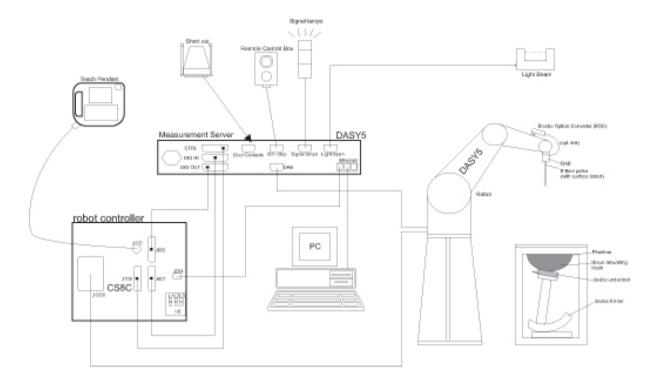
A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software .An arm extension for accommodation the data acquisition electronics (DAE).

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fulleast extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.


Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 14 of 127

F-1. SAR Measurement System Configuration

- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 7.
- DASY5 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand, right-hand and Body Worn usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validat the proper functioning of the system.

3.2 Isotropic E-field Probe EX3DV4

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN. Doccheck@dsc.com.

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

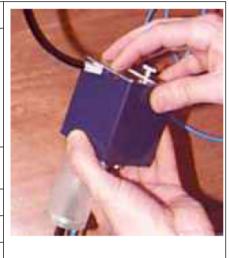
Page: 15 of 127

	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in TSL (rotation around probe axis) ± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国•江苏•昆山市留学生创业园伟业路10号 邮编 215300



Report No.: KSCR221100235501

Page: 16 of 127

3.3 Data Acquisition Electronics (DAE)

Model	DAE4
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY4/5 embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.
Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4mV,400mV)
Input Offset Voltage	< 5μV (with auto zero)
Input Bias Current	< 50 f A
Dimensions	60 x 60 x 68 mm

3.4 SAM Twin Phantom

Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)
Dimensions (incl. Wooden Support)	Length: 1000 mm Width: 500 mm Height: adjustable feet
Filling Volume	approx. 25 liters
Wooden Support	SPEAG standard phantom table

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 17 of 127

3.5 ELI Phantom

Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)
Shell Thickness	2.0 ± 0.2 mm (bottom plate)
Dimensions	Major axis: 600 mm Minor axis: 400 mm
Filling Volume	approx. 30 liters
Wooden Support	SPEAG standard phantom table

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 18 of 127

3.6 Device Holder for Transmitters

F-2. Device Holder for Transmitters

- The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centres for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.
- The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, Naccess and the contact of the content or appearance of the content or samples of the samples of the content or samples or sam

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 19 of 127

3.7 Measurement procedure

3.7.1 Scanning procedure

Step 1: Power reference measurement

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure.

Step 2: Area scan

The SAR distribution at the exposed side of the head was measured at a distance of 4mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm*15mm or 12mm*12mm or 10mm*10mm.Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Zoom scan

Around this point, a volume of 30mm*30mm*30mm (fine resolution volume scan, zoom scan) was assessed by measuring 5x5x7 points (≤2GHz) and 7x7x7 points (≥2GHz). On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

The data at the surface was extrapolated, since the centre of the dipoles is 2.0mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. (This can be variable. Refer to the probe specification). The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The volume was integrated with the trapezoidal algorithm. One thousand points were interpolated to calculate the average. All neighbouring volumes were evaluated until no neighboring volume with a higher average value was found.

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std. 1528-2013.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fulleast extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 20 of 127

			≤ 3 GHz	> 3 GHz	
Maximum distance from		•	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle surface normal at the m			30° ± 1°	20° ± 1°	
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan sp	atial resolu	tion: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the aborthe measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device. ≤ 2 GHz: ≤ 8 mm 3 - 4 GHz: ≤ 5 mm*		
Maximum zoom scan s	patial reso	lution: Δx_{Zoom} , Δy_{Zoom}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*	
	uniform (grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
	grid	Δz _{Zoom} (n>1): between subsequent points	≤ 1.5·Δz	Zoom(n-1)	
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power reference measurement (drift)

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The indicated drift is mainly the variation of the DUT's output power and should vary max. \pm 5 %

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions/Terms

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report No.: KSCR221100235501

Page: 21 of 127

3.7.2 Data Storage

The DASY software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE3". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [m W/g], [m W/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

3.7.3 Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

Conversion factor ConvFiDiode compression point Dcpi

Device parameters: - Frequency f

- Crest factor cf
Media parameters: - Conductivity

- Density p

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

3

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With Vi = compensated signal of channel i (i = x, y, z)

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 (186-512)57355888 (186-512)57370818 www.sgsgroup.com.cn 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 (186-512)57355888 (186-512)57370818 sgs.china@sgs.com

Report No.: KSCR221100235501

Page: 22 of 127

Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:

$$E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$$

H-field probes:

$$H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$$

With Vi = compensated signal of channel i (i = x, y, z)

Normi = sensor sensitivity of channel I (i = x, y, z)

[mV/(V/m)2] for E-field Probes

ConvF = sensitivity enhancement in solution

aij = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (Etot^2 \cdot \sigma) / (\varepsilon \cdot 1000)$$

With SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

σ= conductivity in [mho/m] or [Siemens/m]

ε= equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 \frac{2}{3770} P_{pwe} = H_{tot}^2 \cdot 37.7$$

with Ppwe = equivalent power density of a plane wave in mW/cm2

Etot = total electric field strength in V/m

Htot = total magnetic field strength in A/m

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention:*To check the authenticity of testing inspection report & certificate, please contact us at telephone.(86-755) 8307 1443.

Attention:*To check the authenticity of testing inspection report & certificate, please contact us at telephone.(86-755) 8307 1443.

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 23 of 127

4 SAR measurement variability and uncertainty

4.1 SAR measurement variability

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01r04, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is remounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fulleast extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 24 of 127

4.2 SAR measurement uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of ilability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 25 of 127

5 Description of Test Position

5.1 Extremity exposure conditions

Devices that are designed or intended for use on extremities, or mainly operated in extremity only exposure conditions, i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Test Exclusion Thresholds in 8.2 should be applied to determine SAR test requirements. When extremity SAR testing is required, a flat phantom must be used if the exposure condition is more conservative than the actual use conditions; otherwise, a KDB inquiry is required to determine the phantom and test requirements. Body SAR compliance is also tested with a flat phantom. For devices with irregular shapes or form factors that do not conform to a flat phantom, and/or unusual operating configurations and exposure conditions, a KDB inquiry is also required to determine the appropriate SAR measurement procedures. Unless it is specified differently in the published RF exposure KDB procedures, when simultaneous transmission applies to extremity exposure, the simultaneous transmission SAR test exclusion provisions should be applied. When simultaneous transmission SAR measurement is required, the enlarged zoom scan and volume scan post-processing procedures in KDB Publication 865664 D01 should be applied.

SAR can test the sides near the antenna, the surface of the device should be tested for SAR compliance with the device touching the phantom. The SAR Exclusion Threshold in KDB 447498 D04 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent device surface is used to determine if SAR testing is required for the adjacent surfaces, with the adjacent surface positioned against the phantom and the surface containing the antenna positioned perpendicular to the phantom.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 26 of 127

6 SAR System Verification Procedure

6.1 Tissue Simulate Liquid

6.1.1 Recipes for Tissue Simulate Liquid

The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands:

Ingredients		Frequency (MHz)									
(% by weight)	4	50	83	835		915		00	2450		
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	

HSL5GHz is composed of the following ingredients:

Water: 50-65%

Mineral oil: 10-30%

Emulsifiers: 8-25%

Sodium salt: 0-1.5%

MSL5GHz is composed of the following ingredients:

Water: 64-78%

Mineral oil: 11-18%

Emulsifiers: 9-15%

Sodium salt: 2-3%

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's fidnings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 27 of 127

6.1.2 Test Liquids Confirmation

Simulated tissue liquid parameter confirmation

The dielectric parameters were checked prior to assessment using the SPEAG DAK3.5 dielectric probe kit. The dielectric parameters measured are reported in each correspondent section.

IEEE SCC-34/SC-2 P1528 recommended tissue dielectric parameters

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in P1528

Target Frequency	He	ad	Body		
(MHz)	ε _r	σ (S/m)	ε _r	σ (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800-2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 28 of 127

6.1.3 Measurement for Tissue Simulate Liquid

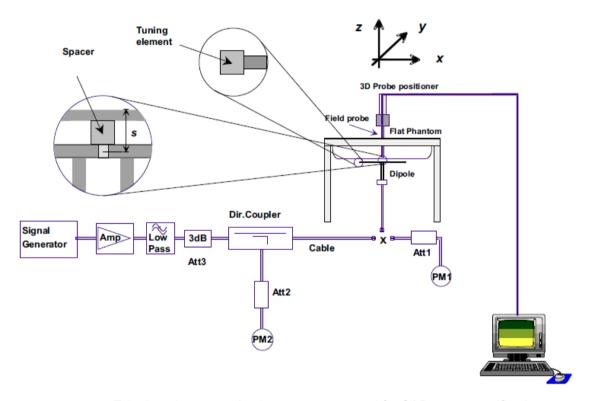
The dielectric properties for this Tissue Simulate Liquids were measured by using the SPEAG DAK3.5 dielectric probe kit in conjunction with Agilent E5071B Network Analyzer (300 KHz-8500 MHz). The Conductivity (σ) and Permittivity (ρ) are listed in bellow table. For the SAR measurement given in this report. The temperature variation of the Tissue Simulate Liquids was 22±2°C.

Tissue Type	Measured Frequency (MHz)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Liquid Temp. (°C)	Date
835 Head	835	0.91	42.04	0.90	41.50	1.00	1.30	±5	22.1	2022/12/16
1800 Head	1800	1.41	38.95	1.40	40.00	0.71	-2.63	±5	22.2	2022/12/17
1900 Head	1900	1.41	39.56	1.40	40.00	1.00	-1.09	±5	22.3	2022/12/18
2450 Head	2450	1.83	39.90	1.80	39.20	1.39	1.79	±5	22.2	2022/12/19
2600 Head	2600	2.00	39.39	1.96	39.00	2.04	0.99	±5	22.1	2023/3/3
5200 Head	5200	4.68	36.15	4.66	36.01	0.49	0.39	±5	22.2	2022/12/21
5600 Head	5600	5.16	35.06	5.07	35.50	1.72	-1.24	±5	22.2	2022/12/21
5800 Head	5800	5.38	34.50	5.28	35.24	1.89	-2.11	±5	22.2	2022/12/21

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issued seffined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CND Doccheck@sgs.com.

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300



Report No.: KSCR221100235501

Page: 29 of 127

6.2 SAR System Check

The microwave circuit arrangement for system check is sketched in bellow figure. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the following table. During the tests, the ambient temperature of the laboratory was in the range 22±2°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

F-3. the microwave circuit arrangement used for SAR system verification

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issue defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 30 of 127

6.2.1 Justification for Extended SAR Dipole Calibrations

- 1) Referring to KDB865664 D01 requirements for dipole calibration, instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated value;
- c) Return-loss is within 10% of calibrated measurement;
- d) Impedance is within 5Ω from the previous measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 31 of 127

6.2.2 Summary System Check Result(s)

			SA	R System Vali	dation Result(s	s)			
Vali	Validation Kit		Measure Measured SAR SA d SAR SAR (normalize (norm		Measured SAR (normalize d to 1w)	Target SAR (normalized to 1w) (±10%)	Target SAR (normalized to 1w) (±10%)	Liqui d Temp	Measured Date
		1g (W/kg)	10g (W/kg)	1g (W/kg)	10g (W/kg)	1-g(W/kg)	10-g(W/kg)	(°C)	
D835V2	Head	2.35	1.61	9.4	6.44	9.41 (8.47~10.35)	6.25 (5.63~6.88)	22.1	2022/12/1 6
D1800V2	Head	9.98	5.44	39.92	21.76	38.4 (34.56~42.24)	20.2 (18.18~22.22)	22.2	2022/12/1 7
D1900V2	Head	10.2	5.5	40.8	22	40.0 (36.00~44.00)	20.3 (18.72~22.88)	22.3	2022/12/1 8
D2450V2	Head	12.2	5.72	48.8	22.88	53 (47.70~58.30)	24.6 (22.14~27.60)	22.2	2022/12/1 9
D2600V2	Head	14	6.49	56	25.96	56.2 (50.58~61.82)	25 (22.50~27.50)	22.1	2023/3/3
Vali	dation Kit	Measure d SAR 100mW	Measured SAR 100mW	Measured SAR (normalize d to 1w)	Measured SAR (normalize d to 1w)	Target SAR (normalized to 1w) (±10%)	Target SAR (normalized to 1w) (±10%)	Liqui d Temp	Measured Date
		1g (W/kg)	10g (W/kg)	1g (W/kg)	10g (W/kg)	1-g(W/kg)	10-g(W/kg)	(°C)	
	Head(5.20GHz	7.95	2.26	79.5	22.6	77.6 (69.84~85.36)	22.1 (19.35~23.65)	22.2	2022/12/2 1
D5GHzV 2	Head(5.6GHz)	8.07	2.31	80.7	23.1	80.8 (72.72~88.88)	22.9 (20.61~25.19)	22.2	2022/12/2 1
	Head(5.8GHz)	8.04	2.3	80.4	23	76.7 (69.03~84.37)	21.5 (19.35~23.65)	22.2	2022/12/2 1

6.2.3 Detailed System Check Results

Please see the Appendix A

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 32 of 127

7 Test Configuration

7.1 3G SAR Test Reduction Procedure

According to KDB 941225D01, in the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/4$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode. This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

7.2 Operation Configurations

7.2.1 WCDMA Test Configuration

1) . Output Power Verification

Maximum output power is verified on the high, middle and low channels according to procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1's" for WCDMA/HSDPA or by applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) are required in the SAR report. All configurations that are not supported by the handset or cannot be measured due to technical or equipment limitations must be clearly identified.

2) . Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure

3) . Body SAR

SAR for body configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreaing code or DPDCHn, for the highest reported bodyworn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the handset, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

4) . HSDPA / HSUPA / DC-HSDPA

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 33 of 127

According to KDB 941225 D01v03, RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA / DC-HSDPA is $\leq \frac{1}{4}$ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA / DC-HSDPA to RMC12.2Kbps and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA

a) HSDPA

HSDPA is configured according to the applicable UE category of a test device. The number of HS-DSCH/HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms and a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β c, β d), and HS-DPCCH power offset parameters (Δ ACK, Δ NACK, Δ CQI) are set according to values indicated in the following table. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, **Certificate, please contact us at telephone: (86-755) 8307 1443, **Certificate, please contact us at telephone: (86-755) 8307 1443, **Certificate, please contact us at telephone: (86-755) 8307 1443, **Certificate, please contact us at telephone: (86-755) 8307 1443, **Certificate, please contact us at telephone: (86-755) 8307 1443, **Certificate, please contact us at telephone: (86-755) 8307 1443, **Certificate, please contact us at telephone: (86-755)

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 34 of 127

Sub-test	βς	Bd	βd(SF)	βc/βd	βhs	CM(dB)	MPR (dB)
1	2/15	15/15	64	2/15	4/15	0.0	0
2	12/15(3)	15/15(3)	64	12/15(3)	24/15	1.0	0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note1: \triangle ACK, \triangle NACK and \triangle CQI= 8 Ahs = β hs/ β c=30/15 β hs=30/15* β c

Note2:For the HS-DPCCH power mask requirement test in clause 5.2C,5.7A,and the Error Vector Magnitude(EVM) with HS-DPCCH test in clause 5.13.1.A,and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle ACK and \triangle NACK= 8 (Ahs=30/15) with β hs=30/15* β c,and \triangle CQI=

7 (Ahs=24/15) with β hs= $24/15*\beta$ c.

Note3: CM=1 for β c/ β d =12/15, β hs/ β c=24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

The measurements were performed with a Fixed Reference Channel (FRC) and H-Set 1 QPSK.

Parameter	Value
Nominal average inf. bit rate	534 kbit/s
Inter-TTI Distance	3 TTI"s
Number of HARQ Processes	2 Processes
Information Bit Payload	3202 Bits
MAC-d PDU size	336 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	4800 Bits
Total Available SMLs in UE	19200 SMLs
Number of SMLs per HARQ Process	9600 SMLs
Coding Rate	0.67
Number of Physical Channel Codes	5

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 35 of 127

HS-DSCH Category	Maximum HS-DSCH Codes Received	Minimum Inter- TTI Interval	MaximumH S-DSCH Transport BlockBits/HS- DSCH TTI	Total Soft Channel Bits
1	5	3	7298	19200
2	5	3	7298	28800
3	5	2	7298	28800
4	5	2	7298	38400
5	5	1	7298	57600
6	5	1	7298	67200
7	10	1	14411	115200
8	10	1	14411	134400
9	15	1	25251	172800
10	15	1	27952	172800
11	5	2	3630	14400
12	5	1	3630	28800
13	15	1	34800	259200
14	15	1	42196	259200
15	15	1	23370	345600
16	15	1	27952	345600

b) HSUPA

Due to inner loop power control requirements in HSUPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSUPA should be configured according to the values indicated below as well as other applicable procedures described in the "WCDMA Handset" and "Release 5 HSUPA Data Device" sections of 3G device.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issued seffined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CND Doccheck@sgs.com.

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 36 of 127

Sub -test₽	βee	βd€	β _d (SF) _e	β₀∕β₄₽	β _{hs} (1	βec⁴³	$eta_{ ext{ed}arphi}$	β _e _{o+} (SF)+	βed↔ (code)↔	CM(2)+1 (dB)+2	MP R↓ (dB)↓	AG ⁽⁴)↔ Inde x↔	E- TFC I _e
1₽	11/15(3)+3	15/15(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(64₽	11/15(3)+3	22/15₽	209/22 5₊³	1039/225₽	4₽	1₽	1.04	0.0₽	20₽	75₽
2₽	6/15₽	15/15₄	64₽	6/15₽	12/15₽	12/15₽	94/75₽	4₽	1₽	3.0∉	2.0₽	12 ₽	67₽
3₽	15/150	9/15₽	64₽	15/9₽	30/15₽	30/15₽	β _{ad1} :47/1 5 ₄ β _{ed2:47/1} 5 ₄	4₽	2₽	2.0∉	1.0₽	15.0	92₽
4₽	2/15₽	15/15₽	64₽	2/15₽	4/15₽	2/15₽	56/75₽	4₽	1₽	3.0₽	2.0₽	17₽	71₽
5₽	15/15(4)43	15/15(4)(3)	64₽	15/15(4)43	30/15₽	24/15₽	134/15₽	4€	1₽	1.0€	0.0₽	21	81₽

Note 1: \triangle ACK, \triangle NACK and \triangle CQI=8 $A_{hs} = \beta_{hs}/\beta_e = 30/15$ $\beta_{hs} = 30/15 * \beta_{ed}$

Note 2: CM = 1 for β_c/β_d = 12/15, β_{hs}/β_c = 24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3 : For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: βed can not be set directly; it is set by Absolute Grant Value.

UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E-DCH TTI(ms)	Minimum Speading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)	
1	1	4	10	4	7110	0.7296	
2	2	8	2	4	2798	1 4500	
2	2	4	10	4	14484	1.4592	
3	2	4	10	4	14484	1.4592	
4	2	8	2	2	5772	2.9185	
4	2	4	10	2	20000	2.00	
5	2	4	10	2	20000	2.00	
6	4	8	10	2SF2&2SF	11484	5.76	
(No DPDCH)	4	4	2	4	20000	2.00	
7	4	8	2	2SF2&2SF	22996	?	
(No DPDCH)	4	4	10	4	20000	?	

NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4.UE categories 1 to 6 support QPSK only. UE category 7 supports QPSK and 16QAM.(TS25.306-7.3.0).

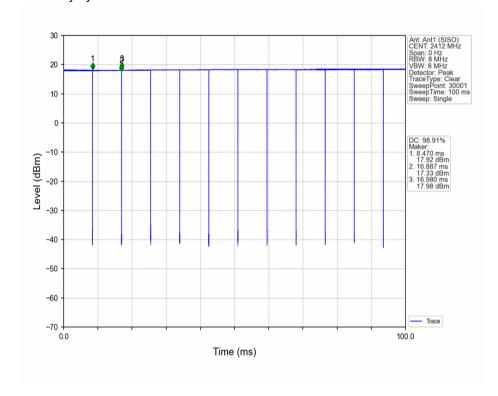
Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 37 of 127


7.2.2 Wi-Fi Test Configuration

A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement.

7.2.2.1 Duty cycle

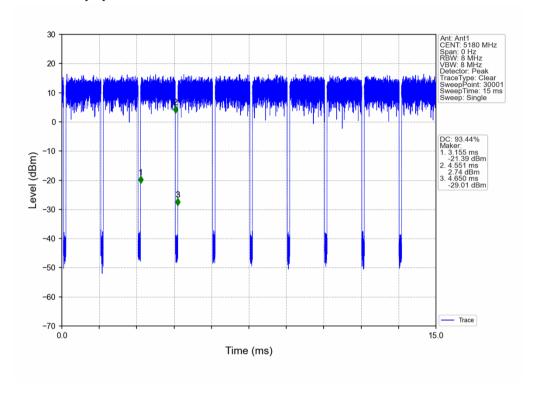
1) 2.4GHz Wi-Fi:

WI-FI 802.11b: Duty cycle= 98.91%

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@css.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300



Report No.: KSCR221100235501

Page: 38 of 127

2) 5GHz Wi-Fi:

WI-FI 802.11a: Duty cycle= 93.44%

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of ilability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 39 of 127

7.2.2.2 Initial Test Position SAR Test Reduction Procedure

DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures. The initial test position procedure is described in the following:

- When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other (remaining) test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. SAR is also not required for that exposure configuration in the subsequent test configuration(s).
- 2) . When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.
- 3) . For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. a) Additional power measurements may be required for this step, which should be limited to those necessary for identifying the subsequent highest output power channels.

7.2.2.3 Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required. SAR test reduction for subsequent highest output test channels is determined according to *reported* SAR of the initial test configuration.

For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode. For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration.

When the *reported* SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until *reported* SAR is ≤ 1.2 W/kg or all required channels are tested.

7.2.2.4 Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 40 of 127

tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

- 1) . When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
- 2) . When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- 3) . The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.
 - SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.
 - SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the reported SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested. i) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.
- 4) . SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by recursively applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:
 - replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
 - replace "initial test configuration" with "all tested higher output power configurations"

7.2.2.5 2.4 GHz Wi-Fi SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in following.

802.11b DSSS SAR Test Requirements

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issued seffined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CND Doccheck@sgs.com.

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com

t(86-512)57355888 f(86-512)57370818 www.sgsgroup.com.cn

Report No.: KSCR221100235501

Page: 41 of 127

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) . When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) . When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
 - 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3, including sub-sections). SAR is not required for the following 2.4 GHz OFDM conditions.

- 1) . When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- 2) . When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

7.2.2.6 5 GHz Wi-Fi SAR Procedures

U-NII-1 and U-NII-2A Bands

For devices that operate in only one of the U-NII-1 and U-NII-2A bands, the normally required SAR procedures for OFDM configurations are applied. For devices that operate in both U-NII bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following:

- When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, both bands are tested independently for SAR.
- When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, both bands are tested independently for SAR.
- 3) The two U-NII bands may be aggregated to support a 160 MHz channel on channel number 50. Without additional testing, the maximum output power for this is limited to the lower of the maximum output power certified for the two bands. When SAR measurement is required for at least one of the bands and the highest reported SAR adjusted by the ratio of specified maximum output power of aggregated to standalone band is > 1.2 W/kg, SAR is required for the 160 MHz channel. This procedure does not apply to an aggregated band with maximum output higher than the standalone band(s); the aggregated band must be tested independently for SAR. SAR is not required when the 160 MHz channel is operating at a reduced maximum power and also qualifies for SAR test exclusion.

• U-NII-2C and U-NII-3 Bands

The frequency range covered by these bands is 380 MHz (5.47 - 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. when Terminal Doppler Weather Radar (TDWR) restriction applies, all channels that operate at 5.60 - 5.65 GHz must be included to apply the SAR test reduction and measurement procedures.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 42 of 127

When the same transmitter and antenna(s) are used for U-NII-2C band and U-NII-3 band or 5.8 GHz band of §15.247, the bands may be aggregated to enable additional channels with 20, 40 or 80 MHz bandwidth to span across the band gap, as illustrated in Appendix B. The maximum output power for the additional band gap channels is limited to the lower of those certified for the bands. Unless band gap channels are permanently disabled, they must be considered for SAR testing. The frequency range covered by these bands is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. To maintain SAR measurement accuracy and to facilitate test reduction, the channels in U-NII-2C band above 5.65 GHz may be grouped with the 5.8 GHz channels in U-NII-3 or §15.247 band to enable two SAR probe calibration frequency points to cover the bands, including the band gap channels. When band gap channels are supported and the bands are not aggregated for SAR testing, band gap channels must be considered independently in each band according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

• OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements

The initial test configuration for 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures. When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

- 1) The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- 2) If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- 3) If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- 4) When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n. After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.
 - a) The channel closest to mid-band frequency is selected for SAR measurement.
 - b) For channels with equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

• SAR Test Requirements for OFDM configurations

When SAR measurement is required for 802.11 a/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 $\begin{array}{lll} t(86\text{-}512)57355888 & f(86\text{-}512)57370818 & www.sgsgroup.com.cn \\ t(86\text{-}512)57355888 & f(86\text{-}512)57370818 & sgs.china@sgs.com \\ \end{array}$

Report No.: KSCR221100235501

Page: 43 of 127

transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration requirements. In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions/Terms

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 44 of 127

7.2.3 LTE Test Configuration

LTE modes were tested according to FCC KDB 941225 D05 publication. Please see notes after the tabulated SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 was used for LTE output power measurements and SAR testing. Max power control was used so the UE transmits with maximum output power during SAR testing. SAR must be measured with the maximum TTI (transmit time interval) supported by the device in each LTE configuration.

A) Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

B) MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 V13.5.0 (201609) Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

Modulation	Cha	nnel bandw	idth / Tra	nsmission	bandwidth ((N _{RB})	MPR (dB)
	1.4	3.0	5	10	15	20	
	MHz	MHz	MHz	MHz	MHz	MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2

C) A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

D) Largest channel bandwidth standalone SAR test requirements

1) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is \leq 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is \geq 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

2) QPSK with 50% RB allocation

The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.

3) QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information ocupants and hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction focuments. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 45 of 127

4) Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in above sections to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is $> \frac{1}{2}$ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

E) Other channel bandwidth standalone SAR test requirements

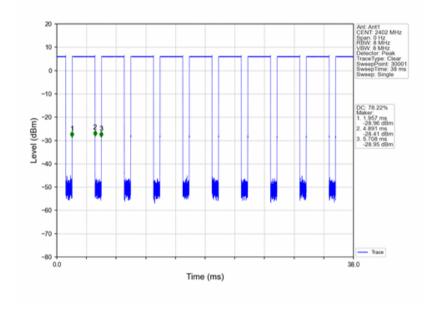
For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section A) to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 $\begin{array}{lll} t(86\text{-}512)57355888 & t(86\text{-}512)57370818 & \text{www.sgsgroup.com.cn} \\ t(86\text{-}512)57355888 & t(86\text{-}512)57370818 & \text{sgs.china@sgs.com} \\ \end{array}$

Report No.: KSCR221100235501


Page: 46 of 127

7.2.4 BluetoothTest Configuration

For the Bluetooth SAR tests, a communication link is set up with the test mode software for BT mode test. Bluetooth USES frequency hopping technology to divide the transmitted data into packets and transmit the packets respectively through 79 designated Bluetooth channels, 1MHz Bandwidth, frequency hops at 1600 hops/second per the Bluetooth standard. The Radio Frequency Channel Number (RFCN) is allocated to 0, 39 and 78 respectively in the case of 2402~2480 MHz during the test at each test frequency channel, the EUT is operated at the RF continuous emission mode.

7.2.4.1 Duty cycle

Bluetooth duty cycle: 78.22%

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 47 of 127

8 Test Result

8.1 Measurement of RF Conducted Power

8.1.1 Conducted Power Of GSM

0.1.1 00110	ucteu i o	WCI CI	COIN							
					GSM 8	50				
В	urst Output Po	wer(dBm)			Tungun	Division Factors	Frame-Ave	rage Output F	Power(dBm)	Tunaun
Chann	el	128	190	251	Tune up	DIVISION FACIOIS	128	190	251	Tune up
	1 TX Slot	31.97	32.07	32.36	33.00	-9.03	22.94	23.04	23.33	23.97
GPRS/EGPRS	2 TX Slots	30.89	31.03	31.31	32.00	-6.02	24.87	25.01	25.29	25.98
(GMSK)	3 TX Slots	29.06	29.17	29.45	30.00	-4.26	24.8	24.91	25.19	25.74
	4 TX Slots	28.14	28.23	28.51	29.00	-3.01	25.13	25.22	25.5	25.99
	1 TX Slot	26.73	26.30	26.78	28.00	-9.03	17.7	17.27	17.75	18.97
EGPRS(8PSK)	2 TX Slots	27.53	26.31	26.22	28.00	-6.02	21.51	20.29	20.2	21.98
EGFRS(6FSR)	3 TX Slots	24.26	23.98	24.63	25.00	-4.26	20	19.72	20.37	20.74
	4 TX Slots	23.27	23.08	23.63	25.00	-3.01	20.26	20.07	20.62	21.99
					GSM 19	000				
В	urst Output Po	wer(dBm)			Tuna un Division Fastana		Frame-Ave	T		
Chann	el	512	661	810	Tune up	Division Factors	512	661	810	Tune up
	1 TX Slot	27.64	27.92	27.89	29.00	-9.03	18.61	18.89	18.86	19.97
GPRS/EGPRS	2 TX Slots	26.69	26.88	26.80	28.00	-6.02	20.67	20.86	20.78	21.98
(GMSK)	3 TX Slots	24.76	24.86	24.70	26.00	-4.26	20.5	20.6	20.44	21.74
	4 TX Slots	23.84	23.95	23.79	25.00	-3.01	20.83	20.94	20.78	21.99
	1 TX Slot	26.53	26.87	26.19	27.00	-9.03	17.5	17.84	17.16	17.97
ECDDS(0DSIZ)	2 TX Slots	25.90	26.01	25.64	27.00	-6.02	19.88	19.99	19.62	20.98
EGPRS(8PSK)	3 TX Slots	23.86	23.99	23.68	25.00	-4.26	19.6	19.73	19.42	20.74
	4 TX Slots	22.67	22.69	22.05	24.00	-3.01	19.66	19.68	19.04	20.99

Note:

1) For SAR the time based average power is relevant. The difference in between depends on the duty cycle of the TDMA signal:

No. of timeslots	1	2	3	4
Duty Cycle	1:8.3	1:4.15	1:2.77	1:2.075
Time based avg. power compared to slotted avg. power	-9.03	-6.02	-4.26	-3.01

2) The frame-averaged power is linearly proportion to the slot number configured and it is linearly scaled the maximum burst-averaged power based on time slots.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@css.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 $\begin{array}{lll} t(86\text{-}512)57355888 & f(86\text{-}512)57370818 & \text{www.sgsgroup.com.cn} \\ t(86\text{-}512)57355888 & f(86\text{-}512)57370818 & \text{sgs.china@sgs.com} \\ \end{array}$

Report No.: KSCR221100235501

Page: 48 of 127

8.1.2 Conducted Power Of WCDMA

	WCDMA Band II										
	Average Conducted Power(dBm)										
Channel		9262	9400	9538	Tune up						
WCDMA	12.2kbps RMC	21.05	21.59	21.46	22.00						
	Subtest 1	21.76	22.67	22.07	23.00						
HSDPA	Subtest 2	21.73	22.65	22.06	23.00						
ПЭДРА	Subtest 3	21.73	22.64	22.06	23.00						
	Subtest 4	21.70	22.61	22.03	23.00						
	Subtest 1	19.50	20.49	19.97	21.00						
	Subtest 2	19.59	20.41	19.96	21.00						
HSUPA	Subtest 3	19.90	20.75	20.33	21.00						
	Subtest 4	19.34	20.96	20.34	21.00						
	Subtest 5	19.38	20.61	20.29	21.00						

	WCDMA Band IV										
	Average Conducted Power(dBm)										
Channel	1312 1412 1513 Tun										
WCDMA	12.2kbps RMC	21.45	21.85	21.00	22.00						
	Subtest 1	21.21	20.05	21.36	22.00						
HEDDA	Subtest 2	21.24	20.06	21.36	22.00						
HSDPA	Subtest 3	21.24	20.04	21.37	22.00						
	Subtest 4	21.22	19.99	21.34	21.50						
	Subtest 1	18.97	18.60	19.10	20.00						
	Subtest 2	19.49	18.91	19.51	20.00						
HSUPA	Subtest 3	18.69	18.38	19.13	20.00						
	Subtest 4	19.54	18.58	18.92	20.00						
	Subtest 5	19.88	18.48	19.65	20.00						

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 49 of 127

		WCDMA Band \	/		
	/	Average Conducted Pov	ver(dBm)		
	Channel	4132	4182	4233	Tune up
WCDMA	12.2kbps RMC	23.21	23.33	23.09	24.00
	Subtest 1	22.33	23.30	22.58	24.00
HSDPA	Subtest 2	22.34	23.30	22.59	24.00
HSDPA	Subtest 3	22.32	23.28	22.57	24.00
	Subtest 4	22.36	23.26	22.62	23.50
	Subtest 1	19.88	20.83	20.07	21.00
	Subtest 2	20.97	21.63	21.23	22.00
HSUPA	Subtest 3	20.17	21.40	20.04	22.00
	Subtest 4	20.44	20.77	21.23	22.00
	Subtest 5	20.76	21.38	20.05	22.00

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 50 of 127

8.1.3 Conducted Power Of LTE

	LTE Band 2			Conducted Power(dBm)				
Danish dalah	NA - ded - 65 - c	DD -i	DD - # t	Channel	Channel	Channel	T	
Bandwidth	Modulation	RB size	RB offset	18607	18900	19193	Tune up	
		1	0	21.25	21.69	21.54	22.00	
		1	2	21.24	21.71	21.48	22.00	
		1	5	21.29	21.74	21.50	22.00	
	QPSK	3	0	21.19	21.66	21.56	22.00	
		3	2	21.25	21.72	21.56	22.00	
		3	3	21.19	21.65	21.47	22.00	
4 48411-		6	0	20.16	20.62	20.53	21.00	
1.4MHz		1	0	19.74	20.65	20.05	21.00	
		1	2	19.73	20.67	20.04	21.00	
		1	5	19.79	20.77	20.04	21.00	
	16QAM	3	0	20.02	20.63	20.42	21.00	
		3	2	20.02	20.70	20.40	21.00	
		3	3	19.98	20.72	20.36	21.00	
		6	0	19.31	19.69	19.53	20.00	
				Channel	Channel	Channel	_	
Bandwidth	Modulation	RB size	RB offset	18615	18900	19185	Tune up	
		1	0	21.20	21.53	21.54	22.00	
		1	7	21.27	21.53	21.48	22.00	
		1	14	21.22	21.58	21.49	22.00	
	QPSK	8	0	20.22	20.68	20.56	22.00	
		8	4	20.26	20.76	20.51	22.00	
		8	7	20.19	20.73	20.59	22.00	
08411-		15	0	20.19	20.59	20.60	21.00	
3MHz		1	0	19.77	21.03	21.07	21.50	
		1	7	19.76	21.06	20.97	21.50	
		1	14	19.77	21.19	20.98	21.50	
	16QAM	8	0	19.50	19.77	19.85	21.00	
		8	4	19.51	19.86	19.90	21.00	
		8	7	19.47	19.84	19.89	21.00	
		15	0	19.34	19.70	19.71	20.00	
Pandwidth .	Modulation	DD size	DD offeet	Channel	Channel	Channel	Tuna	
Bandwidth	Modulation	RB size	RB offset	18625	18900	19175	Tune up	
		1	0	21.16	21.48	21.65	22.00	
		1	13	21.09	21.59	21.61	22.00	
5MHz	ODSK	1	24	21.09	21.60	21.58	22.00	
	QPSK	12	0	20.20	20.62	20.63	22.00	
		12	6	20.22	20.66	20.65	22.00	
		12	13	20.11	20.69	20.66	22.00	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 51 of 127

		25	0	20.14	20.67	20.61	21.00
		1	0	19.39	20.71	20.82	21.00
		1	13	19.42	20.77	20.74	21.00
		1	24	19.41	20.91	20.69	21.00
	16QAM	12	0	19.23	19.73	19.69	21.00
		12	6	19.20	19.79	19.67	21.00
		12	13	19.25	19.82	19.70	21.00
		25	0	19.32	19.84	19.70	20.00
				Channel	Channel	Channel	_
Bandwidth	Modulation	RB size	RB offset	18650	18900	19150	Tune up
		1	0	21.20	21.52	21.84	22.00
		1	25	21.13	21.77	21.73	22.00
		1	49	21.24	21.85	21.65	22.00
	QPSK	25	0	20.24	20.64	20.66	22.00
		25	13	20.22	20.63	20.62	22.00
		25	25	20.25	20.82	20.64	22.00
4000	MLI_	50	0	20.24	20.71	20.61	21.00
10MHz		1	0	20.70	20.02	20.93	21.00
		1	25	20.66	20.20	20.92	21.00
		1	49	20.84	20.24	20.90	21.00
	16QAM	25	0	19.31	19.79	19.88	21.00
		25	13	19.27	19.88	19.86	21.00
		25	25	19.31	19.94	19.79	21.00
		50	0	19.27	19.77	19.81	20.00
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tungun
Danuwiutii	iviodulation	RD SIZE	KD Ollset	18675	18900	19125	Tune up
		1	0	21.21	21.45	21.86	22.00
		1	38	21.21	21.65	21.80	22.00
		1	74	21.31	21.72	21.67	22.00
	QPSK	36	0	20.20	20.50	20.79	22.00
		36	18	20.22	20.74	20.76	22.00
		36	39	20.31	20.79	20.64	22.00
		75	0	20.27	20.71	20.65	21.00
15MHz		1	0	20.70	20.83	20.93	21.00
		1	38	20.62	21.00	20.86	21.00
		1	74	20.78	21.08	20.85	21.50
	16QAM	36	0	19.25	19.62	19.84	21.00
		36	18	19.28	19.70	19.88	21.00
		36	39	19.35	19.84	19.77	21.00
		75	0	19.30	19.75	19.80	20.00
		10		Channel	Channel	Channel	20.00
Bandwidth	Modulation	RB size	RB offset	18700	18900	19100	Tune up
20MHz	QPSK	1	0	21.20	21.60	21.76	22.00

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 52 of 127

		1	50	21.30	21.78	21.68	22.00
		1	99	21.36	21.87	21.53	22.00
		50	0	20.28	20.52	20.78	21.00
		50	25	20.31	20.79	20.81	21.00
		50	50	20.33	20.83	20.62	21.00
		100	0	20.39	20.67	20.81	21.00
		1	0	20.40	21.53	21.18	22.00
		1	50	20.45	21.56	21.09	22.00
		1	99	20.55	21.67	20.92	22.00
	16QAM	50	0	19.35	19.57	19.98	21.00
		50	25	19.43	19.69	19.85	21.00
		50	50	19.43	19.80	19.75	21.00
		100	0	19.43			1
		100	0	19.51	19.75	19.77	20.00
	LTE Band 4				Conduc	cted Power(dBm)	
				Channel	Channel	Channel	
Bandwidth	Modulation	RB size	RB offset	19957	20175	20393	Tune up
		1	0	22.02	21.40	21.74	23.00
		1	2	22.07	21.56	21.72	23.00
		1	5	21.97	21.52	21.79	23.00
	QPSK	3	0	22.12	21.61	21.61	23.00
	Qi Oit	3	2	22.11	21.60	21.62	23.00
		3	3	22.07	21.53	21.65	23.00
		6	0	20.96	20.47	20.68	22.00
1.4MHz		1	0	21.11	20.56	20.31	22.00
		1	2	21.12	20.61	20.31	22.00
		1	5	21.16	20.60	20.37	22.00
	16QAM	3	0	20.90	20.39	20.41	22.00
	10071111	3	2	20.95	20.46	20.42	22.00
		3	3	20.94	20.32	20.34	22.00
		6	0	20.10	19.51	19.76	21.00
				Channel	Channel	Channel	
Bandwidth	Modulation	RB size	RB offset	19965	20175	20385	Tune up
		1	0	22.09	21.47	21.53	23.00
		1	7	22.03	21.48	21.51	23.00
		1	14	22.08	21.48	21.53	23.00
	QPSK	8	0	21.05	20.43	20.59	22.00
		8	4	21.07	20.53	20.62	22.00
3MHz	3MHz	8	7	21.06	20.43	20.65	22.00
		15	0	21.07	20.48	20.59	22.00
		1	0	21.54	20.24	21.37	22.00
	16QAM	1	7	21.57	20.29	21.29	22.00
		1	14	21.49	20.26	21.30	22.00
	1	· ·	1	•			

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 53 of 127

		8	0	20.37	19.73	19.69	21.00
		8	4	20.34	19.72	19.74	21.00
		8	7	20.36	19.72	19.68	21.00
		15	0	20.21	19.62	19.79	21.00
				Channel	Channel	Channel	
Bandwidth	Modulation	RB size	RB offset	19975	20175	20375	Tune up
		1	0	22.05	21.44	21.58	23.00
		1	13	21.96	21.43	21.56	23.00
		1	24	21.96	21.38	21.58	23.00
	QPSK	12	0	21.08	20.54	20.74	22.00
		12	6	21.06	20.59	20.63	22.00
		12	13	20.98	20.49	20.61	22.00
		25	0	21.04	20.55	20.60	22.00
5MHz		1	0	20.10	20.54	20.56	21.00
		1	13	20.09	20.60	20.60	21.00
	16QAM	1	24	20.06	20.53	20.60	21.00
		12	0	20.09	19.56	19.67	21.00
	1000	12	6	20.06	19.58	19.67	21.00
		12	13	20.07	19.54	19.66	21.00
		25	0	20.14	19.61	19.61	21.00
		25		Channel	Channel	Channel	21.00
Bandwidth	Modulation	RB size	RB offset	20000	20175	20350	Tune up
		1	0	21.95	21.62	21.60	23.00
		1	25	21.90	21.54	21.63	23.00
	QPSK	1	49	21.75	21.48	21.61	23.00
		25	0	20.97	20.58	20.65	22.00
		25	13	20.97	20.55	20.54	22.00
		25	25	20.92	20.48	20.61	22.00
		50	0	20.98	20.59	20.52	22.00
10MHz		1	0	21.24	20.14	21.05	22.00
		1	25	21.11	20.04	21.03	22.00
		1	49	21.06	19.97	21.14	21.50
	16QAM	25	0	20.08	19.74	19.59	21.00
		25	13	19.96	19.72	19.69	21.00
		25	25	19.97	19.70	19.70	21.00
		50	0	20.01	19.56	19.78	21.00
				Channel	Channel	Channel	
Bandwidth	Modulation	RB size	RB offset	20025	20175	20325	Tune up
		1	0	21.93	21.56	21.57	23.00
		1	38	21.79	21.44	21.63	23.00
		1	74	21.59	21.40	21.71	23.00
15MHz	QPSK -	36	0	20.92	20.53	20.57	22.00
15MHZ							
15MHZ		36	18	20.87	20.54	20.66	22.00

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国•江苏•昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 54 of 127

		75	0	20.90	20.65	20.55	22.00
		1	0	21.28	20.92	20.99	22.00
		1	38	21.26	20.92	21.05	22.00
		1	74	20.85	20.85	21.05	22.00
	400 414			20.05			
	16QAM	36	0		19.67	19.68	21.00
		36	18	19.97	19.61	19.61	21.00
		36	39	20.07	19.57	19.73	21.00
		75	0	20.00	19.65	19.61	21.00
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
		4		20050	20175	20300	00.00
		1	0	22.10	21.87	21.52	23.00
		1	50	21.91	21.66	21.67	23.00
		1	99	21.66	21.57	21.64	23.00
	QPSK	50	0	20.92	20.66	20.56	22.00
		50	25	20.77	20.55	20.54	22.00
	20MHz	50	50	20.66	20.42	20.56	22.00
20MH-		100	0	20.87	20.64	20.63	22.00
ZVIVITIZ		1	0	21.01	21.52	20.85	22.00
		1	50	20.82	21.30	21.00	22.00
		1	99	20.52	21.29	21.01	22.00
	16QAM	50	0	20.07	19.79	19.70	21.00
		50	25	19.97	19.57	19.72	21.00
		50	50	19.78	19.52	19.75	21.00
		100	0	19.94	19.69	19.48	21.00
	LTE Band 5				Conduc	cted Power(dBm)	
	T	T		Channel	Channel	Channel	_
Bandwidth	Modulation	RB size	RB offset	20407	20525	20643	Tune up
		1	0	23.51	23.51	23.42	24.00
		1	2	23.59	23.65	23.52	24.00
		1	5	23.56	23.65	23.53	24.00
	QPSK	3	0	23.56	23.69	23.51	24.00
		3	2	23.57	23.63	23.42	24.00
		3	3	23.52	23.72	23.38	24.00
		6	0	22.50	22.71	22.39	23.00
1.4MHz		1	0	22.09	22.78	22.39	23.00
		1	2	22.09	22.76	22.47	23.00
		1	5	22.01	22.70	22.50	23.00
	16QAM		0				
	IOQAIVI	3	+	22.25	22.64	22.35	23.00
		3	2	22.22	22.63	22.27	23.00
		3	3	22.18	22.59	22.34	23.00
D	NA - J. L. C.	6	0	21.65	21.93	21.66	22.00
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 55 of 127

				20415	20525	20635	
		1	0	23.45	23.50	23.54	24.00
		1	7	23.39	23.66	23.52	24.00
		1	14	23.39	23.69	23.49	24.00
	QPSK	8	0	22.54	22.46	22.41	23.00
		8	4	22.50	22.61	22.36	23.00
		8	7	22.41	22.55	22.40	23.00
08411-		15	0	22.50	22.50	22.47	23.00
3MHz		1	0	22.78	22.32	23.33	23.50
		1	7	22.77	22.29	23.40	23.50
		1	14	22.69	22.33	23.36	23.50
	16QAM	8	0	21.82	21.75	21.77	22.00
		8	4	21.79	22.00	21.78	22.00
		8	7	21.70	21.97	21.80	22.00
		15	0	21.66	21.77	21.71	22.00
D a sa also si aléla	Madulation	DD size	DD offeet	Channel	Channel	Channel	T
Bandwidth	Modulation	RB size	RB offset	20425	20525	20625	Tune up
		1	0	23.53	23.47	23.33	24.00
		1	13	23.45	23.50	23.33	24.00
		1	24	23.42	23.55	23.37	24.00
	QPSK	12	0	22.62	22.63	22.43	23.00
		12	6	22.44	22.51	22.52	23.00
		12	13	22.22	22.63	22.48	23.00
5MHz		25	0	22.40	22.64	22.42	23.00
SIVITZ		1	0	21.59	22.67	22.42	23.00
		1	13	21.42	22.65	22.51	23.00
		1	24	21.50	22.65	22.52	23.00
	16QAM	12	0	21.60	21.61	21.61	22.00
		12	6	21.45	21.82	21.66	22.00
		12	13	21.43	21.78	21.63	22.00
		25	0	21.56	21.90	21.65	22.00
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Danawiani	Woddiation	TAD SIZE	TAD Oliset	20450	20525	20600	rune up
		1	0	23.40	23.42	23.77	24.00
		1	25	23.36	23.71	23.76	24.00
		1	49	23.46	23.66	23.58	24.00
	QPSK	25	0	22.41	22.68	22.50	23.00
		25	13	22.52	22.49	22.45	23.00
10MHz		25	25	22.34	22.74	22.37	23.00
		50	0	22.43	22.65	22.48	23.00
		1	0	22.61	22.04	22.75	23.00
	16QAM	1	25	22.45	22.14	22.71	23.00
	10Q/IIII	1	49	22.55	22.07	22.56	23.00
		25	0	21.49	21.74	21.85	22.00

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 56 of 127

		25	12	21.40	21.05	21.54	22.00
		25	13	21.48	21.95	21.54	
		25	25	21.51	21.90	21.76	22.00
		50	0	21.48	21.80	21.63	22.00
	LTE Band 7				Conduc	ted Power(dBm)	
Bandwidth	Modulation	RB size	RB offset	Channel 20775	Channel 21100	Channel 21425	Tune up
		1	0	20.49	20.86	19.89	21.50
		1	13	20.33	20.78	20.02	21.50
		1	24	20.38	20.77	20.14	21.00
	QPSK	12	0	19.67	19.94	18.97	20.50
	QISIN	12	6	19.49	19.89	18.99	20.50
		12	13	19.49	19.89	19.13	20.00
		25	0	19.65	19.89	18.96	20.00
5MHz		1	0	19.65	19.94	18.30	20.00
		1	<u> </u>	19.76			
			13		19.86	18.24	20.00
	10000	1	24	19.58 18.71	19.84	18.30	20.00
	16QAM	12	0		18.96	18.07	20.00
		12	6	18.64	18.94	18.06	20.00
		12	13	18.58	18.92	18.15	20.00
		25	0	18.73	18.94	18.19	20.00
Bandwidth	Modulation	RB size	RB offset	Channel 20800	Channel 21100	Channel 21400	Tune up
		1	0	20.57	20.99	20.03	21.50
		1	25	20.37	20.99	19.90	21.50
		1	49	20.37	20.90	20.13	21.00
			49	20.30	20.09		21.00
	ODSK	25		10.57	10.02	10.07	20.50
	QPSK	25	0	19.57	19.92	18.97	20.50
	QPSK	25	13	19.41	19.99	18.97	20.50
	QPSK	25 25	13 25	19.41 19.31	19.99 19.89	18.97 18.98	20.50 20.00
10MHz	QPSK	25 25 50	13 25 0	19.41 19.31 19.55	19.99 19.89 19.86	18.97 18.98 18.92	20.50 20.00 20.00
10MHz	QPSK	25 25 50 1	13 25 0 0	19.41 19.31 19.55 19.83	19.99 19.89 19.86 19.49	18.97 18.98 18.92 19.11	20.50 20.00 20.00 20.50
10MHz	QPSK	25 25 50 1	13 25 0 0 25	19.41 19.31 19.55 19.83 19.68	19.99 19.89 19.86 19.49 19.41	18.97 18.98 18.92 19.11 19.14	20.50 20.00 20.00 20.50 20.50
10MHz		25 25 50 1 1	13 25 0 0 25 49	19.41 19.31 19.55 19.83 19.68 19.59	19.99 19.89 19.86 19.49 19.41 19.37	18.97 18.98 18.92 19.11 19.14 19.25	20.50 20.00 20.00 20.50 20.50 20.50
10MHz	QPSK	25 25 50 1 1 1 25	13 25 0 0 25 49	19.41 19.31 19.55 19.83 19.68 19.59 18.66	19.99 19.89 19.86 19.49 19.41 19.37 19.14	18.97 18.98 18.92 19.11 19.14 19.25 18.12	20.50 20.00 20.00 20.50 20.50 20.50 20.00
10MHz		25 25 50 1 1 1 25 25	13 25 0 0 25 49 0	19.41 19.31 19.55 19.83 19.68 19.59 18.66 18.53	19.99 19.89 19.86 19.49 19.41 19.37 19.14 19.08	18.97 18.98 18.92 19.11 19.14 19.25 18.12 18.13	20.50 20.00 20.00 20.50 20.50 20.50 20.00
10MHz		25 25 50 1 1 1 25 25 25	13 25 0 0 25 49 0 13 25	19.41 19.31 19.55 19.83 19.68 19.59 18.66 18.53 18.56	19.99 19.89 19.86 19.49 19.41 19.37 19.14 19.08 19.09	18.97 18.98 18.92 19.11 19.14 19.25 18.12 18.13 18.22	20.50 20.00 20.00 20.50 20.50 20.50 20.00 20.00
10MHz		25 25 50 1 1 1 25 25	13 25 0 0 25 49 0	19.41 19.31 19.55 19.83 19.68 19.59 18.66 18.53 18.56	19.99 19.89 19.86 19.49 19.41 19.37 19.14 19.08 19.09	18.97 18.98 18.92 19.11 19.14 19.25 18.12 18.13 18.22 18.18	20.50 20.00 20.00 20.50 20.50 20.50 20.00
10MHz Bandwidth		25 25 50 1 1 1 25 25 25	13 25 0 0 25 49 0 13 25	19.41 19.31 19.55 19.83 19.68 19.59 18.66 18.53 18.56 18.67 Channel	19.99 19.89 19.86 19.49 19.41 19.37 19.14 19.08 19.09 19.02 Channel	18.97 18.98 18.92 19.11 19.14 19.25 18.12 18.13 18.22 18.18 Channel	20.50 20.00 20.00 20.50 20.50 20.50 20.00 20.00
	16QAM	25 25 50 1 1 1 25 25 25 50 RB size	13 25 0 0 25 49 0 13 25 0 RB offset	19.41 19.31 19.55 19.83 19.68 19.59 18.66 18.53 18.56 18.67 Channel 20825	19.99 19.89 19.86 19.49 19.41 19.37 19.14 19.08 19.09 19.02 Channel 21100	18.97 18.98 18.92 19.11 19.14 19.25 18.12 18.13 18.22 18.18 Channel 21375	20.50 20.00 20.00 20.50 20.50 20.50 20.00 20.00 20.00 20.00 Tune up
	16QAM	25 25 50 1 1 1 25 25 25 50 RB size	13 25 0 0 25 49 0 13 25 0 RB offset	19.41 19.31 19.55 19.83 19.68 19.59 18.66 18.53 18.56 18.67 Channel 20825 20.53	19.99 19.89 19.86 19.49 19.41 19.37 19.14 19.08 19.09 19.02 Channel 21100 20.92	18.97 18.98 18.92 19.11 19.14 19.25 18.12 18.13 18.22 18.18 Channel 21375 20.02	20.50 20.00 20.00 20.50 20.50 20.50 20.00 20.00 20.00 Tune up 21.50
	16QAM	25 25 50 1 1 1 25 25 25 50 RB size	13 25 0 0 25 49 0 13 25 0 RB offset	19.41 19.31 19.55 19.83 19.68 19.59 18.66 18.53 18.56 18.67 Channel 20825 20.53 20.27	19.99 19.89 19.86 19.49 19.41 19.37 19.14 19.08 19.09 19.02 Channel 21100 20.92 20.92	18.97 18.98 18.92 19.11 19.14 19.25 18.12 18.13 18.22 18.18 Channel 21375 20.02 19.96	20.50 20.00 20.00 20.50 20.50 20.50 20.00 20.00 20.00 Tune up 21.50
Bandwidth	16QAM Modulation	25 25 50 1 1 1 25 25 25 50 RB size	13 25 0 0 25 49 0 13 25 0 RB offset	19.41 19.31 19.55 19.83 19.68 19.59 18.66 18.53 18.56 18.67 Channel 20825 20.53	19.99 19.89 19.86 19.49 19.41 19.37 19.14 19.08 19.09 19.02 Channel 21100 20.92	18.97 18.98 18.92 19.11 19.14 19.25 18.12 18.13 18.22 18.18 Channel 21375 20.02	20.50 20.00 20.00 20.50 20.50 20.50 20.00 20.00 20.00 Tune up 21.50

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 57 of 127

		36	18	19.43	19.91	18.86	20.50	
		36	39	19.45	19.82	18.96	20.00	
		75	0	19.44	19.81	18.93	20.00	
		1	0	20.08	20.18	19.29	20.50	
		1	38	19.82	20.27	19.25	20.50	
		1	74	19.87	20.02	19.35	20.50	
	16QAM	36	0	18.70	18.98	18.12	20.00	
		36	18	18.59	19.05	18.13	20.00	
		36	39	18.61	18.86	18.15	20.00	
		75	0	18.59	18.96	18.10	20.00	
				Channel	Channel	Channel		
Bandwidth	Modulation	RB size	RB offset	20850	21100	21350	Tune up	
		1	0	20.64	20.95	20.19	21.50	
		1	50	20.40	21.06	19.90	21.50	
		1	99	20.45	20.77	20.04	21.00	
	QPSK	50	0	19.55	19.96	18.99	20.50	
	Q. 3.1	50	25	19.34	20.01	18.88	20.50	
		50	50	19.46	19.78	18.99	20.00	
		100	0	19.40	19.80	19.00	20.00	
20MHz		1	0	19.60	20.26	19.81	20.50	
		1	50	19.35	20.20	19.44	20.50	
		1	99	19.48	20.37	19.57	20.50	
	16QAM	-		1	1		1	
	IOQAW	50	0	18.64	18.90	18.23	20.00	
		50	25	18.59	18.98	18.16	20.00	
		50	50	18.63	18.83	18.22	20.00	
		100	0	18.59	18.95	18.09	20.00	
	LTE Band 38	}		Conducted Power(dBm)				
	T	T		Channel	Channel	Channel	_	
Bandwidth	Modulation	RB size	RB offset	37775	38000	38225	Tune up	
		1	0	19.27	19.59	18.95	20.00	
		1	13	19.49	19.66	18.96	20.00	
		1	24	19.53	19.56	18.90	20.00	
	QPSK	12	0	18.91	19.09	18.57	20.00	
		12	6	18.94	19.02	18.55	20.00	
		12	13	18.99	19.03	18.49	20.00	
5MHz		25	0	18.96	19.15	18.55	19.50	
		1	0	18.79	19.98	18.50	20.00	
		1	13	18.93	19.08	18.52	19.50	
		1	24	19.00	19.78	18.54	20.00	
	16QAM	12	0	17.91	18.25	17.43	19.00	
		12		18.02	1		19.00	
			6		18.10	17.49		
		12	13	17.81	17.94	17.47	18.00	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 58 of 127

		25	0	18.01	18.15	17.50	19.00
Daniel dele	NA - ded - C	DD -:	DD -#4	Channel	Channel	Channel	T
Bandwidth	Modulation	RB size	RB offset	37800	38000	38200	Tune up
		1	0	19.51	19.65	19.12	20.00
		1	25	19.59	19.61	18.99	20.00
		1	49	19.71	19.30	19.01	20.00
	QPSK	25	0	19.05	19.21	18.54	20.00
		25	13	18.99	19.07	18.44	20.00
		25	25	19.08	18.95	18.52	20.00
		50	0	19.01	19.14	18.40	19.50
10MHz		1	0	18.75	19.46	19.59	20.00
		1	25	18.90	19.31	19.45	19.50
		1	49	19.23	19.04	19.42	20.00
	16QAM	25	0	18.05	18.47	17.65	19.00
		25	13	18.11	18.50	17.53	19.00
		25	25	18.10	18.40	17.52	19.00
		50	0	18.15	18.10	17.68	19.00
				Channel	Channel	Channel	
Bandwidth	Modulation	RB size	RB offset	37825	38000	38175	Tune up
		1	0	19.66	19.98	19.19	20.00
		1	38	19.80	19.57	19.19	20.00
		1	74	19.93	19.37	18.97	20.00
	QPSK	36	0	19.00	19.26	18.69	20.00
		36	18	19.09	19.17	18.66	20.00
		36	39	19.13	18.92	18.50	20.00
458811-		75	0	19.07	19.19	18.60	19.50
15MHz		1	0	18.73	19.28	19.55	20.00
		1	38	19.26	19.61	19.45	20.00
		1	74	19.38	18.80	19.37	20.00
	16QAM	36	0	18.08	18.43	17.64	19.00
		36	18	18.16	18.28	17.66	19.00
		36	39	18.26	18.05	17.54	19.00
		75	0	18.23	18.19	17.65	19.00
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Danuwium	Iviodulation	RD SIZE	RD Ollset	37850	38000	38150	Turie up
		1	0	19.36	20.01	19.41	21.00
		1	50	19.61	19.65	19.09	20.00
		1	99	19.77	19.37	19.33	20.00
	QPSK	50	0	18.99	19.32	18.78	20.00
20MHz		50	25	19.03	19.18	18.66	20.00
		50	50	19.30	19.04	18.70	20.00
		100	0	19.11	19.10	18.69	19.50
	16QAM	1	0	19.41	20.08	19.25	21.00
	IOQAW	1	50	19.90	19.65	18.46	20.00

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 59 of 127

1	99	19.63	19.16	18.77	20.00
50	0	18.36	18.40	17.84	19.00
50	25	18.40	18.31	17.73	19.00
50	50	18.55	18.16	17.74	19.00
100	0	18.33	18.23	17.84	19.00

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 60 of 127

8.1.4 Conducted Power Of Wi-Fi

Mode	Channel	Frequency (MHz)	Data Rate (Mbps)	Average Power (dBm)	Tune up
	1	2412		13.36	15.00
802.11b	6	2437	1	14.18	15.00
	11 2462 13.78	13.78	15.00		
802.11g	1	2412		12.67	13.00
	6	2437	6	12.39	13.00
	11	2462		12.26	13.00
	1	2412		12.71	13.00
802.11n HT20 SISO	6	2437	MCS0	12.3	13.00
0.00	11	2462		12.26	13.00
	3	2422		11.3	12.00
802.11n HT40 SISO	6	2437	MCS0	11.29	12.00
0.00	9	2452		11.9	12.00

5GHz	mode	Channel	Frequency(MHz)	ency(MHz) Data Rate(Mbps)		Tune up
		36	5180		11.00	12.00
	U-NII-1	40	5200		10.59	12.00
		48	5240		10.38	12.00
		52	5260		9.71	10.00
	U-NII-2A U-NII-2C	60	5300		9.41	10.00
802.11a		64	5320		9.26	10.00
802.11a		100	5500	6	11.91	13.00
		116	5580		11.71	13.00
		140	5700		12.12	13.00
	U-NII-3	149	5745		13.52	14.00
		157	5785		13.57	14.00
		165	5825	-	13.33	14.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
		36	5180		10.61	11.00
	U-NII-1	40	5200		10.88	11.00
		48	5240		10.09	11.00
802.11n-HT20		52	5260	MCS0	9.58	10.00
	U-NII-2A	60	5300		9.55	10.00
		64	5320	1	9.37	10.00
	U-NII-2C	100	5500		11.89	13.00

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 $\begin{array}{lll} t(86\text{-}512)57355888 & f(86\text{-}512)57370818 & \text{www.sgsgroup.com.cn} \\ t(86\text{-}512)57355888 & f(86\text{-}512)57370818 & \text{sgs.china@sgs.com} \\ \end{array}$

Report No.: KSCR221100235501

Page: 61 of 127

	1	116	5580		11.81	13.00
		140	5700		12.21	13.00
		149	5745		13.24	14.00
	U-NII-3	157	5785		13.37	14.00
		165	5825		13.53	14.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
	U-NII-1	38	5190		10.19	11.00
	O-IVII- I	46	5230		10.38	11.00
	U-NII-2A	54	5270		10.24	11.00
	U-MII-ZA	62	5310		9.81	11.00
802.11n-HT40		102	5510	MCS0	12.31	13.00
	U-NII-2C	110	5550		12.22	13.00
		134	5670		12.5	13.00
		151	5755		13.47	14.00
	U-NII-3	159	5795		13.89	14.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
		36	5180		10.92	11.00
	U-NII-1	40	5200		10.93	11.00
		48	5240		9.61	11.00
		52	5260		9.04	10.00
	U-NII-2A	60	5300		9.30	10.00
802.11ac		64	5320	MOOO	9.06	10.00
20M		100	5500	MCS0	11.42	13.00
	U-NII-2C	116	5580		11.42	13.00
		140	5700		12.32	13.00
		149	5745		13.27	14.00
	U-NII-3	157	5785		13.51	14.00
		165	5825		13.33	14.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
	11 NIII 1	38	5190		10.20	11.00
	U-NII-1	46	5230		10.57	11.00
	LI NUL OA	54	5270		9.78	10.00
	U-NII-2A	62	5310		9.66	10.00
802.11ac 40M		102	5510	MCS0	12.30	13.00
TOIVI	U-NII-2C	110	5550		12.34	13.00
		134	5670		12.54	13.00
	11.1	151	5755	1	13.49	14.00
	U-NII-3	159	5795	1	13.93	14.00

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 62 of 127

5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
	U-NII-1	42	5210		10.32	11.00
	U-NII-2A	58	5290		9.66	10.00
802.11ac 80M	U-NII-2C	106	5530	MCS0	12.40	13.00
00111	U-INII-2C	122	5610		11.64	13.00
	U-NII-3	155	5775		13.80	14.00

Note:

- a) Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.
- b) Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.
- 1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.
- 2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.
- c) For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 $\begin{array}{lll} t(86\text{-}512)57355888 & f(86\text{-}512)57370818 & \text{www.sgsgroup.com.cn} \\ t(86\text{-}512)57355888 & f(86\text{-}512)57370818 & \text{sgs.china@sgs.com} \\ \end{array}$

Report No.: KSCR221100235501

Page: 63 of 127

8.1.5 Conducted Power Of BT

	ВТ			
Modulation	Channel	Frequency (MHz)	Average Conducted Power(dBm)	Tune up (dBm)
	0	2402	6.72	7.00
GFSK	39	2441	3.71	4.00
	78	2480	2.13	3.00
	0	2402	5.52	6.00
π/4DQPSK	39	2441	2.47	3.00
	78	2480	0.58	1.00
	0	2402	5.74	6.00
8DPSK	39	2441	2.63	3.00
	78	2480	0.94	1.00

	BLE_1M				
Modulation	Channel	Frequency (MHz)	Average Conducted Power(dBm)	Tune up (dBm)	
	0	2402	5.6	6.00	
GFSK	19	2440	2.59	3.00	
	39	2480	0.86	1.00	
	BLE_2M				
Modulation	Channel	Frequency (MHz)	Average Conducted Power(dBm)	Tune up (dBm)	
	0	2402	5.63	6.00	
GFSK	19	2440	2.61	3.00	
	39	2480	0.88	1.00	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 64 of 127

8.2 Measurement of SAR Data

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph Results refer to Appendix B
- 2) Per FCC KDB Publication 447498 D04, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg (2.0W/kg for 10g) then testing at the other channels is not required for such test configuration(s).
- 3) "*" is repeated measurement.

WiFi 2.4G:

1) When the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is \leq 3.0 W/kg, SAR test for the other 802.11 modes are not required.

WiFi 5G:

- 1) When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. As the highest reported SAR for a test configuration is ≤ 3.0 W/kg, SAR is not required for U-NII-1 band for that configuration.
- 2) When the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is \leq 3.0 W/kg, SAR test for the other 802.11 modes are not required.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 65 of 127

8.2.1 SAR Result Of GSM 850

Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	SAR (W/kg) 10-g	Power Drift (dB)	Conducted Power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg) 1-g	Scaled SAR (W/kg) 10-g	Liquid Temp	SAR limit (W/kg)
	Body Test data (Separate 10mm)												
Front side	GPRS 4TS	251/848.8	1:2.075	0.118	0.077	-0.13	28.51	29.00	1.119	0.132	0.086	22.1	1.6
Back side	GPRS 4TS	251/848.8	1:2.075	0.553	0.311	-0.04	28.51	29.00	1.119	0.619	0.348	22.1	1.6
Left side	GPRS 4TS	251/848.8	1:2.075	0.282	0.194	0.010	28.51	29.00	1.119	0.315	0.217	22.1	1.6
Right side	GPRS 4TS	251/848.8	1:2.075	0.170	0.116	0.14	28.51	29.00	1.119	0.190	0.130	22.1	1.6
Top side	GPRS 4TS	251/848.8	1:2.075	0.011	0.012	0.16	28.51	29.00	1.119	0.012	0.013	22.1	1.6
Bottom side	GPRS 4TS	251/848.8	1:2.075	0.096	0.062	0.03	28.51	29.00	1.119	0.108	0.070	22.1	1.6
Back side	EGPRS 4TS	251/848.8	1:2.075	0.345	0.206	-0.12	23.63	25.00	1.371	0.473	0.282	22.1	1.6
			Boo	ly Test dat	a at the w	orst case v	with SIM2 (Sepa	arate 10m	m)	•		•	
Back side	GPRS 4TS	251/848.8	1:2.075	0.521	0.289	0.18	28.51	29.00	1.119	0.583	0.324	22.1	1.6
				Е	xtremity T	est data (S	Separate 0mm)	•		•		•	
Front side	GPRS 4TS	251/848.8	1:2.075	0.068	0.049	0.12	28.51	29.00	1.119	0.076	0.055	22.1	4.0
Back side	GPRS 4TS	251/848.8	1:2.075	1.95	0.942	-0.07	28.51	29.00	1.119	2.183	1.055	22.1	4.0
Left side	GPRS 4TS	251/848.8	1:2.075	0.280	0.192	-0.1	28.51	29.00	1.119	0.314	0.215	22.1	4.0
Right side	GPRS 4TS	251/848.8	1:2.075	0.160	0.110	0.09	28.51	29.00	1.119	0.179	0.123	22.1	4.0
Top side	GPRS 4TS	251/848.8	1:2.075	0.014	0.011	0.18	28.51	29.00	1.119	0.015	0.013	22.1	4.0
Bottom side	GPRS 4TS	251/848.8	1:2.075	0.285	0.165	0.02	28.51	29.00	1.119	0.319	0.184	22.1	4.0
Back side	EGPRS 4TS	251/848.8	1:2.075	1.01	0.423	-0.15	23.63	25.00	1.371	1.385	0.580	22.1	4.0
			Extre	mity Test	data at the	worst cas	e with SIM2 (S	eparate 0r	mm)				
Back side	GPRS 4TS	251/848.8	1:2.075	1.91	0.866	-0.09	28.51	29.00	1.119	2.138	0.969	22.1	4.0

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 66 of 127

8.2.2 SAR Result Of PCS 1900

0.2.2	0,	ill OI PGS	1000										
Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	SAR (W/kg) 10-g	Power Drift(d B)	Conducte d Power (dBm)	Tune up Limit (dBm	Scale d factor	Scale d SAR (W/kg) 1-g	Scale d SAR (W/kg) 10-g	Liqui d Temp	SAR limit (W/kg
	Body Test data (Separate 10mm)												
Front side	GPRS 4TS	661/1880	1:2.07 5	0.047	0.031	0.13	23.95	25.00	1.274	0.060	0.039	22.3	1.6
Back side	GPRS 4TS	661/1880	1:2.07 5	0.529	0.292	0.08	23.95	25.00	1.274	0.674	0.372	22.3	1.6
Left side	GPRS 4TS	661/1880	1:2.07 5	0.069	0.050	-0.01	23.95	25.00	1.274	0.087	0.064	22.3	1.6
Right side	GPRS 4TS	661/1880	1:2.07 5	0.120	0.071	-0.13	23.95	25.00	1.274	0.152	0.090	22.3	1.6
Top side	GPRS 4TS	661/1880	1:2.07 5	0.014	0.012	-0.03	23.95	25.00	1.274	0.017	0.015	22.3	1.6
Bottom side	GPRS 4TS	661/1880	1:2.07 5	0.153	0.097	0.11	23.95	25.00	1.274	0.195	0.123	22.3	1.6
Back side	EGPRS 4TS	661/1880	1:2.07 5	0.419	0.231	0.01	22.69	24.00	1.352	0.567	0.312	22.3	1.6
			Body	Test data	at the wo	orst case wi	th SIM2 (Sepa	arate 10n	nm)				
Back side	GPRS 4TS	661/1880	1:2.07 5	0.511	0.278	-0.15	23.95	25.00	1.274	0.651	0.354	22.3	1.6
				Ex	tremity To	est data (Se	eparate 0mm)						
Front side	GPRS 4TS	661/1880	1:2.07 5	0.114	0.063	-0.04	23.95	25.00	1.274	0.145	0.081	22.3	4.0
Back side	GPRS 4TS	661/1880	1:2.07 5	3.69	1.60	0.02	23.95	25.00	1.274	4.699	2.038	22.3	4.0
Left side	GPRS 4TS	661/1880	1:2.07 5	0.197	0.118	-0.15	23.95	25.00	1.274	0.251	0.150	22.3	4.0
Right side	GPRS 4TS	661/1880	1:2.07 5	0.527	0.287	0.04	23.95	25.00	1.274	0.671	0.365	22.3	4.0
Top side	GPRS 4TS	661/1880	1:2.07 5	0.060	0.032	0.07	23.95	25.00	1.274	0.077	0.041	22.3	4.0
Bottom side	GPRS 4TS	661/1880	1:2.07 5	1.16	0.605	0.03	23.95	25.00	1.274	1.479	0.770	22.3	4.0
Back side	GPRS 4TS	512/1850. 2	1:2.07 5	3.61	1.54	0.09	23.84	25.00	1.306	4.715	2.012	22.3	4.0
Back side	GPRS 4TS	810/1909. 8	1:2.07 5	3.43	1.47	-0.04	23.79	25.00	1.321	4.532	1.942	22.3	4.0
Back side	EGPRS 4TS	661/1880	1:2.07 5	2.92	1.24	0.18	22.69	24.00	1.352	3.948	1.677	22.3	4.0
			Extrem	ty Test d	ata at the	worst case	with SIM2 (Se	eparate 0	mm)				
Back side	GPRS 4TS	661/1880	1:2.07 5	3.580	1.510	0.02	23.95	25.00	1.274	4.559	1.923	22.3	4.0

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 67 of 127

8.2.3 SAR Result Of WCDMA Band II

Test position	Test mod e	Test Ch./Freq.	Duty Cycl e	SAR (W/k g) 1-g	SAR (W/k g) 10-g	Powe r Drift (dB)	Conducte d Power (dBm)	Tune up Limit (dB m)	Scale d factor	Scale d SAR (W/kg) 1-g	Scale d SAR (W/kg) 10-g	Liqui d Tem p	SAR limit (W/k g)
	Body Test data (Separate 10mm)												
Front side	RMC	9400/1880	1:1	0.060	0.041	0.09	21.59	22.00	1.099	0.066	0.045	22.3	1.6
Back side	RMC	9400/1880	1:1	0.636	0.351	0.07	21.59	22.00	1.099	0.699	0.386	22.3	1.6
Left side	RMC	9400/1880	1:1	0.086	0.062	-0.13	21.59	22.00	1.099	0.094	0.068	22.3	1.6
Right side	RMC	9400/1880	1:1	0.141	0.086	0.12	21.59	22.00	1.099	0.155	0.094	22.3	1.6
Top side	RMC	9400/1880	1:1	0.012	0.007	-0.12	21.59	22.00	1.099	0.013	0.008	22.3	1.6
Bottom side	RMC	9400/1880	1:1	0.191	0.111	-0.19	21.59	22.00	1.099	0.210	0.122	22.3	1.6
	Body Test data at the worst case with SIM2 (Separate 10mm)												
Back side	RMC	9400/1880	1:1	0.611	0.323	0.14	21.59	22.00	1.099	0.671	0.355	22.3	1.6
	•			Extre	mity Test	data (Se	parate 0mm)						
Front side	RMC	9400/1880	1:1	0.158	0.088	0.07	21.59	22.00	1.099	0.174	0.097	22.3	4.0
Back side	RMC	9400/1880	1:1	4.99	2.16	0.03	21.59	22.00	1.099	5.484	2.374	22.3	4.0
Left side	RMC	9400/1880	1:1	0.274	0.154	0.02	21.59	22.00	1.099	0.301	0.169	22.3	4.0
Right side	RMC	9400/1880	1:1	0.710	0.390	0.14	21.59	22.00	1.099	0.780	0.428	22.3	4.0
Top side	RMC	9400/1880	1:1	0.074	0.041	0.12	21.59	22.00	1.099	0.082	0.045	22.3	4.0
Bottom side	RMC	9400/1880	1:1	1.58	0.812	0.12	21.59	22.00	1.099	1.733	0.893	22.3	4.0
Back side	RMC	9262/1852 .4	1:1	4.21	1.85	0.14	21.05	22.00	1.245	5.239	2.302	22.3	4.0
Back side	RMC	9538/1907 .6	1:1	4.77	2.08	0.03	21.46	22.00	1.132	5.402	2.355	22.3	4.0
Back side - Reported	RMC	9400/1880	1:1	4.72	2.03	0.05	21.59	22.00	1.099	5.187	2.231	22.3	4.0
		E	tremity ⁻	Test data	at the wo	orst case	with SIM2 (Se	eparate 0	mm)				
Back side	RMC	9400/1880	1:1	4.62	2.04	0.02	21.59	22.00	1.099	5.077	2.242	22.3	4.0

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 68 of 127

8.2.4 SAR Result Of WCDMA Band IV

Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	SAR (W/kg) 10-g	Power Drift (dB)	Conducted Power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg) 1-g	Scaled SAR (W/kg) 10-g	Liquid Temp	SAR limit (W/kg)
					Body T	est data (S	Separate 10mm	1)					
Front side	RMC	1412/1732.4	1:1	0.039	0.028	0.03	21.85	22.00	1.035	0.040	0.028	22.2	1.6
Back side	RMC	1412/1732.4	1:1	0.414	0.239	0.05	21.85	22.00	1.035	0.429	0.247	22.2	1.6
Left side	RMC	1412/1732.4	1:1	0.055	0.038	-0.11	21.85	22.00	1.035	0.057	0.039	22.2	1.6
Right side	RMC	1412/1732.4	1:1	0.095	0.062	0.02	21.85	22.00	1.035	0.098	0.065	22.2	1.6
Top side	RMC	1412/1732.4	1:1	0.008	0.006	-0.04	21.85	22.00	1.035	0.009	0.006	22.2	1.6
Bottom side	RMC	1412/1732.4	1:1	0.123	0.076	-0.10	21.85	22.00	1.035	0.127	0.079	22.2	1.6
			В	ody Test o	data at the	worst cas	se with SIM2 (S	eparate 1	0mm)				
Back side	RMC	1412/1732.4	1:1	0.399	0.212	-0.06	21.85	22.00	1.035	0.413	0.219	22.2	1.6
					Extremity	/ Test data	a (Separate 0m	m)					
Front side	RMC	1412/1732.4	1:1	0.059	0.034	-0.15	21.85	22.00	1.035	0.061	0.036	22.2	4.0
Back side	RMC	1412/1732.4	1:1	1.80	0.801	-0.01	21.85	22.00	1.035	1.863	0.829	22.2	4.0
Left side	RMC	1412/1732.4	1:1	0.099	0.059	0.11	21.85	22.00	1.035	0.102	0.061	22.2	4.0
Right side	RMC	1412/1732.4	1:1	0.254	0.143	-0.10	21.85	22.00	1.035	0.263	0.148	22.2	4.0
Top side	RMC	1412/1732.4	1:1	0.028	0.017	0.10	21.85	22.00	1.035	0.029	0.018	22.2	4.0
Bottom side	RMC	1412/1732.4	1:1	0.570	0.304	-0.04	21.85	22.00	1.035	0.590	0.315	22.2	4.0
			Ext	remity Te	st data at	the worst	case with SIM2	(Separate	e 0mm)				
Back side	RMC	1412/1732.4	1:1	1.73	0.755	-0.15	21.85	22.00	1.035	1.791	0.782	22.2	4.0

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 69 of 127

8.2.5 SAR Result Of WCDMA Band V

Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	SAR (W/kg) 10-g	Power Drift (dB)	Conducted Power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg) 1-g	Scaled SAR (W/kg) 10-g	Liquid Temp	SAR limit (W/kg)
	Body Test data (Separate 10mm)												
Front side	RMC	4182/836.4	1:1	0.079	0.062	0.07	23.33	24.00	1.167	0.092	0.072	22.1	1.6
Back side	RMC	4182/836.4	1:1	0.502	0.294	0.01	23.33	24.00	1.167	0.586	0.343	22.1	1.6
Left side	RMC	4182/836.4	1:1	0.195	0.131	-0.12	23.33	24.00	1.167	0.227	0.153	22.1	1.6
Right side	RMC	4182/836.4	1:1	0.120	0.088	0.14	23.33	24.00	1.167	0.140	0.102	22.1	1.6
Top side	RMC	4182/836.4	1:1	0.014	0.007	-0.07	23.33	24.00	1.167	0.016	0.008	22.1	1.6
Bottom side	RMC	4182/836.4	1:1	0.069	0.042	-0.16	23.33	24.00	1.167	0.081	0.049	22.1	1.6
	Body Test data at the worst case with SIM2 (Separate 10mm)												
Back side	RMC	4182/836.4	1:1	0.432	0.254	-0.15	23.33	24.00	1.167	0.504	0.296	22.1	1.6
					Extremi	ty Test da	ta (Separate 0r	mm)					
Front side	RMC	4182/836.4	1:1	0.055	0.042	-0.08	23.33	24.00	1.167	0.064	0.049	22.1	4.0
Back side	RMC	4182/836.4	1:1	1.44	0.744	-0.02	23.33	24.00	1.167	1.680	0.868	22.1	4.0
Left side	RMC	4182/836.4	1:1	0.207	0.153	-0.19	23.33	24.00	1.167	0.241	0.179	22.1	4.0
Right side	RMC	4182/836.4	1:1	0.119	0.087	-0.07	23.33	24.00	1.167	0.139	0.101	22.1	4.0
Top side	RMC	4182/836.4	1:1	0.015	0.012	0.08	23.33	24.00	1.167	0.017	0.014	22.1	4.0
Bottom side	RMC	4182/836.4	1:1	0.211	0.131	-0.14	23.33	24.00	1.167	0.246	0.153	22.1	4.0
			E	ctremity Te	est data at	the worst	case with SIM	2 (Separa	te 0mm)				
Back side	RMC	4182/836.4	1:1	1.34	0.65	0.05	23.33	24.00	1.167	1.561	0.761	22.1	4.0

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 70 of 127

8.2.6 SAR Result Of LTE Band 2

				_									
Test position	Test mode	Test Ch./Freq.	Duty Cycl e	SAR (W/kg) 1-g	SAR (W/kg) 10-g	Powe r Drift (dB)	Conducte d power (dBm)	Tune up Limit (dBm	Scale d factor	Scale d SAR (W/kg) 1-g	Scale d SAR (W/kg) 10-g	Liqui d Temp	SAR limit (W/kg
				Body	/ Test data	(Separate	e 10mm)						
Front side	20M_QPSK 1RB_99	18900/188 0	1:1	0.039	0.025	-0.1	21.87	22.00	1.030	0.040	0.026	22.3	1.6
Back side	20M_QPSK 1RB_99	18900/188 0	1:1	0.467	0.256	0.19	21.87	22.00	1.030	0.481	0.264	22.3	1.6
Left side	20M_QPSK 1RB_99	18900/188 0	1:1	0.058	0.039	0.04	21.87	22.00	1.030	0.059	0.040	22.3	1.6
Right side	20M_QPSK 1RB_99	18900/188 0	1:1	0.100	0.061	0.14	21.87	22.00	1.030	0.103	0.063	22.3	1.6
Top side	20M_QPSK 1RB_99	18900/188 0	1:1	0.008	0.005	0.12	21.87	22.00	1.030	0.008	0.005	22.3	1.6
Bottom side	20M_QPSK 1RB_99	18900/188 0	1:1	0.134	0.080	-0.09	21.87	22.00	1.030	0.138	0.082	22.3	1.6
Front side	20M_QPSK 50RB 50	18900/188 0	1:1	0.033	0.023	-0.05	20.83	21.00	1.040	0.034	0.024	22.3	1.6
Back side	20M_QPSK 50RB 50	18900/188 0	1:1	0.366	0.205	-0.04	20.83	21.00	1.040	0.381	0.213	22.3	1.6
Left side	20M_QPSK 50RB 50	18900/188 0	1:1	0.049	0.034	-0.15	20.83	21.00	1.040	0.051	0.035	22.3	1.6
Right side	20M_QPSK 50RB 50	18900/188 0	1:1	0.081	0.050	-0.12	20.83	21.00	1.040	0.084	0.052	22.3	1.6
Top side	20M_QPSK 50RB 50	18900/188 0	1:1	0.007	0.004	-0.05	20.83	21.00	1.040	0.007	0.005	22.3	1.6
Bottom side	20M_QPSK 50RB 50	18900/188 0	1:1	0.108	0.063	0.18	20.83	21.00	1.040	0.112	0.066	22.3	1.6
	_		Body Te	est data at	the worst of	case with S	SIM2 (Separate	10mm)					
Back side	20M_QPSK 1RB_99	18900/188 0	1:1	0.431	0.225	-0.18	21.87	22.00	1.030	0.444	0.232	22.3	1.6
				Extrer	nity Test d	ata (Sepa	rate 0mm)				•	•	
Front side	20M_QPSK 1RB_99	18900/188 0	1:1	0.097	0.055	-0.13	21.87	22.00	1.030	0.100	0.056	22.3	4.0
Back side	20M_QPSK 1RB_99	18900/188 0	1:1	3.16	1.40	0.04	21.87	22.00	1.030	3.256	1.443	22.3	4.0
Left side	20M_QPSK 1RB_99	18900/188 0	1:1	0.169	0.098	-0.02	21.87	22.00	1.030	0.174	0.101	22.3	4.0
Right side	20M_QPSK 1RB_99	18900/188 0	1:1	0.445	0.247	0.13	21.87	22.00	1.030	0.459	0.255	22.3	4.0
Top side	20M_QPSK 1RB_99	18900/188 0	1:1	0.045	0.023	0.07	21.87	22.00	1.030	0.047	0.024	22.3	4.0
Bottom side	20M_QPSK 1RB_99	18900/188 0	1:1	0.994	0.526	0.09	21.87	22.00	1.030	1.024	0.542	22.3	4.0
Front side	20M_QPSK 50RB_50	18900/188 0	1:1	0.079	0.044	0.15	20.83	21.00	1.040	0.082	0.045	22.3	4.0
Back side	20M_QPSK 50RB_50	18900/188 0	1:1	2.47	1.10	-0.03	20.83	21.00	1.040	2.569	1.141	22.3	4.0
Left side	20M_QPSK 50RB_50	18900/188 0	1:1	0.135	0.077	-0.08	20.83	21.00	1.040	0.140	0.080	22.3	4.0
Right side	20M_QPSK 50RB_50	18900/188 0	1:1	0.349	0.193	-0.15	20.83	21.00	1.040	0.363	0.201	22.3	4.0
Top side	20M_QPSK 50RB_50	18900/188 0	1:1	0.037	0.019	-0.17	20.83	21.00	1.040	0.039	0.020	22.3	4.0
Bottom side	20M_QPSK 50RB 50	18900/188 0	1:1	0.782	0.416	0.18	20.83	21.00	1.040	0.813	0.433	22.3	4.0

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 71 of 127

	Extremity Test data at the worst case with SIM2 (Separate 0mm)													
Back side	20M_QPSK 1RB_99	18900/188 0	1:1	3.05	1.32	0.02	21.87	22.00	1.030	3.143	1.360	22.3	4.0	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 72 of 127

8.2.7 SAR Result Of LTE Band 4

Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	SAR (W/kg) 10-g	Power Drift (dB)	Conducted power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg) 1-g	Scaled SAR (W/kg) 10-g	Liquid Temp.	SAR limit (W/kg)
				Bod	ly Test dat	a (Separat	e 10mm)						
Front side	20M_QPSK 1RB_0	20050/1720	1:1	0.039	0.020	0.01	22.10	23.00	1.230	0.048	0.024	22.2	1.6
Back side	20M_QPSK 1RB_0	20050/1720	1:1	0.455	0.184	-0.07	22.10	23.00	1.230	0.560	0.226	22.2	1.6
Left side	20M_QPSK 1RB_0	20050/1720	1:1	0.056	0.031	0.14	22.10	23.00	1.230	0.069	0.039	22.2	1.6
Right side	20M_QPSK 1RB_0	20050/1720	1:1	0.102	0.045	0.17	22.10	23.00	1.230	0.125	0.055	22.2	1.6
Top side	20M_QPSK 1RB_0	20050/1720	1:1	0.010	0.005	-0.01	22.10	23.00	1.230	0.012	0.006	22.2	1.6
Bottom side	20M_QPSK 1RB_0	20050/1720	1:1	0.132	0.060	-0.05	22.10	23.00	1.230	0.163	0.073	22.2	1.6
Front side	20M_QPSK 50RB_0	20050/1720	1:1	0.033	0.020	-0.13	20.92	22.00	1.282	0.042	0.025	22.2	1.6
Back side	20M_QPSK 50RB_0	20050/1720	1:1	0.364	0.146	-0.13	20.92	22.00	1.282	0.466	0.187	22.2	1.6
Left side	20M_QPSK 50RB_0	20050/1720	1:1	0.047	0.025	-0.12	20.92	22.00	1.282	0.060	0.032	22.2	1.6
Right side	20M_QPSK 50RB_0	20050/1720	1:1	0.085	0.039	0.06	20.92	22.00	1.282	0.109	0.050	22.2	1.6
Top side	20M_QPSK 50RB_0	20050/1720	1:1	0.007	0.003	-0.13	20.92	22.00	1.282	0.009	0.004	22.2	1.6
Bottom side	20M_QPSK 50RB_0	20050/1720	1:1	0.106	0.048	0.09	20.92	22.00	1.282	0.136	0.061	22.2	1.6
			Body Te	est data at	the worst	case with	SIM2 (Separate	10mm)			'		
Back side	20M_QPSK 1RB_0	20050/1720	1:1	0.421	0.156	0.12	22.10	23.00	1.230	0.518	0.192	22.2	1.6
				Extre	mity Test o	data (Sepa	rate 0mm)				•		
Front side	20M_QPSK 1RB_0	20050/1720	1:1	0.131	0.082	0.07	22.10	23.00	1.230	0.161	0.101	22.2	4.0
Back side	20M_QPSK 1RB_0	20050/1720	1:1	4.18	1.88	-0.07	22.10	23.00	1.230	5.143	2.313	22.2	4.0
Left side	20M_QPSK 1RB_0	20050/1720	1:1	0.226	0.139	-0.03	22.10	23.00	1.230	0.278	0.171	22.2	4.0
Right side	20M_QPSK 1RB_0	20050/1720	1:1	0.595	0.334	-0.09	22.10	23.00	1.230	0.732	0.410	22.2	4.0
Top side	20M_QPSK 1RB_0	20050/1720	1:1	0.067	0.036	-0.15	22.10	23.00	1.230	0.083	0.045	22.2	4.0
Bottom side	20M_QPSK 1RB_0	20050/1720	1:1	1.32	0.714	-0.07	22.10	23.00	1.230	1.620	0.879	22.2	4.0
Back side	20M_QPSK 1RB_0	20175/1732.5	1:1	4.11	1.75	0.03	21.87	23.00	1.297	5.331	2.270	22.2	4.0
Back side	20M_QPSK 1RB_0	20300/1745	1:1	4.06	1.72	0.01	21.52	23.00	1.406	5.709	2.418	22.2	4.0
Front side	20M_QPSK 50RB_0	20050/1720	1:1	0.107	0.068	0.04	20.92	22.00	1.282	0.137	0.088	22.2	4.0
Back side	20M_QPSK 50RB_0	20050/1720	1:1	3.29	1.48	0.12	20.92	22.00	1.282	4.222	1.904	22.2	4.0
Left side	20M_QPSK 50RB_0	20050/1720	1:1	0.182	0.114	0.14	20.92	22.00	1.282	0.234	0.147	22.2	4.0
Right side	20M_QPSK 50RB_0	20050/1720	1:1	0.472	0.265	0.04	20.92	22.00	1.282	0.606	0.340	22.2	4.0

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 73 of 127

Top side	20M_QPSK 50RB_0	20050/1720	1:1	0.054	0.034	0.09	20.92	22.00	1.282	0.069	0.043	22.2	4.0
Bottom side	20M_QPSK 50RB_0	20050/1720	1:1	1.04	0.56	-0.14	20.92	22.00	1.282	1.336	0.721	22.2	4.0
Extremity Test data at the worst case with SIM2 (Separate 0mm)													
Back side	20M_QPSK 1RB_0	20050/1720	1:1	4.08	1.74	0.09	22.10	23.00	1.230	5.019	2.141	22.2	4.0

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 74 of 127

8.2.8 SAR Result Of LTE Band 5

V								1		I			
Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	SAR (W/kg) 10-g	Power Drift (dB)	Conducted power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg) 1-g	Scaled SAR (W/kg) 10-g	Liquid Temp.	SAR limit (W/kg)
				Bod	ly Test dat	a (Separat	e 10mm)						
Front side	10M_QPSK 1RB_0	20600/844	1:1	0.057	0.042	0.17	23.77	24.00	1.054	0.060	0.044	22.1	1.6
Back side	10M_QPSK 1RB_0	20600/844	1:1	0.389	0.228	-0.01	23.77	24.00	1.054	0.410	0.240	22.1	1.6
Left side	10M_QPSK 1RB_0	20600/844	1:1	0.148	0.100	0.06	23.77	24.00	1.054	0.156	0.106	22.1	1.6
Right side	10M_QPSK 1RB_0	20600/844	1:1	0.089	0.063	0.09	23.77	24.00	1.054	0.094	0.066	22.1	1.6
Top side	10M_QPSK 1RB_0	20600/844	1:1	0.005	0.003	0.19	23.77	24.00	1.054	0.005	0.003	22.1	1.6
Bottom side	10M_QPSK 1RB_0	20600/844	1:1	0.049	0.030	0.10	23.77	24.00	1.054	0.051	0.032	22.1	1.6
Front side	10M_QPSK 25RB_25	20525/836.5	1:1	0.047	0.038	-0.13	22.74	23.00	1.062	0.049	0.040	22.1	1.6
Back side	10M_QPSK 25RB_25	20525/836.5	1:1	0.314	0.186	0.13	22.74	23.00	1.062	0.333	0.197	22.1	1.6
Left side	10M_QPSK 25RB_25	20525/836.5	1:1	0.118	0.081	-0.11	22.74	23.00	1.062	0.125	0.086	22.1	1.6
Right side	10M_QPSK 25RB_25	20525/836.5	1:1	0.071	0.054	0.04	22.74	23.00	1.062	0.075	0.057	22.1	1.6
Top side	10M_QPSK 25RB_25	20525/836.5	1:1	0.003	0.002	0.04	22.74	23.00	1.062	0.003	0.002	22.1	1.6
Bottom side	10M_QPSK 25RB_25	20525/836.5	1:1	0.041	0.027	0.09	22.74	23.00	1.062	0.044	0.029	22.1	1.6
		1	Body To	est data at	the worst	case with	SIM2 (Separate	10mm)				•	
Back side	10M_QPSK 1RB_0	20600/844	1:1	0.352	0.214	0.14	22.78	23.00	1.052	0.370	0.225	22.1	1.6
		I		Extre	mity Test	data (Sepa	rate 0mm)						
Front side	10M_QPSK 1RB_0	20600/844	1:1	0.045	0.034	-0.1	23.77	24.00	1.054	0.048	0.035	22.1	4.0
Back side	10M_QPSK 1RB_0	20600/844	1:1	1.32	0.709	-0.03	23.77	24.00	1.054	1.392	0.748	22.1	4.0
Left side	10M_QPSK 1RB_0	20600/844	1:1	0.187	0.144	0.09	23.77	24.00	1.054	0.197	0.151	22.1	4.0
Right side	10M_QPSK 1RB_0	20600/844	1:1	0.105	0.082	-0.18	23.77	24.00	1.054	0.111	0.086	22.1	4.0
Top side	10M_QPSK 1RB_0	20600/844	1:1	0.008	0.005	0.18	23.77	24.00	1.054	0.008	0.005	22.1	4.0
Bottom side	10M_QPSK 1RB_0	20600/844	1:1	0.187	0.119	0.12	23.77	24.00	1.054	0.197	0.126	22.1	4.0
Front side	10M_QPSK 25RB_25	20525/836.5	1:1	0.037	0.025	-0.09	22.74	23.00	1.062	0.039	0.027	22.1	4.0
Back side	10M_QPSK 25RB_25	20525/836.5	1:1	1.05	0.567	0.14	22.74	23.00	1.062	1.113	0.602	22.1	4.0
Left side	10M_QPSK 25RB_25	20525/836.5	1:1	0.152	0.117	-0.12	22.74	23.00	1.062	0.161	0.124	22.1	4.0
Right side	10M_QPSK 25RB_25	20525/836.5	1:1	0.088	0.067	-0.06	22.74	23.00	1.062	0.094	0.071	22.1	4.0
Top side	10M_QPSK 25RB_25	20525/836.5	1:1	0.006	0.003	-0.05	22.74	23.00	1.062	0.007	0.003	22.1	4.0
Bottom side	10M_QPSK 25RB_25	20525/836.5	1:1	0.153	0.097	0.18	22.74	23.00	1.062	0.162	0.103	22.1	4.0
0.00	l					1	I					1	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 75 of 127

			Extremity	Test data	at the wor	st case wi	th SIM2 (Separa	ate 0mm)					
Back side	10M_QPSK 1RB_0	20600/844	1:1	1.25	0.672	0.19	22.78	23.00	1.052	1.315	0.707	22.1	4.0

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@sds.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 76 of 127

8.2.9 SAR Result Of LTE Band 7

Test position	Test mode	Test Ch./Freq.	Duty Cycl e	SAR (W/kg) 1-g	SAR (W/kg) 10-g	Powe r Drift (dB)	Conducte d power (dBm)	Tune up Limit (dBm)	Scale d factor	Scale d SAR (W/kg) 1-g	Scale d SAR (W/kg) 10-g	Liqui d Temp	SAR limit (W/kg
				Body	Test data	(Separate	10mm)						
Front side	20M_QPSK 1RB_50	21100/2535. 5	1:1	0.015	0.008	0.04	21.06	21.50	1.107	0.016	0.009	22.1	1.6
Back side	20M_QPSK 1RB_50	21100/2535. 5	1:1	0.595	0.287	0.01	21.06	21.50	1.107	0.658	0.318	22.1	1.6
Left side	20M_QPSK 1RB_50	21100/2535. 5	1:1	0.009	0.005	-0.13	21.06	21.50	1.107	0.010	0.006	22.1	1.6
Right side	20M_QPSK 1RB_50	21100/2535. 5	1:1	0.028	0.015	0.05	21.06	21.50	1.107	0.031	0.017	22.1	1.6
Top side	20M_QPSK 1RB_50	21100/2535. 5	1:1	0.004	0.002	-0.16	21.06	21.50	1.107	0.005	0.002	22.1	1.6
Bottom side	20M_QPSK 1RB_50	21100/2535. 5	1:1	0.098	0.053	0.12	21.06	21.50	1.107	0.108	0.059	22.1	1.6
Front side	20M_QPSK 50RB 25	21100/2535. 5	1:1	0.012	0.005	-0.08	20.01	20.50	1.119	0.013	0.006	22.1	1.6
Back side	20M_QPSK 50RB 25	21100/2535. 5	1:1	0.47	0.230	-0.04	20.01	20.50	1.119	0.529	0.258	22.1	1.6
Left side	20M_QPSK 50RB 25	21100/2535. 5	1:1	0.007	0.003	0.04	20.01	20.50	1.119	0.008	0.003	22.1	1.6
Right side	20M_QPSK 50RB 25	21100/2535. 5	1:1	0.026	0.013	-0.16	20.01	20.50	1.119	0.030	0.014	22.1	1.6
Top side	20M_QPSK 50RB 25	21100/2535. 5	1:1	0.003	0.001	0.15	20.01	20.50	1.119	0.003	0.001	22.1	1.6
Bottom side	20M_QPSK 50RB 25	21100/2535. 5	1:1	0.081	0.044	0.04	20.01	20.50	1.119	0.091	0.049	22.1	1.6
			Body Tes	t data at th	ne worst ca	ase with S	IM2 (Separate	10mm)		ı	l		
Back side	20M_QPSK 1RB_50	21100/2535. 5	1:1	0.562	0.259	-0.15	21.06	21.50	1.107	0.622	0.287	22.1	1.6
0.00	I		ı	Extrem	ity Test da	ita (Separ	ate 0mm)			ı	ı		
Front side	20M_QPSK 1RB_50	21100/2535. 5	1:1	0.063	0.032	-0.07	21.06	21.50	1.107	0.070	0.036	22.1	4.0
Back side	20M_QPSK 1RB_50	21100/2535. 5	1:1	2.14	0.891	-0.06	21.06	21.50	1.107	2.368	0.986	22.1	4.0
Left side	20M_QPSK 1RB_50	21100/2535. 5	1:1	0.021	0.010	0.04	21.06	21.50	1.107	0.024	0.011	22.1	4.0
Right side	20M_QPSK 1RB_50	21100/2535. 5	1:1	0.228	0.103	-0.18	21.06	21.50	1.107	0.252	0.114	22.1	4.0
Top side	20M_QPSK 1RB_50	21100/2535. 5	1:1	0.008	0.004	0.14	21.06	21.50	1.107	0.009	0.004	22.1	4.0
Bottom side	20M_QPSK 1RB_50	21100/2535. 5	1:1	0.456	0.212	0.14	21.06	21.50	1.107	0.505	0.234	22.1	4.0
Front side	20M_QPSK 50RB 25	21100/2535. 5	1:1	0.056	0.030	-0.03	20.01	20.50	1.119	0.062	0.033	22.1	4.0
Back side	20M_QPSK 50RB_25	21100/2535. 5	1:1	1.70	0.708	-0.08	20.01	20.50	1.119	1.904	0.792	22.1	4.0
Left side	20M_QPSK 50RB 25	21100/2535. 5	1:1	0.018	0.008	0.02	20.01	20.50	1.119	0.020	0.009	22.1	4.0
Right side	20M_QPSK 50RB 25	21100/2535. 5	1:1	0.186	0.085	-0.05	20.01	20.50	1.119	0.208	0.096	22.1	4.0
Top side	20M_QPSK 50RB 25	21100/2535. 5	1:1	0.006	0.003	0.1	20.01	20.50	1.119	0.007	0.003	22.1	4.0
Bottom side	20M_QPSK 50RB 25	21100/2535. 5	1:1	0.367	0.172	0.14	20.01	20.50	1.119	0.410	0.193	22.1	4.0
			xtremity T	est data a	t the wors	t case with	SIM2 (Separa	ate 0mm)		1		1	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 77 of 127

 Back side
 20M_QPSK 1RB_50
 21350/2560
 1:1
 2.03
 0.802
 -0.02
 21.06
 21.50
 1.107
 2.246
 0.888
 22.1
 4.0

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 78 of 127

8.2.10SAR Result Of LTE Band 38

0.2.10	SAN NESUIL		and	,,,									
Test position	Test mode	Test Ch./Freq.	Duty Cycl e	SAR (W/kg) 1-g	SAR (W/kg) 10-g	Powe r Drift (dB)	Conducte d power (dBm)	Tune up Limit (dBm	Scale d factor	Scale d SAR (W/kg) 1-g	Scale d SAR (W/kg) 10-g	Liqui d Temp	SAR limit (W/kg
			•	Bod	ly Test dat	a (Separa	te 10mm)						
Front side	20M_QPSK 1RB_0	38000/259 5	1:1	0.010	0.006	-0.09	20.01	21.00	1.256	0.013	0.008	22.1	1.6
Back side	20M_QPSK 1RB_0	38000/259 5	1:1	0.379	0.183	0.03	20.01	21.00	1.256	0.476	0.230	22.1	1.6
Left side	20M_QPSK 1RB_0	38000/259 5	1:1	0.007	0.004	-0.07	20.01	21.00	1.256	0.009	0.005	22.1	1.6
Right side	20M_QPSK 1RB_0	38000/259 5	1:1	0.021	0.012	0.14	20.01	21.00	1.256	0.027	0.015	22.1	1.6
Top side	20M_QPSK 1RB_0	38000/259 5	1:1	0.005	0.003	0.18	20.01	21.00	1.256	0.006	0.004	22.1	1.6
Bottom side	20M_QPSK 1RB_0	38000/259 5	1:1	0.063	0.038	-0.16	20.01	21.00	1.256	0.079	0.048	22.1	1.6
Front	20M_QPSK 50RB 0	38000/259 5	1:1	0.008	0.004	-0.01	19.32	20.00	1.169	0.009	0.005	22.1	1.6
Back side	20M_QPSK 50RB 0	38000/259 5	1:1	0.342	0.170	-0.19	19.32	20.00	1.169	0.400	0.198	22.1	1.6
Left side	20M_QPSK 50RB 0	38000/259 5	1:1	0.005	0.002	0.14	19.32	20.00	1.169	0.006	0.002	22.1	1.6
Right side	20M_QPSK 50RB 0	38000/259 5	1:1	0.018	0.009	0.12	19.32	20.00	1.169	0.021	0.011	22.1	1.6
Top side	20M_QPSK 50RB 0	38000/259 5	1:1	0.003	0.001	-0.08	19.32	20.00	1.169	0.004	0.001	22.1	1.6
Bottom side	20M_QPSK 50RB 0	38000/259 5	1:1	0.059	0.030	0.19	19.32	20.00	1.169	0.068	0.035	22.1	1.6
			Body To	est data at	the worst	case with	SIM2 (Separate	e 10mm)	•	'			
Back side	20M_QPSK 1RB_0	38000/259 5	1:1	0.355	0.159	0.03	20.01	21.00	1.256	0.446	0.200	22.1	1.6
	I			Extre	mity Test	data (Sepa	arate 0mm)						
Front side	20M_QPSK 1RB_0	38000/259 5	1:1	0.035	0.019	-0.05	20.01	21.00	1.256	0.044	0.024	22.1	4.0
Back side	20M_QPSK 1RB_0	38000/259 5	1:1	1.14	0.480	0.07	20.01	21.00	1.256	1.432	0.603	22.1	4.0
Left side	20M_QPSK 1RB_0	38000/259 5	1:1	0.014	0.007	0.08	20.01	21.00	1.256	0.018	0.009	22.1	4.0
Right side	20M_QPSK 1RB_0	38000/259 5	1:1	0.123	0.056	0.12	20.01	21.00	1.256	0.154	0.071	22.1	4.0
Top side	20M_QPSK 1RB_0	38000/259 5	1:1	0.008	0.004	0.14	20.01	21.00	1.256	0.010	0.005	22.1	4.0
Bottom side	20M_QPSK 1RB_0	38000/259 5	1:1	0.247	0.114	0.03	20.01	21.00	1.256	0.310	0.144	22.1	4.0
Front side	20M_QPSK 50RB 0	38000/259 5	1:1	0.031	0.013	0.14	19.32	20.00	1.169	0.036	0.015	22.1	4.0
Back side	20M_QPSK 50RB 0	38000/259 5	1:1	1.02	0.430	-0.15	19.32	20.00	1.169	1.193	0.503	22.1	4.0
Left side	20M_QPSK 50RB 0	38000/259 5	1:1	0.011	0.006	0.07	19.32	20.00	1.169	0.013	0.007	22.1	4.0
Right side	20M_QPSK 50RB 0	38000/259 5	1:1	0.116	0.051	0.16	19.32	20.00	1.169	0.135	0.059	22.1	4.0
Top side	20M_QPSK 50RB 0	38000/259 5	1:1	0.006	0.003	0.17	19.32	20.00	1.169	0.007	0.004	22.1	4.0
Bottom side	20M_QPSK 50RB_0	38000/259 5	1:1	0.223	0.106	0.1	19.32	20.00	1.169	0.261	0.123	22.1	4.0
			•			•	•	•					

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 79 of 127

	Extremity Test data at the worst case with SIM2(Separate 0mm)												
Back side	20M_QPSK 1RB_0	38000/259 5	1:1	1.01	0.451	-0.09	20.01	21.00	1.256	1.269	0.566	22.1	4.0

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国•江苏•昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 80 of 127

8.2.11 SAR Result Of 2.4 GHz Wi-Fi

Test position	Test mode	Test Ch./Freq.	Duty Cycle %	Duty Cycle Scaled factor	SAR (W/kg) 1-g	SAR (W/kg) 10-g	Power drift (dB)	Conducted power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg) 1-g	Scaled SAR (W/kg) 10-g	Liquid Temp.	SAR limit (W/kg)
					В	ody Test d	ata (Sepai	rate 10mm)						
Front side	802.11b	6/2437	98.91	1.011	0.012	0.004	0.01	14.18	15.00	1.208	0.015	0.004	22.2	1.6
Back side	802.11b	6/2437	98.91	1.011	0.059	0.027	-0.02	14.18	15.00	1.208	0.072	0.033	22.2	1.6
Left side	802.11b	6/2437	98.91	1.011	0.015	0.006	0.02	14.18	15.00	1.208	0.018	0.007	22.2	1.6
Right side	802.11b	6/2437	98.91	1.011	0.055	0.024	-0.08	14.18	15.00	1.208	0.068	0.029	22.2	1.6
Top side	802.11b	6/2437	98.91	1.011	0.005	0.002	0.03	14.18	15.00	1.208	0.006	0.002	22.2	1.6
Bottom side	802.11b	6/2437	98.91	1.011	0.006	0.003	0.12	14.18	15.00	1.208	0.007	0.004	22.2	1.6
					Ext	tremity Tes	t data (Se	parate 0mm)						
Front side	802.11b	6/2437	98.91	1.011	0.039	0.017	0.01	14.18	15.00	1.208	0.048	0.021	22.2	4.0
Back side	802.11b	6/2437	98.91	1.011	0.599	0.249	-0.05	14.18	15.00	1.208	0.731	0.304	22.2	4.0
Left side	802.11b	6/2437	98.91	1.011	0.103	0.047	0.02	14.18	15.00	1.208	0.126	0.057	22.2	4.0
Right side	802.11b	6/2437	98.91	1.011	0.489	0.177	-0.09	14.18	15.00	1.208	0.597	0.216	22.2	4.0
Top side	802.11b	6/2437	98.91	1.011	0.043	0.021	0.01	14.18	15.00	1.208	0.053	0.026	22.2	4.0
Bottom side	802.11b	6/2437	98.91	1.011	0.052	0.023	0.03	14.18	15.00	1.208	0.063	0.028	22.2	4.0

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 81 of 127

8.2.12 SAR Result Of 5GHz Wi-Fi

Test position	Test mode	Test Ch./Freq.	Duty Cycle %	Duty Cycle Scaled factor	SAR (W/kg) 1-g	SAR (W/kg) 1-g	Power drift (dB)	Conducted power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg) 1-g	Scaled SAR (W/kg) 10-g	Liquid Temp.	SAR limit (W/kg)
					Body	Test data	U-NII-1 (S	eparate 10mm)						
Front side	802.11a	36/5180	93.44	1.070	0.038	0.013	0.01	11.00	12.00	1.259	0.051	0.017	22.2	1.6
Back side	802.11a	36/5180	93.44	1.070	0.615	0.173	0.07	11.00	12.00	1.259	0.828	0.233	22.2	1.6
Left side	802.11a	36/5180	93.44	1.070	0.015	0.005	0.12	11.00	12.00	1.259	0.020	0.007	22.2	1.6
Right side	802.11a	36/5180	93.44	1.070	0.605	0.185	0.09	11.00	12.00	1.259	0.815	0.249	22.2	1.6
Top side	802.11a	36/5180	93.44	1.070	0.005	0.002	-0.15	11.00	12.00	1.259	0.007	0.003	22.2	1.6
Bottpm side	802.11a	36/5180	93.44	1.070	0.007	0.003	0.03	11.00	12.00	1.259	0.010	0.004	22.2	1.6
Back side	802.11a	40/5200	93.44	1.070	0.529	0.147	0.09	10.59	12.00	1.384	0.783	0.218	22.2	1.6
Back side	802.11a	48/5240	93.44	1.070	0.512	0.144	0.12	10.38	12.00	1.452	0.796	0.224	22.2	1.6
		1			Extrem	nity Test da	ita U-NII-1	(Separate 0mm	1)	•		•		
Front side	802.11a	36/5180	93.44	1.070	0.199	0.059	0.02	11.00	12.00	1.259	0.268	0.079	22.2	4.0
Back side	802.11a	36/5180	93.44	1.070	2.52	0.758	0.06	11.00	12.00	1.259	3.395	1.021	22.2	4.0
Left side	802.11a	36/5180	93.44	1.070	0.052	0.017	0.03	11.00	12.00	1.259	0.070	0.023	22.2	4.0
Right side	802.11a	36/5180	93.44	1.070	1.870	0.438	-0.04	11.00	12.00	1.259	2.519	0.590	22.2	4.0
Top side	802.11a	36/5180	93.44	1.070	0.037	0.007	0.14	11.00	12.00	1.259	0.050	0.009	22.2	4.0
Bottom side	802.11a	36/5180	93.44	1.070	0.043	0.009	0.05	11.00	12.00	1.259	0.058	0.013	22.2	4.0
			•		Body	Test data l	J-NII-2C (S	Separate 10mm))	•	•	•		
Front side	802.11a	140/5700	93.47	1.070	0.033	0.010	-0.14	12.12	13.00	1.225	0.043	0.013	22.2	1.6
Back side	802.11a	140/5700	93.47	1.070	0.517	0.164	0.01	12.12	13.00	1.225	0.677	0.215	22.2	1.6
Left side	802.11a	140/5700	93.47	1.070	0.013	0.003	-0.12	12.12	13.00	1.225	0.017	0.004	22.2	1.6
Right side	802.11a	140/5700	93.47	1.070	0.514	0.176	-0.02	12.12	13.00	1.225	0.673	0.230	22.2	1.6
Top side	802.11a	140/5700	93.47	1.070	0.004	0.002	0.09	12.12	13.00	1.225	0.005	0.003	22.2	1.6
Bottom side	802.11a	140/5700	93.47	1.070	0.005	0.002	0.13	12.12	13.00	1.225	0.007	0.003	22.2	1.6
					Extremi	ty Test dat	a U-NII-2C	(Separate 0mr	n)			•		
Front side	802.11a	140/5700	93.47	1.070	0.150	0.045	0.05	12.12	13.00	1.225	0.196	0.059	22.2	4.0
Back side	802.11a	140/5700	93.47	1.070	1.88	0.560	-0.15	12.12	13.00	1.225	2.463	0.734	22.2	4.0
Left side	802.11a	140/5700	93.47	1.070	0.039	0.014	0.11	12.12	13.00	1.225	0.051	0.018	22.2	4.0
Right side	802.11a	140/5700	93.47	1.070	1.390	0.324	-0.02	12.12	13.00	1.225	1.821	0.424	22.2	4.0
Top side	802.11a	140/5700	93.47	1.070	0.029	0.005	0.05	12.12	13.00	1.225	0.038	0.007	22.2	4.0

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 82 of 127

Bottom side	802.11a	140/5700	93.47	1.070	0.033	0.009	0.11	12.12	13.00	1.225	0.044	0.012	22.2	4.0
					Body	Test data	U-NII-3 (Se	eparate 10mm)						
Front side	802.11a	157/5785	93.51	1.069	0.027	0.015	0.11	13.57	14.00	1.104	0.032	0.017	22.2	1.6
Back side	802.11a	157/5785	93.51	1.069	0.408	0.127	0.01	13.57	14.00	1.104	0.482	0.150	22.2	1.6
Left side	802.11a	157/5785	93.51	1.069	0.013	0.006	0.05	13.57	14.00	1.104	0.016	0.007	22.2	1.6
Right side	802.11a	157/5785	93.51	1.069	0.405	0.137	-0.16	13.57	14.00	1.104	0.477	0.161	22.2	1.6
Top side	802.11a	157/5785	93.51	1.069	0.005	0.002	0.05	13.57	14.00	1.104	0.006	0.002	22.2	1.6
Bottom side	802.11a	157/5785	93.51	1.069	0.007	0.003	0.14	13.57	14.00	1.104	0.008	0.003	22.2	1.6
					Extrem	nity Test da	ta U-NII-3	(Separate 0mm)					
Front side	802.11a	157/5785	93.51	1.069	0.133	0.040	-0.14	13.57	14.00	1.104	0.157	0.047	22.2	4.0
Back side	802.11a	157/5785	93.51	1.069	1.67	0.500	-0.07	13.57	14.00	1.104	1.971	0.590	22.2	4.0
Left side	802.11a	157/5785	93.51	1.069	0.035	0.013	-0.05	13.57	14.00	1.104	0.042	0.015	22.2	4.0
Right side	802.11a	157/5785	93.51	1.069	1.240	0.289	0.01	13.57	14.00	1.104	1.464	0.341	22.2	4.0
Top side	802.11a	157/5785	93.51	1.069	0.026	0.007	0.19	13.57	14.00	1.104	0.031	0.009	22.2	4.0
Bottom side	802.11a	157/5785	93.51	1.069	0.033	0.010	0.1	13.57	14.00	1.104	0.039	0.012	22.2	4.0

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 83 of 127

8.2.13 SAR Result Of Bluetooth

Test position	Test mode	Test Ch./Freq.	Duty Cycle %	Duty Cycle Scaled factor	SAR (W/kg) 1-g	SAR (W/kg) 1-g	Power drift (dB)	Conducted power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg) 1-g	Scaled SAR (W/kg) 10-g	Liquid Temp.	SAR limit (W/kg)
						Body Test	data (Sep	arate 10mm)						
Front side	GFSK	0/2402	78.22	1.278	0.003	0.001	-0.03	6.72	7	1.067	0.005	0.001	22.2	1.6
Back side	GFSK	0/2402	78.22	1.278	0.012	0.002	0.03	6.72	7	1.067	0.016	0.003	22.2	1.6
Left side	GFSK	0/2402	78.22	1.278	0.001	0.000	0.01	6.72	7	1.067	0.001	0.001	22.2	1.6
Right side	GFSK	0/2402	78.22	1.278	0.011	0.002	0.17	6.72	7	1.067	0.015	0.003	22.2	1.6
Top side	GFSK	0/2402	78.22	1.278	0.002	0.000	-0.09	6.72	7	1.067	0.003	0.001	22.2	1.6
Bottom side	GFSK	0/2402	78.22	1.278	0.002	0.001	0.11	6.72	7	1.067	0.002	0.001	22.2	1.6
					E	xtremity Te	est data (S	eparate 0mm)						
Front side	GFSK	0/2402	78.22	1.278	0.007	0.001	-0.04	6.72	7	1.067	0.010	0.002	22.2	4.0
Back side	GFSK	0/2402	78.22	1.278	0.024	0.004	0.01	6.72	7	1.067	0.033	0.005	22.2	4.0
Left side	GFSK	0/2402	78.22	1.278	0.009	0.001	-0.06	6.72	7	1.067	0.012	0.001	22.2	4.0
Right side	GFSK	0/2402	78.22	1.278	0.021	0.003	-0.07	6.72	7	1.067	0.029	0.004	22.2	4.0
Top side	GFSK	0/2402	78.22	1.278	0.004	0.001	0.12	6.72	7	1.067	0.006	0.001	22.2	4.0
Bottom side	GFSK	0/2402	78.22	1.278	0.005	0.001	-0.14	6.72	7	1.067	0.007	0.001	22.2	4.0

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 84 of 127

8.3 Multiple Transmitter Evaluation

8.3.1 Simultaneous SAR SAR test evaluation

Simultaneous Transmission

NO.	Simultaneous Transmission Configuration	Head	Body
1	WWAN + WIFI 2.4GHz	Yes	Yes
2	WWAN + 5GHz	Yes	Yes
3	WWAN + BT	Yes	Yes
4	WIFI + BT (They share the same antenna and cannot transmit at the same time by design.)	No	No

Simultaneous Transmission SAR Summation Scenario for body

Simultaned	ous Transmis	SION SAR	Summation	Scenario	lor body				
WWAN Band	Exposure position	①MAX WWAN SAR (W/kg)	②MAX. WLAN2.4G SAR (W/kg)	③MA X BT SAR (W/kg)	④MAX. WLAN5G SAR (W/kg)	Summed SAR ①+②	Summed SAR ①+③	Summed SAR ①+④	Volume scan
	Front	0.132	0.015	0.005	0.051	0.147	0.137	0.183	NO
	Back	0.619	0.072	0.016	0.828	0.691	0.635	1.447	NO
GSM850	Left	0.315	0.018	0.001	0.020	0.333	0.316	0.335	NO
GSIVIOSU	Right	0.190	0.068	0.015	0.815	0.258	0.205	1.005	NO
	Тор	0.012	0.006	0.003	0.007	0.018	0.015	0.019	NO
	Bottom	0.108	0.007	0.002	0.010	0.115	0.110	0.118	NO
	Front	0.060	0.015	0.005	0.051	0.075	0.065	0.111	NO
	Back	0.674	0.072	0.016	0.828	0.746	0.690	1.502	NO
GSM1900	Left	0.087	0.018	0.001	0.020	0.105	0.088	0.107	NO
G3W1900	Right	0.152	0.068	0.015	0.815	0.220	0.167	0.967	NO
	Тор	0.017	0.006	0.003	0.007	0.023	0.020	0.024	NO
	Bottom	0.195	0.007	0.002	0.010	0.202	0.197	0.205	NO
	Front	0.066	0.015	0.005	0.051	0.081	0.071	0.117	NO
	Back	0.699	0.072	0.016	0.828	0.771	0.715	1.527	NO
WCDMA	Left	0.094	0.018	0.001	0.020	0.112	0.095	0.114	NO
Band II	Right	0.155	0.068	0.015	0.815	0.223	0.170	0.970	NO
	Тор	0.013	0.006	0.003	0.007	0.019	0.016	0.020	NO
	Bottom	0.210	0.007	0.002	0.010	0.217	0.212	0.220	NO
	Front	0.040	0.015	0.005	0.051	0.055	0.045	0.091	NO
WCDMA	Back	0.429	0.072	0.016	0.828	0.501	0.445	1.257	NO
Band IV	Left	0.057	0.018	0.001	0.020	0.075	0.058	0.077	NO
	Right	0.098	0.068	0.015	0.815	0.166	0.113	0.913	NO

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 85 of 127

	Тор	0.009	0.006	0.003	0.007	0.015	0.012	0.016	NO
	Bottom	0.127	0.007	0.002	0.010	0.134	0.129	0.137	NO
	Front	0.092	0.015	0.005	0.051	0.107	0.097	0.143	NO
	Back	0.586	0.072	0.016	0.828	0.658	0.602	1.414	NO
WCDMA	Left	0.227	0.018	0.001	0.020	0.245	0.228	0.247	NO
Band V	Right	0.140	0.068	0.015	0.815	0.208	0.155	0.955	NO
	Тор	0.016	0.006	0.003	0.007	0.022	0.019	0.023	NO
	Bottom	0.081	0.007	0.002	0.010	0.088	0.083	0.091	NO
	Front	0.040	0.015	0.005	0.051	0.055	0.045	0.091	NO
	Back	0.481	0.072	0.016	0.828	0.553	0.497	1.309	NO
LTE Band	Left	0.059	0.018	0.001	0.020	0.077	0.060	0.079	NO
2	Right	0.103	0.068	0.015	0.815	0.171	0.118	0.918	NO
	Тор	0.008	0.006	0.003	0.007	0.014	0.011	0.015	NO
	Bottom	0.138	0.007	0.002	0.010	0.145	0.140	0.148	NO
	Front	0.048	0.015	0.005	0.051	0.063	0.053	0.099	NO
	Back	0.560	0.072	0.016	0.828	0.632	0.576	1.388	NO
LTE Band	Left	0.069	0.018	0.001	0.020	0.087	0.070	0.089	NO
4	Right	0.125	0.068	0.015	0.815	0.193	0.140	0.940	NO
	Тор	0.012	0.006	0.003	0.007	0.018	0.015	0.019	NO
	Bottom	0.163	0.007	0.002	0.010	0.170	0.165	0.173	NO
	Front	0.060	0.015	0.005	0.051	0.075	0.065	0.111	NO
	Back	0.410	0.072	0.016	0.828	0.482	0.426	1.238	NO
LTE Band	Left	0.156	0.018	0.001	0.020	0.174	0.157	0.176	NO
5	Right	0.094	0.068	0.015	0.815	0.162	0.109	0.909	NO
	Тор	0.005	0.006	0.003	0.007	0.011	0.008	0.012	NO
	Bottom	0.051	0.007	0.002	0.010	0.058	0.053	0.061	NO
	Front	0.016	0.015	0.005	0.051	0.031	0.021	0.067	NO
	Back	0.658	0.072	0.016	0.828	0.730	0.674	1.486	NO
LTE Band	Left	0.010	0.018	0.001	0.020	0.028	0.011	0.030	NO
7	Right	0.031	0.068	0.015	0.815	0.099	0.046	0.846	NO
	Тор	0.005	0.006	0.003	0.007	0.011	0.008	0.012	NO
	Bottom	0.108	0.007	0.002	0.010	0.115	0.110	0.118	NO
	Front	0.013	0.015	0.005	0.051	0.028	0.018	0.064	NO
	Back	0.476	0.072	0.016	0.828	0.548	0.492	1.304	NO
LTE Band	Left	0.009	0.018	0.001	0.020	0.027	0.010	0.029	NO
38	Right	0.027	0.068	0.015	0.815	0.095	0.042	0.842	NO
	Тор	0.006	0.006	0.003	0.007	0.012	0.009	0.013	NO
	Bottom	0.079	0.007	0.002	0.010	0.086	0.081	0.089	NO

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 86 of 127

Simultaneous Transmission SAR Summation Scenario for Extremity

	1							ı
Front	0.055	0.021	0.002	0.079	0.076	0.057	0.134	NO
Back	1.055	0.304	0.005	1.021	1.359	1.060	2.076	NO
Left	0.215	0.057	0.001	0.023	0.272	0.216	0.238	NO
Right	0.123	0.216	0.004	0.590	0.339	0.127	0.713	NO
Тор	0.013	0.026	0.001	0.009	0.039	0.014	0.022	NO
Bottom	0.184	0.028	0.001	0.013	0.212	0.185	0.197	NO
Front	0.081	0.021	0.002	0.079	0.102	0.083	0.160	NO
Back	2.038	0.304	0.005	1.021	2.342	2.043	3.059	NO
Left	0.150	0.057	0.001	0.023	0.207	0.151	0.173	NO
Right	0.365	0.216	0.004	0.590	0.581	0.369	0.955	NO
Тор	0.041	0.026	0.001	0.009	0.067	0.042	0.050	NO
Bottom	0.770	0.028	0.001	0.013	0.798	0.771	0.783	NO
Front	0.097	0.021	0.002	0.079	0.118	0.099	0.176	NO
Back	2.374	0.304	0.005	1.021	2.678	2.379	3.395	NO
Left	0.169	0.057	0.001	0.023	0.226	0.170	0.192	NO
Right	0.428	0.216	0.004	0.590	0.644	0.432	1.018	NO
Тор	0.045	0.026	0.001	0.009	0.071	0.046	0.054	NO
Bottom	0.893	0.028	0.001	0.013	0.921	0.894	0.906	NO
Front	0.036	0.021	0.002	0.079	0.057	0.038	0.115	NO
Back	0.829	0.304	0.005	1.021	1.133	0.834	1.850	NO
Left	0.061	0.057	0.001	0.023	0.118	0.062	0.084	NO
Right	0.148	0.216	0.004	0.590	0.364	0.152	0.738	NO
Тор	0.018	0.026	0.001	0.009	0.044	0.019	0.027	NO
Bottom	0.315	0.028	0.001	0.013	0.343	0.316	0.328	NO
Front	0.049	0.021	0.002	0.079	0.070	0.051	0.128	NO
Back	0.868	0.304	0.005	1.021	1.172	0.873	1.889	NO
Left	0.179	0.057	0.001	0.023	0.236	0.180	0.202	NO
Right	0.101	0.216	0.004	0.590	0.317	0.105	0.691	NO
Тор	0.014	0.026	0.001	0.009	0.040	0.015	0.023	NO
Bottom	0.153	0.028	0.001	0.013	0.181	0.154	0.166	NO
Front	0.056	0.021	0.002	0.079	0.077	0.058	0.135	NO
Back	1.443	0.304	0.005	1.021	1.747	1.448	2.464	NO
Left	0.101	0.057	0.001	0.023	0.158	0.102	0.124	NO
Right	0.255	0.216	0.004	0.590	0.471	0.259	0.845	NO
Тор	0.024	0.026	0.001	0.009	0.050	0.025	0.033	NO
Bottom	0.542	0.028	0.001	0.013	0.570	0.543	0.555	NO
Front	0.101	0.021	0.002	0.079	0.122	0.103	0.180	NO
Back	2.313	0.304	0.005	1.021	2.617	2.318	3.334	NO
Left	0.171	0.057	0.001	0.023	0.228	0.172	0.194	NO
	Front Back Left Right Top Bottom Front Back Left Right Top	Front 0.055 Back 1.055 Left 0.215 Right 0.123 Top 0.013 Bottom 0.184 Front 0.081 Back 2.038 Left 0.150 Right 0.365 Top 0.041 Bottom 0.770 Front 0.097 Back 2.374 Left 0.169 Right 0.428 Top 0.045 Bottom 0.893 Front 0.036 Back 0.829 Left 0.061 Right 0.148 Top 0.018 Bottom 0.315 Front 0.049 Back 0.868 Left 0.101 Top 0.014 Bottom 0.153 Front 0.056 Back 1.443 Left 0.	Front 0.055 0.021 Back 1.055 0.304 Left 0.215 0.057 Right 0.123 0.216 Top 0.013 0.026 Bottom 0.184 0.028 Front 0.081 0.021 Back 2.038 0.304 Left 0.150 0.057 Right 0.365 0.216 Top 0.041 0.026 Bottom 0.770 0.028 Front 0.097 0.021 Back 2.374 0.304 Left 0.169 0.057 Right 0.428 0.216 Top 0.045 0.026 Bottom 0.893 0.028 Front 0.036 0.021 Back 0.829 0.304 Left 0.061 0.057 Right 0.148 0.216 Top 0.018 0.026 Bottom	Front 0.055 0.021 0.002 Back 1.055 0.304 0.005 Left 0.215 0.057 0.001 Right 0.123 0.216 0.004 Top 0.013 0.026 0.001 Bottom 0.184 0.028 0.001 Front 0.081 0.021 0.002 Back 2.038 0.304 0.005 Left 0.150 0.057 0.001 Right 0.365 0.216 0.004 Top 0.041 0.026 0.001 Bottom 0.770 0.028 0.001 Front 0.097 0.021 0.002 Back 2.374 0.304 0.005 Left 0.169 0.057 0.001 Right 0.428 0.216 0.004 Top 0.045 0.026 0.001 Bottom 0.893 0.028 0.001 Bottom 0.893	Front 0.055 0.021 0.002 0.079 Back 1.055 0.304 0.005 1.021 Left 0.215 0.057 0.001 0.023 Right 0.123 0.216 0.004 0.590 Top 0.013 0.026 0.001 0.009 Bottom 0.184 0.028 0.001 0.013 Front 0.081 0.021 0.002 0.079 Back 2.038 0.304 0.005 1.021 Left 0.150 0.057 0.001 0.023 Right 0.365 0.216 0.004 0.590 Top 0.041 0.026 0.001 0.009 Bottom 0.770 0.028 0.001 0.013 Front 0.097 0.021 0.002 0.079 Back 2.374 0.304 0.005 1.021 Left 0.169 0.057 0.001 0.023 Right <t< td=""><td>Back 1.055 0.304 0.005 1.021 1.359 Left 0.215 0.057 0.001 0.023 0.272 Right 0.123 0.216 0.004 0.590 0.339 Top 0.013 0.026 0.001 0.009 0.039 Bottom 0.184 0.028 0.001 0.013 0.212 Front 0.081 0.021 0.002 0.079 0.102 Back 2.038 0.304 0.005 1.021 2.342 Left 0.150 0.057 0.001 0.023 0.207 Right 0.365 0.216 0.004 0.590 0.581 Top 0.041 0.026 0.001 0.009 0.067 Bottom 0.770 0.028 0.001 0.009 0.067 Back 2.374 0.304 0.005 1.021 2.678 Left 0.169 0.057 0.001 0.023 0.226</td><td>Front 0.055 0.021 0.002 0.079 0.076 0.057 Back 1.055 0.304 0.005 1.021 1.359 1.060 Left 0.215 0.057 0.001 0.023 0.272 0.216 Right 0.123 0.216 0.004 0.590 0.339 0.127 Top 0.013 0.026 0.001 0.009 0.039 0.014 Bottom 0.184 0.028 0.001 0.013 0.212 0.185 Front 0.081 0.021 0.002 0.079 0.102 0.083 Back 2.038 0.304 0.005 1.021 2.342 2.043 Left 0.150 0.057 0.001 0.023 0.207 0.151 Right 0.365 0.216 0.004 0.590 0.581 0.369 Top 0.041 0.026 0.001 0.009 0.067 0.042 Bottom 0.770 0.0</td><td>Front 0.055 0.021 0.002 0.079 0.076 0.057 0.134 Back 1.055 0.304 0.005 1.021 1.359 1.060 2.076 Left 0.215 0.057 0.001 0.023 0.272 0.216 0.238 Right 0.123 0.216 0.004 0.590 0.339 0.127 0.713 Top 0.013 0.026 0.001 0.009 0.039 0.014 0.022 Bottom 0.184 0.028 0.001 0.013 0.212 0.185 0.197 Front 0.081 0.021 0.002 0.079 0.102 0.083 0.160 Back 2.038 0.304 0.005 1.021 2.342 2.043 3.059 Left 0.150 0.057 0.001 0.023 0.207 0.151 0.173 Right 0.365 0.216 0.004 0.590 0.581 0.369 0.955 <t< td=""></t<></td></t<>	Back 1.055 0.304 0.005 1.021 1.359 Left 0.215 0.057 0.001 0.023 0.272 Right 0.123 0.216 0.004 0.590 0.339 Top 0.013 0.026 0.001 0.009 0.039 Bottom 0.184 0.028 0.001 0.013 0.212 Front 0.081 0.021 0.002 0.079 0.102 Back 2.038 0.304 0.005 1.021 2.342 Left 0.150 0.057 0.001 0.023 0.207 Right 0.365 0.216 0.004 0.590 0.581 Top 0.041 0.026 0.001 0.009 0.067 Bottom 0.770 0.028 0.001 0.009 0.067 Back 2.374 0.304 0.005 1.021 2.678 Left 0.169 0.057 0.001 0.023 0.226	Front 0.055 0.021 0.002 0.079 0.076 0.057 Back 1.055 0.304 0.005 1.021 1.359 1.060 Left 0.215 0.057 0.001 0.023 0.272 0.216 Right 0.123 0.216 0.004 0.590 0.339 0.127 Top 0.013 0.026 0.001 0.009 0.039 0.014 Bottom 0.184 0.028 0.001 0.013 0.212 0.185 Front 0.081 0.021 0.002 0.079 0.102 0.083 Back 2.038 0.304 0.005 1.021 2.342 2.043 Left 0.150 0.057 0.001 0.023 0.207 0.151 Right 0.365 0.216 0.004 0.590 0.581 0.369 Top 0.041 0.026 0.001 0.009 0.067 0.042 Bottom 0.770 0.0	Front 0.055 0.021 0.002 0.079 0.076 0.057 0.134 Back 1.055 0.304 0.005 1.021 1.359 1.060 2.076 Left 0.215 0.057 0.001 0.023 0.272 0.216 0.238 Right 0.123 0.216 0.004 0.590 0.339 0.127 0.713 Top 0.013 0.026 0.001 0.009 0.039 0.014 0.022 Bottom 0.184 0.028 0.001 0.013 0.212 0.185 0.197 Front 0.081 0.021 0.002 0.079 0.102 0.083 0.160 Back 2.038 0.304 0.005 1.021 2.342 2.043 3.059 Left 0.150 0.057 0.001 0.023 0.207 0.151 0.173 Right 0.365 0.216 0.004 0.590 0.581 0.369 0.955 <t< td=""></t<>

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 87 of 127

	Right	0.410	0.216	0.004	0.590	0.626	0.414	1.000	NO
	Тор	0.045	0.026	0.001	0.009	0.071	0.046	0.054	NO
	Bottom	0.879	0.028	0.001	0.013	0.907	0.880	0.892	NO
	Front	0.035	0.021	0.002	0.079	0.056	0.037	0.114	NO
	Back	0.748	0.304	0.005	1.021	1.052	0.753	1.769	NO
LTE Band	Left	0.151	0.057	0.001	0.023	0.208	0.152	0.174	NO
5	Right	0.086	0.216	0.004	0.590	0.302	0.090	0.676	NO
	Тор	0.005	0.026	0.001	0.009	0.031	0.006	0.014	NO
	Bottom	0.126	0.028	0.001	0.013	0.154	0.127	0.139	NO
	Front	0.036	0.021	0.002	0.079	0.057	0.038	0.115	NO
	Back	0.986	0.304	0.005	1.021	1.290	0.991	2.007	NO
LTE Band	Left	0.011	0.057	0.001	0.023	0.068	0.012	0.034	NO
7	Right	0.114	0.216	0.004	0.590	0.330	0.118	0.704	NO
	Тор	0.004	0.026	0.001	0.009	0.030	0.005	0.013	NO
	Bottom	0.234	0.028	0.001	0.013	0.262	0.235	0.247	NO
	Front	0.024	0.021	0.002	0.079	0.045	0.026	0.103	NO
	Back	0.603	0.304	0.005	1.021	0.907	0.608	1.624	NO
LTE Band 38	Left	0.009	0.057	0.001	0.023	0.066	0.010	0.032	NO
	Right	0.071	0.216	0.004	0.590	0.287	0.075	0.661	NO
	Тор	0.005	0.026	0.001	0.009	0.031	0.006	0.014	NO
	Bottom	0.144	0.028	0.001	0.013	0.172	0.145	0.157	NO

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国•江苏•昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 88 of 127

9 Equipment list

Test Platform	SPEAG DASY5 Professional
Location	Compliance Certification Services (Kunshan) Inc.
Software Reference	DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

٤	Software Reference DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)										
	Hardware Reference										
	Equipment	Manufacturer	Model	Serial Number	Calibration Date	Due date of calibration					
\boxtimes	PC	HP	HP Core(rm)3.16G C2		N/A	N/A					
\boxtimes	Signal Generator	Agilent	E5182A	MY50142015	2022/08/22	2023/08/21					
	S-Parameter Network Analyzer	Agilent	E5071B	MY42301382	2022/02/20	2023/02/19					
\boxtimes	DAK-3.5 probe	SPEAG	DAK-3.5	1102	N/A	N/A					
	Wireless Communication Test Set	R&S	CMW500	159275	2022/08/22	2023/08/21					
\boxtimes	Communication System	Anritsu	MT8820C	6201465349	2022/04/01	2023/03/31					
	MXA Signal Analyzer	Keysight	N9020A	MY53420174	2022/08/22	2023/08/21					
	DAE	SPEAG	DAE4	1245	2022/05/30	2023/05/29					
\boxtimes	E-field PROBE	SPEAG	EX3DV4	7767	2022/10/28	2023/10/27					
	Dipole	SPEAG	D835V2	4d114	2022/03/31	2025/03/30					
	Dipole	SPEAG	D1800V2	2d170	2022/03/31	2025/03/30					
	Dipole	SPEAG	D1900V2	5d136	2022/06/07	2025/06/06					
\boxtimes	Dipole	SPEAG	D2450V2	817	2022/04/01	2025/03/31					
	Dipole	SPEAG	D2600V2	1158	2022/03/31	2025/03/30					
	Dipole	SPEAG	D5GHzV2	1095	2022/06/01	2025/05/31					
	Electro Thermometer	Renke	RS-WS-N01- 6J	1032862	2022/04/01	2023/03/31					
	Amplifier	Mini-circuits	ZVE-8G	110405	N/A	N/A					
\boxtimes	Amplifier	Mini-circuits	ZHL-42	QA1331003	N/A	N/A					
	3db ATTENUATOR	MINI	MCL BW- S3W5	0533	N/A	N/A					
	DUMMY PROBE	SPEAG	DP_2	SPDP2001AA	N/A	N/A					
\boxtimes	Dual Directional Coupler	Woken	20W couple	DOM2BHW1A1	N/A	N/A					

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 89 of 127

	SAM PHANTOM (ELI4 v4.0)	SPEAG	QDOVA001BB	1102	N/A	N/A
\boxtimes	Twin SAM Phantom	SPEAG	QD000P40CD	1609	N/A	N/A
	ROBOT	SPEAG	TX60	F10/5E6AA1/A101	N/A	N/A
	ROBOT KRC	SPEAG	CS8C	F10/5E6AA1/C101	N/A	N/A
\boxtimes	LIQUID CALIBRATION KIT	ANTENNESSA	41/05 OCP9	00425167	N/A	N/A

Note: All the equipments are within the valid period when the tests are performed.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@css.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 90 of 127

10 Calibration certificate

Please see the Appendix C

11 Photographs

Please see the Appendix D

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@css.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 91 of 127

Appendix A: Detailed System Check Results

The plots are showing as followings.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@css.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 92 of 127

Date: 2022/12/16

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

System Performance Check-D835

DUT: Dipole 835 MHz D835V2; Type: 4d114

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; σ = 0.909 S/m; ε_r = 42.04; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

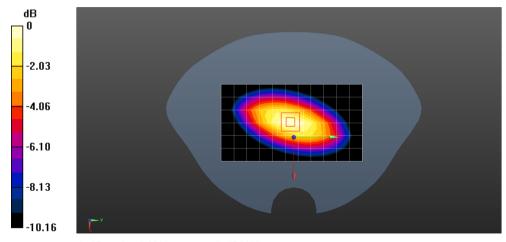
Probe: EX3DV4 - SN7767; ConvF(10, 10, 10); Calibrated: 2022/10/28;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


System Performance Check at Frequencies Low 1 GHz/d=15mm, Pin=250 mW, dist=3.0mm (EX-Probe)/Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.47 W/kg

System Performance Check at Frequencies Low 1 GHz/d=15mm, Pin=250 mW, dist=3.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 64.02 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 4.17 W/kg

SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 3.56 W/kg

0 dB = 3.56 W/kg = 5.51 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 93 of 127

Date: 2022/12/17

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

System Performance Check-D1800

DUT: Dipole 1800 MHz D1800V2; Type: 2d170

Communication System: UID 10000, CW; Frequency: 1800 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1800 MHz; $\sigma = 1.41$ S/m; $\varepsilon_r = 38.947$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

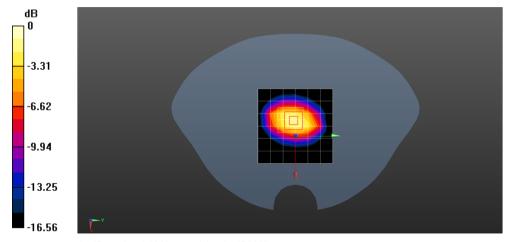
Probe: EX3DV4 - SN7767; ConvF(9.32, 9.32, 9.32); Calibrated: 2022/10/28;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (EX-Probe) (23.6 dBm)/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 11.0 W/kg

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (EX-Probe) (23.6 dBm)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.5 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 18.1 W/kg

SAR(1 g) = 9.98 W/kg; SAR(10 g) = 5.44 W/kg Maximum value of SAR (measured) = 14.1 W/kg

0 dB = 14.1 W/kg = 11.49 dBW/kg

Date: 2022/12/18

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 94 of 127

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

System Performance Check-D1900

DUT: Dipole 1900 MHz D1900V2; Type: 5d136

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.414 \text{ S/m}$; $\varepsilon_r = 39.564$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

• Probe: EX3DV4 - SN7767; ConvF(8.91, 8.91, 8.91); Calibrated: 2022/10/28;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

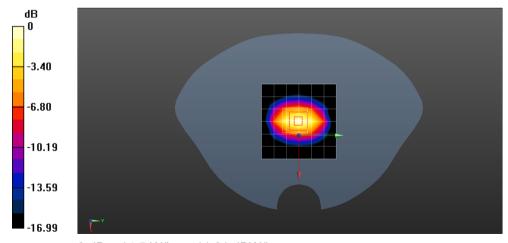
Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 14.5 W/dg


Maximum value of SAR (measured) = 14.5 W/kg

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.0 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.5 W/kg

0 dB = 14.5 W/kg = 11.61 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 95 of 127

Date: 2022/12/19

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

System Performance Check-D2450

DUT: Dipole 2450 MHz D2450V2; Type: 817

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; σ = 1.825 S/m; ε_r = 39.903; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

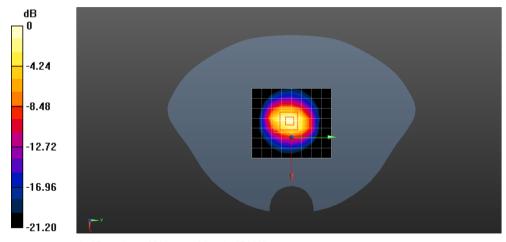
Probe: EX3DV4 - SN7767; ConvF(8.24, 8.24, 8.24); Calibrated: 2022/10/28;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 15.5 W/kg

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.10 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 23.2 W/kg

SAR(1 g) = 12.2 W/kg; SAR(10 g) = 5.72 W/kg Maximum value of SAR (measured) = 17.5 W/kg

0 dB = 17.5 W/kg = 12.43 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 96 of 127

Date: 2023/03/03

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

System Performance Check-D2600

DUT: Dipole 2600 MHz D2600V2; Type: 1158

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 2 S/m; ϵ_r = 39.385; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

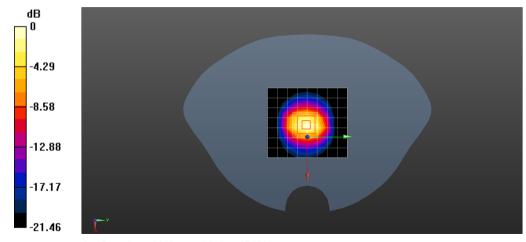
Probe: EX3DV4 - SN7767; ConvF(7.99, 7.99, 7.99); Calibrated: 2022/10/28;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 22.3 W/kg

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 110.4 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 32.9 W/kg

SAR(1 g) = 14 W/kg; SAR(10 g) = 6.49 W/kgMaximum value of SAR (measured) = 24.4 W/kg

0 dB = 24.4 W/kg = 13.87 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com

t(86-512)57355888 f(86-512)57370818 www.sgsgroup.com.cn

Report No.: KSCR221100235501

Page: 97 of 127

Date: 2022/12/21

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

System Performance Check-D5200 DUT: Dipole D5GHzV2; Type: 1095

Communication System: UID 0, CW (0); Frequency: 5200 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; $\sigma = 4.683$ S/m; $\varepsilon_r = 36.15$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

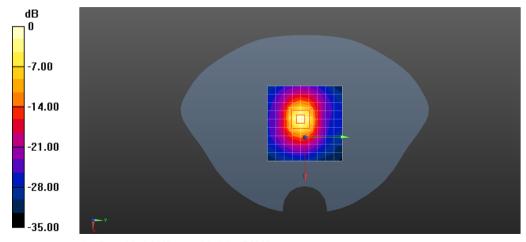
DASY5 Configuration:

• Probe: EX3DV4 - SN7767; ConvF(5.65, 5.65, 5.65); Calibrated: 2022/10/28;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609


Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5200 MHz/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 20.1 W/kg

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5200 MHz/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 54.25 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 31.3 W/kg

SAR(1 g) = 7.95 W/kg; SAR(10 g) = 2.26 W/kg Maximum value of SAR (measured) = 18.2 W/kg

0 dB = 18.2 W/kg = 12.60 dBW/kg

Date: 2022/12/21

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 98 of 127

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

SystemPerformanceCheck-D5600 DUT: Dipole D5GHzV2; Type: 1095

Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz; $\sigma = 5.157 \text{ S/m}$; $\epsilon_r = 35.059$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

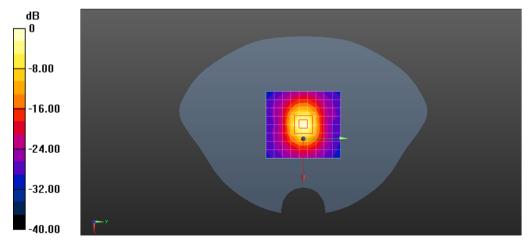
DASY5 Configuration:

Probe: EX3DV4 - SN7767; ConvF(5.14, 5.14, 5.14); Calibrated: 2022/10/28;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609


Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5600 MHz/Area Scan (9x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 15.9 W/kg

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5600 MHz/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.92 V/m: Power Drift = 0.14 dB

Peak SAR (extrapolated) = 34.6 W/kg

SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.31 W/kg Maximum value of SAR (measured) = 19.3 W/kg

0 dB = 19.3 W/kg = 12.86 dBW/kg

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fulleast extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 t(86-512)57355888 f(86-512)57370818 www.sgsgroup.com.cn t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com

Member of the SGS Group (SGS SA)

Date: 2022/12/21

Report No.: KSCR221100235501

Page: 99 of 127

SystemPerformanceCheck-D5800 DUT: Dipole D5GHzV2; Type: 1095

Communication System: UID 0, CW (0); Frequency: 5800 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; $\sigma = 5.38$ S/m; $\varepsilon_r = 34.496$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

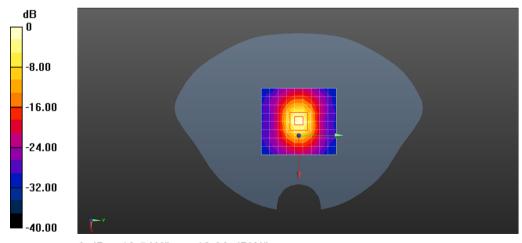
DASY5 Configuration:

Probe: EX3DV4 - SN7767; ConvF(5.1, 5.1, 5.1); Calibrated: 2022/10/28;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609


Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5800 MHz/Area Scan (9x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 16.3 W/kg

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5800 MHz/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.92 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 36.3 W/kg

SAR(1 g) = 8.04 W/kg; SAR(10 g) = 2.3 W/kg Maximum value of SAR (measured) = 19.5 W/kg

0 dB = 19.5 W/kg = 12.90 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fulleast extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 100 of 127

Appendix B: Detailed Test Results

The plots of worse case are showing as followings.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 101 of 127

Date: 2022/12/16

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

GSM850 GPRS 4TS Back side Ch251 10mm DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, GPRS/EGPRS 4TX Slots (0); Frequency: 848.8 MHz; Duty Cycle: 1:2.0797

Medium parameters used: f = 849 MHz; σ = 0.911 S/m; ϵ_r = 41.76; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

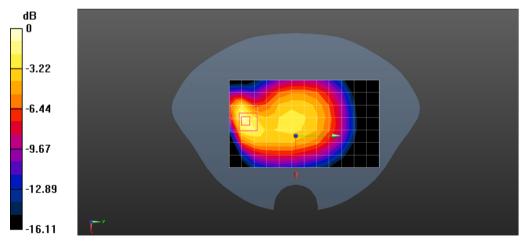
• Probe: EX3DV4 - SN7767; ConvF(10, 10, 10); Calibrated: 2022/10/28;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.972 W/kg

Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.35 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.31 W/kg

SAR(1 g) = 0.553 W/kg; SAR(10 g) = 0.311 W/kg Maximum value of SAR (measured) = 1.09 W/kg

0 dB = 1.09 W/kq = 0.37 dBW/kq

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 102 of 127

Date: 2022/12/16

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

GSM850 GPRS 4TS Back side Ch251 0mm DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, GPRS/EGPRS 4TX Slots (0); Frequency: 848.8 MHz; Duty Cycle: 1:2.0797

Medium parameters used: f = 849 MHz; σ = 0.911 S/m; ε_r = 41.76; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

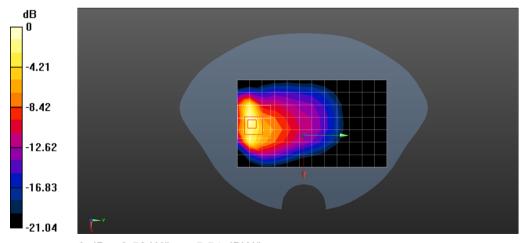
Probe: EX3DV4 - SN7767; ConvF(10, 10, 10); Calibrated: 2022/10/28;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.23 W/kg

Configuration/Head/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.42 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 4.56 W/kg

SAR(1 g) = 1.95 W/kg; SAR(10 g) = 0.942 W/kg Maximum value of SAR (measured) = 3.58 W/kg

0 dB = 3.58 W/kg = 5.54 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 103 of 127

Date: 2022/12/18

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

GSM1900 GPRS 4TS Back side Ch661 10mm DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, GPRS/EGPRS 4TX Slots (0); Frequency: 1880 MHz; Duty Cycle: 1:2.0797

Medium parameters used: f = 1880 MHz; σ = 1.406 S/m; ε_r = 39.647; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

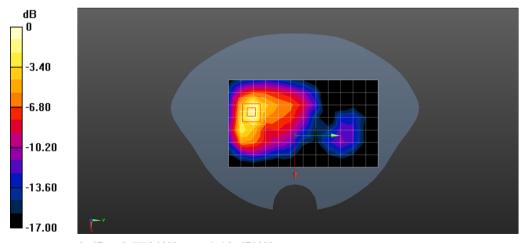
Probe: EX3DV4 - SN7767; ConvF(8.91, 8.91, 8.91); Calibrated: 2022/10/28;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.637 W/kg

Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.738 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.905 W/kg

SAR(1 g) = 0.529 W/kg; SAR(10 g) = 0.292 W/kg Maximum value of SAR (measured) = 0.776 W/kg

0 dB = 0.776 W/kg = -1.10 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 104 of 127

Date: 2022/12/18

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

GSM1900 GPRS 4TS Back side Ch661 0mm DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, GPRS/EGPRS 4TX Slots (0); Frequency: 1880 MHz; Duty Cycle: 1:2.0797

Medium parameters used: f = 1880 MHz; σ = 1.406 S/m; ε_r = 39.647; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

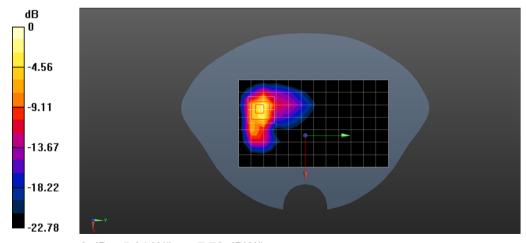
Probe: EX3DV4 - SN7767; ConvF(8.91, 8.91, 8.91); Calibrated: 2022/10/28;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.86 W/kg

Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.663 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 8.04 W/kg

SAR(1 g) = 3.69 W/kg; SAR(10 g) = 1.6 W/kg Maximum value of SAR (measured) = 5.91 W/kg

0 dB = 5.91 W/kg = 7.72 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 105 of 127

Date: 2022/12/18

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

WCDMA Band 2 RMC Back side Ch9400 10mm DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, WCDMA / UMTS (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.406$ S/m; $\epsilon_r = 39.647$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

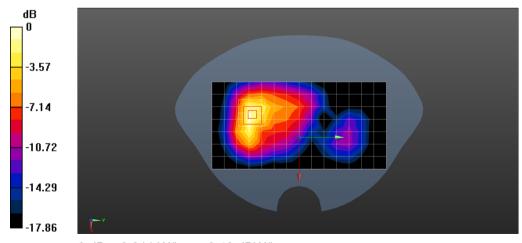
Probe: EX3DV4 - SN7767; ConvF(8.91, 8.91, 8.91); Calibrated: 2022/10/28;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (8x15x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.832 W/kg

Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.144 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.636 W/kg; SAR(10 g) = 0.351 W/kg Maximum value of SAR (measured) = 0.911 W/kg

0 dB = 0.911 W/kg = -0.40 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 106 of 127

Date: 2022/12/18

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

WCDMA Band 2 RMC Back side Ch9400 0mm DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, WCDMA / UMTS (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.406$ S/m; $\epsilon_r = 39.647$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

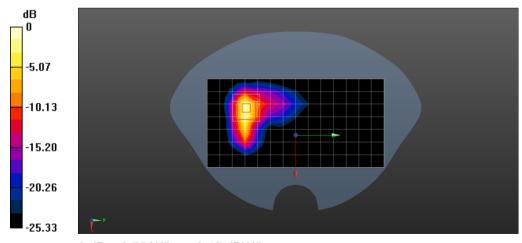
Probe: EX3DV4 - SN7767; ConvF(8.91, 8.91, 8.91); Calibrated: 2022/10/28;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (8x15x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 8.49 W/kg

Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.704 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 12.9 W/kg

SAR(1 g) = 4.99 W/kg; SAR(10 g) = 2.16 W/kg Maximum value of SAR (measured) = 8.75 W/kg

0 dB = 8.75 W/kg = 9.42 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 107 of 127

Date: 2022/12/17

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

WCDMA Band 4 RMC Back side Ch1412 10mm DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, WCDMA / UMTS (0); Frequency: 1732.4 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.355$ S/m; $\varepsilon_r = 39.243$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

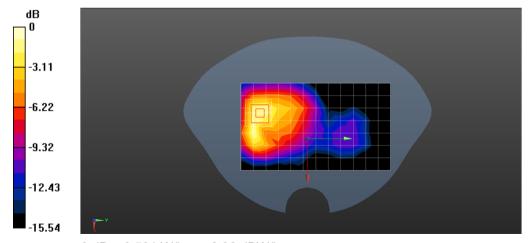
Probe: EX3DV4 - SN7767; ConvF(9.32, 9.32, 9.32); Calibrated: 2022/10/28;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.475 W/kg

Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.045 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.677 W/kg

SAR(1 g) = 0.414 W/kg; SAR(10 g) = 0.239 W/kg Maximum value of SAR (measured) = 0.581 W/kg

0 dB = 0.581 W/kg = -2.36 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 108 of 127

Date: 2022/12/17

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

WCDMA Band 4 RMC Back side Ch1412 0mm DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, WCDMA / UMTS (0); Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.355$ S/m; $\varepsilon_r = 39.243$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV4 - SN7767; ConvF(9.32, 9.32, 9.32); Calibrated: 2022/10/28;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.54 W/kg

Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.557 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.84 W/kg

SAR(1 g) = 1.8 W/kg; SAR(10 g) = 0.801 W/kg Maximum value of SAR (measured) = 2.82 W/kg

> -4.17 -8.34 -12.50 -16.67

0 dB = 2.82 W/kg = 4.50 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 109 of 127

Date: 2022/12/16

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

WCDMA Band 5 RMC Back side Ch4182 10mm DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, WCDMA / UMTS (0); Frequency: 836.4 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.901$ S/m; $\epsilon_r = 42.051$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

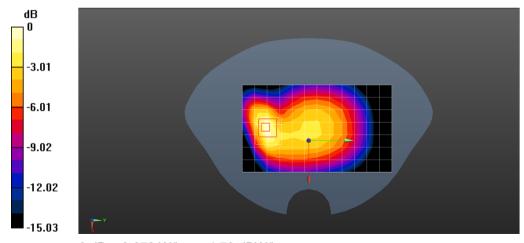
Probe: EX3DV4 - SN7767; ConvF(10, 10, 10); Calibrated: 2022/10/28;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.639 W/kg

Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.02 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.859 W/kg

SAR(1 g) = 0.502 W/kg; SAR(10 g) = 0.294 W/kg Maximum value of SAR (measured) = 0.672 W/kg

0 dB = 0.672 W/kg = -1.73 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fulleast extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 110 of 127

Date: 2022/12/16

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

WCDMA Band 5 RMC Back side Ch4182 0mm DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, WCDMA / UMTS (0); Frequency: 836.4 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.4 MHz; $\sigma = 0.901$ S/m; $\varepsilon_r = 42.051$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

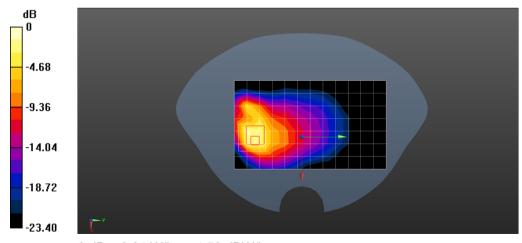
Probe: EX3DV4 - SN7767; ConvF(10, 10, 10); Calibrated: 2022/10/28;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.09 W/kg

Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.70 V/m; Power Drift = -0.42 dB

Peak SAR (extrapolated) = 4.44 W/kg

SAR(1 g) = 1.44 W/kg; SAR(10 g) = 0.744 W/kg Maximum value of SAR (measured) = 2.84 W/kg

0 dB = 2.84 W/kg = 4.53 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fulleast extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 111 of 127

Date: 2022/12/18

Test Laboratory: Compliance Certification Services (Kunshan) Inc. LTE Band 2 20M QPSK 1RB99 Back side Ch18900 10mm

DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, FDD_LTE (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.406$ S/m; $\varepsilon_r = 39.647$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

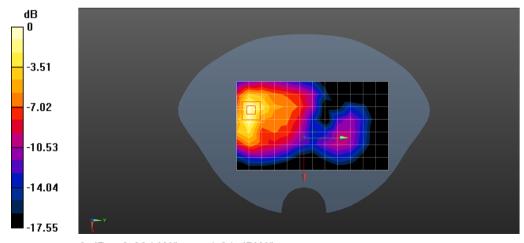
Probe: EX3DV4 - SN7767; ConvF(8.91, 8.91, 8.91); Calibrated: 2022/10/28;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.644 W/kg

Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.798 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.799 W/kg

SAR(1 g) = 0.467 W/kg; SAR(10 g) = 0.265 W/kg Maximum value of SAR (measured) = 0.691 W/kg

0 dB = 0.691 W/kg = -1.61 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fulleast extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 112 of 127

Date: 2022/12/18

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

LTE Band 2 20M QPSK 1RB99 Back side Ch18900 0mm

DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, FDD_LTE (0); Frequency: 1800 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1800 MHz; $\sigma = 1.406$ S/m; $\varepsilon_r = 39.647$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

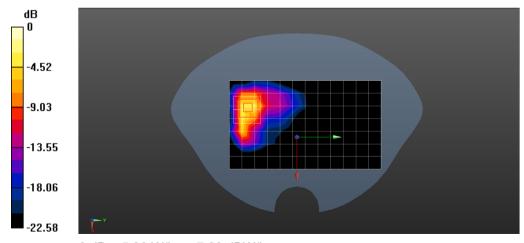
• Probe: EX3DV4 - SN7767; ConvF(8.91, 8.91, 8.91); Calibrated: 2022/10/28;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.43 W/kg

Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.675 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 6.54 W/kg

SAR(1 g) = 3.16 W/kg; SAR(10 g) = 1.4 W/kg Maximum value of SAR (measured) = 5.36 W/kg

0 dB = 5.36 W/kg = 7.29 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fulleast extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 113 of 127

Date: 2022/12/17

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

LTE Band 4 20M QPSK 1RB0 Back side Ch20050 10mm

DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, FDD_LTE (0); Frequency: 1720 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1720 MHz; $\sigma = 1.34$ S/m; $\epsilon_r = 39.251$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

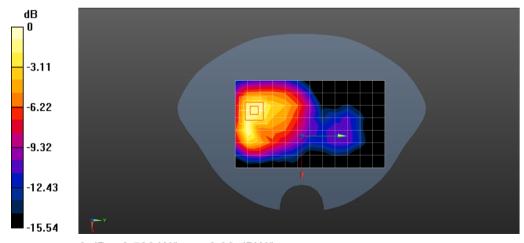
Probe: EX3DV4 - SN7767; ConvF(9.32, 9.32, 9.32); Calibrated: 2022/10/28;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.481 W/kg

Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.062 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.686 W/kg

SAR(1 g) = 0.455 W/kg; SAR(10 g) = 0.184 W/kg Maximum value of SAR (measured) = 0.589 W/kg

0 dB = 0.589 W/kg = -2.30 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fulleast extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 114 of 127

Date: 2022/12/17

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

LTE Band 4 20M QPSK 1RB0 Back side Ch20050 0mm

DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, FDD_LTE (0); Frequency: 1720 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1720 MHz; $\sigma = 1.34$ S/m; $\epsilon_r = 39.251$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

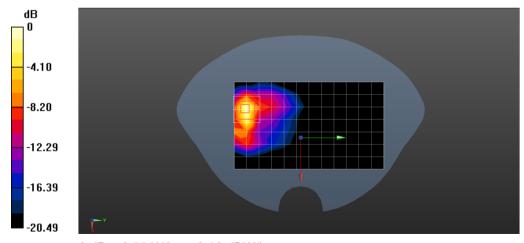
Probe: EX3DV4 - SN7767; ConvF(9.32, 9.32, 9.32); Calibrated: 2022/10/28;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 6.38 W/kg

Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.658 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 9.66 W/kg

SAR(1 g) = 4.18 W/kg; SAR(10 g) = 1.88 W/kg Maximum value of SAR (measured) = 6.55 W/kg

0 dB = 6.55 W/kg = 8.16 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fulleast extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 115 of 127

Date: 2022/12/16

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

LTE Band 5 10M QPSK 1RB0 Back side Ch20600 10mm

DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, FDD_LTE (0); Frequency: 844 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 844 MHz; $\sigma = 0.905$ S/m; $\epsilon_r = 41.828$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

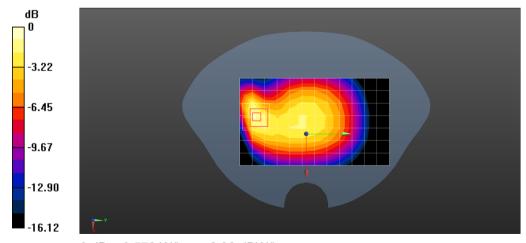
Probe: EX3DV4 - SN7767; ConvF(10, 10, 10); Calibrated: 2022/10/28;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.495 W/kg

Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.18 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.675 W/kg

SAR(1 g) = 0.389 W/kg; SAR(10 g) = 0.228 W/kg Maximum value of SAR (measured) = 0.578 W/kg

0 dB = 0.578 W/kg = -2.38 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fulleast extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 116 of 127

Date: 2022/12/16

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

LTE Band 5 10M QPSK 1RB0 Back side Ch20060 0mm

DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, FDD LTE (0); Frequency: 844 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 844 MHz; $\sigma = 0.905 \text{ S/m}$; $\epsilon_r = 41.828$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

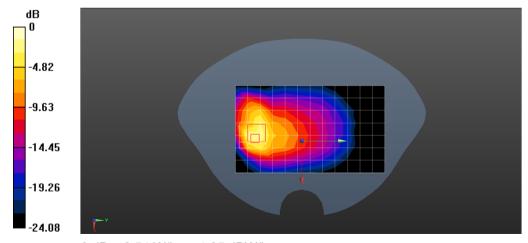
Probe: EX3DV4 - SN7767; ConvF(10, 10, 10); Calibrated: 2022/10/28;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.75 W/kg

Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.36 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 3.77 W/kg

SAR(1 g) = 1.32 W/kg; SAR(10 g) = 0.709 W/kg Maximum value of SAR (measured) = 2.54 W/kg

0 dB = 2.54 W/kg = 4.05 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fulleast extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300 t(86-512)57355888 f(86-512)57370818 www.sgsgroup.com.cn t(86-512)57355888 f(86-512)57370818 sgs.china@sgs.com

Report No.: KSCR221100235501

Page: 117 of 127

Date: 2023/03/03

Test Laboratory: Compliance Certification Services (Kunshan) Inc. LTE Band 7 20M QPSK 1RB50 Back side Ch21100 10mm

DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, FDD LTE (0); Frequency: 2535.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2535.5 MHz; $\sigma = 1.921 \text{ S/m}$; $\varepsilon_r = 39.607$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

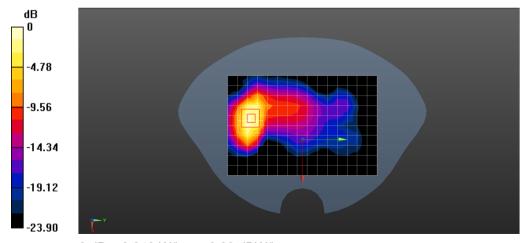
Probe: EX3DV4 - SN7767; ConvF(7.99, 7.99, 7.99); Calibrated: 2022/10/28;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (11x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.793 W/kg

Configuration/Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.358 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.595 W/kg; SAR(10 g) = 0.287 W/kg Maximum value of SAR (measured) = 0.949 W/kg

0 dB = 0.949 W/kg = -0.23 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fulleast extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 118 of 127

Date: 2023/03/03

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

LTE Band 7 20M QPSK 1RB50 Back side Ch21100 0mm

DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, FDD_LTE (0); Frequency: 2535.5 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2535.5 MHz; $\sigma = 1.921$ S/m; $\epsilon_r = 39.607$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

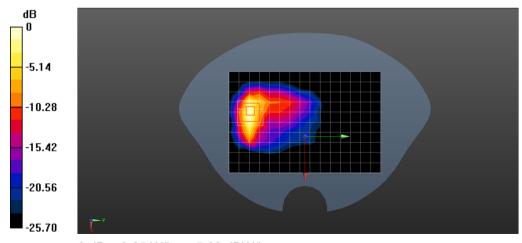
Probe: EX3DV4 - SN7767; ConvF(7.99, 7.99, 7.99); Calibrated: 2022/10/28;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (11x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 3.50 W/kg

Configuration/Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.850 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 5.02 W/kg

SAR(1 g) = 2.14 W/kg; SAR(10 g) = 0.891 W/kg Maximum value of SAR (measured) = 3.65 W/kg

0 dB = 3.65 W/kg = 5.62 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fulleast extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 119 of 127

Date: 2023/03/03

Test Laboratory: Compliance Certification Services (Kunshan) Inc. LTE Band 38 20M QPSK 1RB0 Back side Ch38000 10mm

DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, TDD LTE (0); Frequency: 2595 MHz; Duty Cycle: 1:1.57943

Medium parameters used: f = 2595 MHz; σ = 1.995 S/m; ε_r = 39.4; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

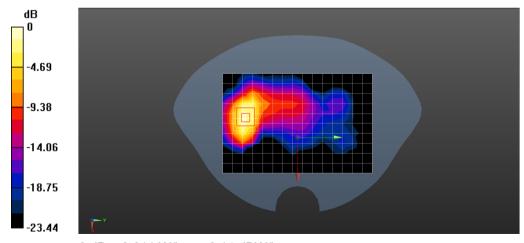
Probe: EX3DV4 - SN7767; ConvF(7.99, 7.99, 7.99); Calibrated: 2022/10/28;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (11x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.519 W/kg

Configuration/Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.126 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.748 W/kg

SAR(1 g) = 0.379 W/kg; SAR(10 g) = 0.183 W/kg Maximum value of SAR (measured) = 0.611 W/kg

0 dB = 0.611 W/kg = -2.14 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fulleast extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 120 of 127

Date: 2023/03/03

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

LTE Band 38 20M QPSK 1RB0 Back side Ch38000 0mm

DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, TDD_LTE (0); Frequency: 2595 MHz;Duty Cycle: 1:1.57943

Medium parameters used: f = 2595 MHz; σ = 1.995 S/m; ε_r = 39.4; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

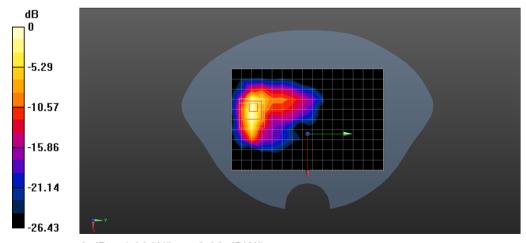
Probe: EX3DV4 - SN7767; ConvF(7.99, 7.99, 7.99); Calibrated: 2022/10/28;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (11x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.77 W/kg

Configuration/Head/Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.999 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 2.77 W/kg

SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.480 W/kg Maximum value of SAR (measured) = 1.93 W/kg

0 dB = 1.93 W/kg = 2.86 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fulleast extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 121 of 127

Date: 2022/12/19

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

WLAN2.4GHz 802.11b Back side Ch6 10mm DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, WiFi (0); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.808$ S/m; $\varepsilon_r = 39.955$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

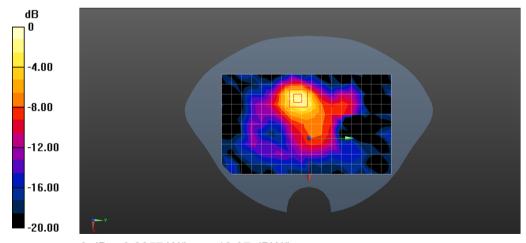
Probe: EX3DV4 - SN7767; ConvF(8.24, 8.24, 8.24); Calibrated: 2022/10/28;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.0660 W/kg

Configuration/Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.558 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.110 W/kg

SAR(1 g) = 0.059 W/kg; SAR(10 g) = 0.027 W/kg Maximum value of SAR (measured) = 0.0857 W/kg

0 dB = 0.0857 W/kg = -10.67 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fulleast extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 122 of 127

Date: 2022/12/19

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

WLAN2.4GHz 802.11b Back side Ch6 0mm DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, WiFi (0); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.808$ S/m; $\epsilon_r = 39.955$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

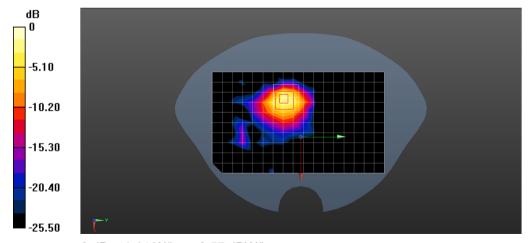
Probe: EX3DV4 - SN7767; ConvF(8.24, 8.24, 8.24); Calibrated: 2022/10/28;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.794 W/kg

Configuration/Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.780 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.56 W/kg

SAR(1 g) = 0.599 W/kg; SAR(10 g) = 0.249 W/kg Maximum value of SAR (measured) = 1.14 W/kg

0 dB = 1.14 W/kg = 0.57 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fulleast extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 123 of 127

Date: 2022/12/19

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

Bluetooth GFSK Back side Ch0 10mm DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, Bluetooth (0); Frequency: 2402 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2402 MHz; $\sigma = 1.771$ S/m; $\varepsilon_r = 40.176$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

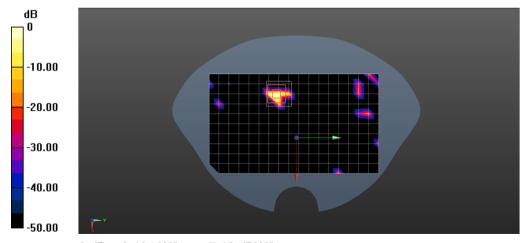
Probe: EX3DV4 - SN7767; ConvF(8.24, 8.24, 8.24); Calibrated: 2022/10/28;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.202 W/kg

Configuration/Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.290 W/kg

SAR(1 g) = 0.012 W/kg; SAR(10 g) = 0.002 W/kg Maximum value of SAR (measured) = 0.194 W/kg

0 dB = 0.194 W/kg = -7.12 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fulleast extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 124 of 127

Date: 2022/12/19

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

Bluetooth GFSK Back side Ch0 0mm

DUT: Android MiniPOS Terminal; Type: A80; ;

Communication System: UID 0, Bluetooth (0); Frequency: 2402 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2402 MHz; σ = 1.771 S/m; ϵ_r = 40.176; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

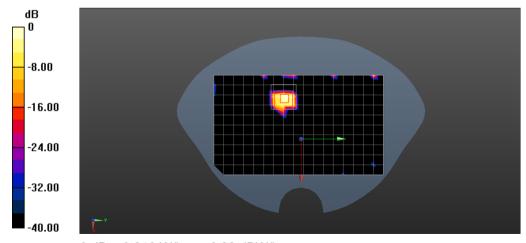
Probe: EX3DV4 - SN7767; ConvF(8.24, 8.24, 8.24); Calibrated: 2022/10/28;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.200 W/kg

Configuration/Head/Zoom Scan (7x7x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.440 W/kg

SAR(1 g) = 0.024 W/kg; SAR(10 g) = 0.004 W/kg Maximum value of SAR (measured) = 0.240 W/kg

0 dB = 0.240 W/kg = -6.20 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fulleast extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 125 of 127

Date: 2022/12/21

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

WLAN5GHz 802.11a Back side Ch36 10mm DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, WiFi (0); Frequency: 5180 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5180 MHz; $\sigma = 4.684 \text{ S/m}$; $\epsilon_r = 36.285$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

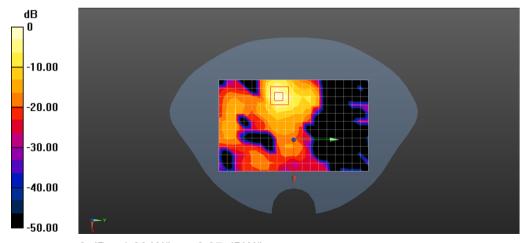
Probe: EX3DV4 - SN7767; ConvF(5.65, 5.65, 5.65); Calibrated: 2022/10/28;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (12x19x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.945 W/kg

Configuration/Head/Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 0.8870 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.55 W/kg

SAR(1 g) = 0.615 W/kg; SAR(10 g) = 0.173 W/kg Maximum value of SAR (measured) = 1.09 W/kg

0 dB = 1.09 W/kg = 0.37 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fulleast extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 126 of 127

Date: 2022/12/21

Test Laboratory: Compliance Certification Services (Kunshan) Inc.

WLAN5GHz 802.11a Back side Ch52 0mm DUT: Android MiniPOS Terminal; Type: A80;

Communication System: UID 0, WiFi (0); Frequency: 5180 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5180 MHz; $\sigma = 4.684 \text{ S/m}$; $\epsilon_r = 36.285$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

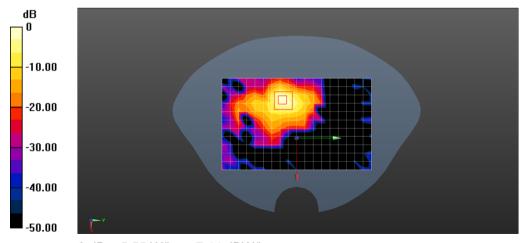
Probe: EX3DV4 - SN7767; ConvF(5.65, 5.65, 5.65); Calibrated: 2022/10/28;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1245; Calibrated: 2022/05/30

Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head/Area Scan (12x19x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 4.13 W/kg

Configuration/Head/Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 4.473 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 8.75 W/kg

SAR(1 g) = 2.52 W/kg; SAR(10 g) = 0.758 W/kg Maximum value of SAR (measured) = 5.55 W/kg

0 dB = 5.55 W/kg = 7.44 dBW/kg

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fulleast extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Report No.: KSCR221100235501

Page: 127 of 127

Appendix C: Calibration certificate

Appendix D: Photographs

- End of the Report -

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@cgs.com

No.10, Weiye Road, Innovation Park, Kunshan, Jiangsu, China 215300 中国・江苏・昆山市留学生创业园伟业路10号 邮编 215300

Member of the SGS Group (SGS SA)