February 28, 2000 Know-How Development Ltd. Block D, 4/F., Luk Hop Ind. Bldg., 8 Luk Hop Street, San Po Kong, Kowloon, Hong Kong. Dear Mr Leung: Enclosed you will find your file copy of a Part 15 Certification (FCC ID: OWF-KSS). We have forwarded the original, along with your check for \$940.00, to FCC. For your reference, FCC will normally take another 90 days for reviewing the report. Approval will then be granted when no query is sorted. Please contact me if you have any questions regarding the enclosed material. Sincerely, Wilson Loke Manager

Enclosure

Know-How Development Limited

Application
For
Certification
(FCC ID: OWF-KSS)

Transmitter

WO# 0000867 WL/at February 28, 2000

- The test results reported in this test report shall refer only to the sample actually tested and shall not refer or be deemed to refer to bulk from which such a sample may be said to have been obtained.
- This report shall not be reproduced except in full without prior authorization from Intertek Testing Services Hong Kong Limited
- For Terms And Conditions of the services, it can be provided upon request.

LIST OF EXHIBITS

INTRODUCTION

EXHIBIT 1: General Description

EXHIBIT 2: System Test Configuration

EXHIBIT 3: Emission Results

EXHIBIT 4: Equipment Photographs

EXHIBIT 5: Product Labelling

EXHIBIT 6: Technical Specifications

EXHIBIT 7: Instruction Manual

EXHIBIT 8: Miscellaneous Information

MEASUREMENT/TECHNICAL REPORT

Know-How Development Limited - MODEL: KSS - Wireless Cycle Computer FCC ID: OWF-KSS

February 28, 2000

This report concerns (check one:) On	iginal Grant <u>X</u>	Class II Change		
Equipment Type: Low Power Transmitter	example: computer,	printer, modem, etc.)		
Deferred grant requested per 47 CFR 0.4 X	57(d)(1)(ii)?	Yes No		
If yes, defer until:				
Company Name agrees to notify the Com	mission by:date			
of the intended date of announcement of that date.	he product so that the	grant can be issued on		
Transition Rules Request per 15.37? X		Yes No		
If no, assumed Part 15, Subpart C for i Edition] provision.	ntentional radiator - t	the new 47 CFR [10-1-96		
Report prepared by:	Interte 2/F., (576, (HONG	on Loke Ek Testing Services Garment Center, Castle Peak Road, G KONG :: 852-2173-8575		
		852-2745-8306		

Table of Contents

1.0 General Description	
1.1 Product Description	2
1.2 Related Submittal(s) Grants	2
1.3 Test Methodology	3
1.4 Test Facility	3
2.0 System Test Configuration	5
2.1 Justification	5
2.2 EUT Exercising Software	5
2.3 Special Accessories	5
2.4 Equipment Modification	6
2.5 Support Equipment List and Description	6
3.0 Emission Results	8
3.1 Field Strength Calculation	9
3.2 Radiated Emission Configuration Photograph	11
3.3 Radiated Emission Data	12
4.0 Equipment Photographs	
5.0 Product Labelling	17
6.0 Technical Specifications	19
7.0 Instruction Manual	21
8.0 Miscellaneous Information	
8.1 Input power	
8.2 Bandwidth plot	
9.3 Emissions Tast Procedures	26

List of attached file

Exhibit type	File Description	filename	
Cover Letter	Letter of Agency	letter.pdf	
Test Report	Test Report	report.doc	
Operation Description	Technical Description	descri.pdf	
Test Setup Photo	Radiated Emission	radiated1.jpg, radiated2.jpg	
Test Report	Bandwidth Plot	bw.pdf	
External Photo	External Photo	ophoto1.jpg to ophoto2.jpg	
Internal Photo	Internal Photo	iphoto1.jpg to iphoto2.jpg	
Block Diagram	Block Diagram	block.pdf	
Schematics	Circuit Diagram	circuit.pdf	
ID Label/Location	Label Artwork and Location label.pdf		
User Manual	User Manual	manual.pdf	

EXHIBIT 1

GENERAL DESCRIPTION

1.0 **General Description**

1.1 Product Description

The Equipment Under Test (EUT) is a Wireless Cycle Computer operating at 180kHz. The EUT is powered by 12V d.c. (1 x 12V "EF23A" battery). In normal use, it is attached to the left fork blade by zip ties using rubber shims to adjust to the diameter of the fork. The EUT will detect the rate of change of the magnetic flux generated by the magnet clamped on the front wheel spoke and transmit the speed information to the receiver.

For electronic filing, the brief circuit description is saved with filename: descri.pdf

1.2 Related Submittal(s) Grants

This is a single application for certification of a transmitter.

1.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.4 (1992). All measurements were performed in Open Area Test Sites. Preliminary scans were performed in the Open Area Test Sites only to determine worst case modes. For each scan, the procedure for maximizing emissions in Appendices D and E were followed. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application.

1.4 Test Facility

The open area test site and conducted measurement facility used to collect the emission data is located at Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong. This test facility and site measurement data have been fully placed on file with the FCC.

EXHIBIT 2

SYSTEM TEST CONFIGURATION

2.0 **System Test Configuration**

2.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in C63.4 (1992.)

The EUT was powered from 1 fully charged 12V "EF23A" battery.

For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported in Exhibit 3.0.

The unit was operated standalone and placed in the center of the turntable.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was placed on turntable, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes. The worst case bit sequence was applied during test.

For simplicity of testing, the unit was wired to transmit continuously.

2.2 EUT Exercising Software

There was no special software to exercise the device. Once the button is depressed, the unit transmits the typical signal. For simplicity of testing, the unit was wired to transmit continuously.

2.3 Special Accessories

There are no special accessories necessary for compliance of this product.

2.4 Equipment Modification

Any modifications installed previous to testing by Know-How Development Limited will be incorporated in each production model sold/leased in the United States.

No modifications were installed by Intertek Testing Services.

2.5 Support Equipment List and Description

This product was tested in a standalone configuration.

All the items listed under section 2.0 of this report are

Confirmed by:

Wilson Loke Manager Intertek Testing Services Hong Kong Ltd. Agent for Know-How Development Limited

Signature

Date

February 28, 2000

EXHIBIT 3

EMISSION RESULTS

3.0 **Emission Results**

Data is included worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

3.1 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

$$FS = RA + AF + CF - AG + PD + AV$$

where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

PD = Pulse Desensitization in dB

AV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

$$FS = RA + AF + CF - AG + PD + AV$$

3.1 Field Strength Calculation (cont'd)

Example

Assume a receiver reading of $62.0~dB\mu V$ is obtained. The antenna factor of 7.4~dB and cable factor of 1.6~dB is added. The amplifier gain of 29~dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0~dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is $32~dB\mu V/m$. This value in $dB\mu V/m$ was converted to its corresponding level in $\mu V/m$.

$$RA = 62.0 dB\mu V$$

$$AF = 7.4 dB$$

$$CF = 1.6 dB$$

$$AG = 29.0 dB$$

$$PD = 0 dB$$

$$AV = -10 dB$$

$$FS = 62 + 7.4 + 1.6 - 29 + 0 + (-10) = 32 dB\mu V/m$$

Level in mV/m = Common Antilogarithm [$(32 \text{ dB}\mu\text{V/m})/20$] = 39.8 $\mu\text{V/m}$

3.2 Radiated Emission Configuration Photograph

Worst Case Radiated Emission at 885 kHz

For electronic filing, the front view and back view of test configuration photograph is saved with filename: radiated1.jpg and radiated2.jpg respectively.

3.3 Radiated Emission Data

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Judgement: Passed by 7.7 dB

TEST PERSONNEL:

Signature

Ben W. K. Ho, Compliance Engineer *Typed/Printed Name*

February 28, 2000

Date

Company: Know-How Development Limited Date of Test: February 16, 2000

Model: KSS - Wireless Cycle Computer

Table 1

Radiated Emissions

Frequency	Reading	Antenna	Net	Limit	M argin
(kH z)	(dBµV)	Factor	at3m	at3m	(dB)
		(dB)	(dBµV /m)	(dBµV /m)	
177.00	30 . 5	11.3	41.8	62.6	<i>-</i> 20 . 8
347.00	28.7	11.2	39.9	56.7	-16.8
531.00	32.4	11.3	43.7	53.1	-9.4
708.00	25 . 5	11.3	36.8	50.6	-13.8
885.00	29.6	11.3	40.9	48.6	-7.7

Notes: 1. Peak Detector Data unless otherwise stated.

- 2. All measurements were made at 3 meter. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna and average detector are used for the emission over 1000MHz.

*Emission within the restricted band meets the requirement of part 15.205. The corresponding limit as per 15.209 is based on Quasi peak detector data for frequencies below 1000 MHz and average detector data for frequencies over 1000 MHz.

Test Engineer: Ben W. K. Ho

EXHIBIT 4

EQUIPMENT PHOTOGRAPHS

4.0 **Equipment Photographs**

For electronic filing, the photographs of the tested EUT are saved with filename: ophoto1.jpg to ophoto2.jpg for external photo and iphoto1.jpg to iphoto2.jpg for internal photo.

EXHIBIT 5

PRODUCT LABELLING

5.0 **Product Labelling**

For electronic filing, the FCC ID label artwork and the label location are saved with filename: label.pdf

EXHIBIT 6

TECHNICAL SPECIFICATIONS

6.0 <u>Technical Specifications</u>

For electronic filing, the block diagram and schematics of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

EXHIBIT 7

INSTRUCTION MANUAL

20

7.0 <u>Instruction Manual</u>

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf

This manual will be provided to the end-user with each unit sold/leased in the United States.

EXHIBIT 8

MISCELLANEOUS INFORMATION

8.0 <u>Miscellaneous Information</u>

This miscellaneous information includes details of the input power, bandwidth plot and the test procedure.

8.1 **Input Power**

The total input power to the EUT is measured to be 0.078W. The limit for the total input power to the final radio frequency stage is not exceeding 1.0 watt.

8.2 **Bandwidth Plot**

For electronic filing, the plot shows the fundamental emission when unmodulated is saved with filename: bw.pdf. From the plot, emissions below 160 kHz or above 190 kHz are attenuated at least 20 dB below the level of the unmodulated carrier.

8.3 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services in the measurements of transmitters operating under Part 15, Subpart C rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.4 - 1992.

The transmitting equipment under test (EUT) is placed on a wooden turntable which is four feet in diameter and approximately one meter in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjusted through all three orthogonal axes to obtain maximum emission levels. The antenna height and polarization are varied during the testing to search for maximum signal levels. The height of the antenna is varied from one to four meters.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in Exhibit 8.3.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower. For line conducted emissions, the range scanned is 450 kHz to 30 MHz.

8.3 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

Conducted measurements are made as described in ANSI C63.4 - 1992.

The IF bandwidth used for measurement of radiated signal strength was 100 kHz or greater when frequency is below 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. A discussion of whether pulse desensitivity is applicable to this unit is included in this report (See Exhibit 8.2). Above 1000 MHz, a resolution bandwidth of 1 MHz is used.

Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the forbidden bands and above 1 GHz, signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, unless otherwise reported. Measurements taken at a closer distance are so marked.