

APPENDIX E – PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

C Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Celltech Client

Certificate No: EX3-3600_Apr22

ALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3	600	
Calibration procedure(s)	QA CAL-25.v7	QA CAL-12.v9, QA CAL-14.v6, QA edure for dosimetric E-field probes	CAL-23.v5,
Calibration date:	April 20, 2022		
		tional standards, which realize the physical units probability are given on the following pages and	
All calibrations have been cor	nducted in the closed laborat	ory facility: environment temperature (22 \pm 3)°C a	and humidity < 70%.
Calibration Equipment used (I	M&TE critical for calibration)		
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23

Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-22 (No. 217-03527)	Apr-23
DAE4	SN: 660	13-Oct-21 (No. DAE4-660_Oct21)	Oct-22
Reference Probe ES3DV2	SN: 3013	27-Dec-21 (No. ES3-3013_Dec21)	Dec-22
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22

	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Seef Algan
Approved by:	Sven Kühn	Deputy Manager	5.2
This calibration certificate	e shall not be reproduced except in fi	ull without written approval of the laboratory	Issued: April 20, 2022

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage C
- Servizio svizzero di taratura S
 - Swiss Calibration Service

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to pligh probe songer X to the rebet sportingto system

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528. "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, v,z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Chart). This linearization is . implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW . signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal . characteristics
- Ax, y, z; Bx, y, z; Cx, y, z; Dx, y, z; VRx, y, z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside wavequide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m)²) ^A	0.48	0.48	0.38	± 10.1 %
DCP (mV) ^B	101.6	98.8	101.6	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unc ^E (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	147.6	± 2.5 %	± 4.7 %
		Υ	0.0	0.0	1.0		140.0		
		Z	0.0	0.0	1.0		146.8		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-124
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

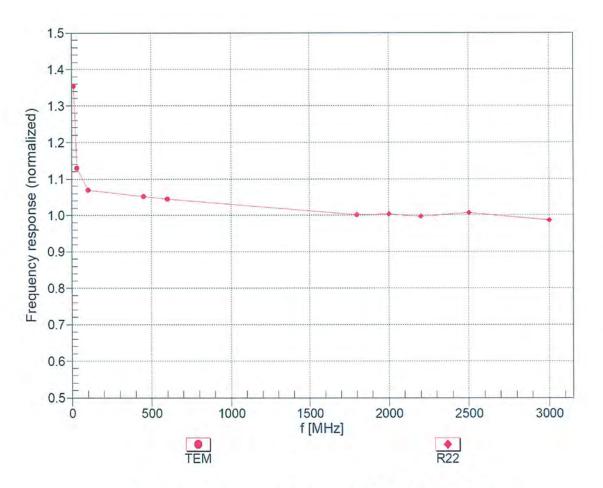
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
30	55.0	0.75	12.25	12.25	12.25	0.00	1.00	± 13.3 %
150	52.3	0.76	9.65	9.65	9.65	0.00	1.00	± 13.3 %
450	43.5	0.87	8.78	8.78	8.78	0.16	1.30	± 13.3 %
750	41.9	0.89	8.23	8.23	8.23	0.46	0.86	± 12.0 %
835	41.5	0.90	8.11	8.11	8.11	0.51	0.80	± 12.0 %
900	41.5	0.97	7.99	7.99	7.99	0.47	0.80	± 12.0 %
1640	40.2	1.31	7.45	7.45	7.45	0.28	0.86	± 12.0 %
1810	40.0	1.40	7.35	7.35	7.35	0.35	0.86	± 12.0 %
1900	40.0	1.40	7.30	7.30	7.30	0.33	0.86	± 12.0 %
2300	39.5	1.67	6.79	6.79	6.79	0.36	0.90	± 12.0 %
2450	39.2	1.80	6.58	6.58	6.58	0.33	0.90	± 12.0 %
2600	39.0	1.96	6.49	6.49	6.49	0.38	0.90	± 12.0 %
5250	35.9	4.71	4.55	4.55	4.55	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.18	4.18	4.18	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.16	4.16	4.16	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

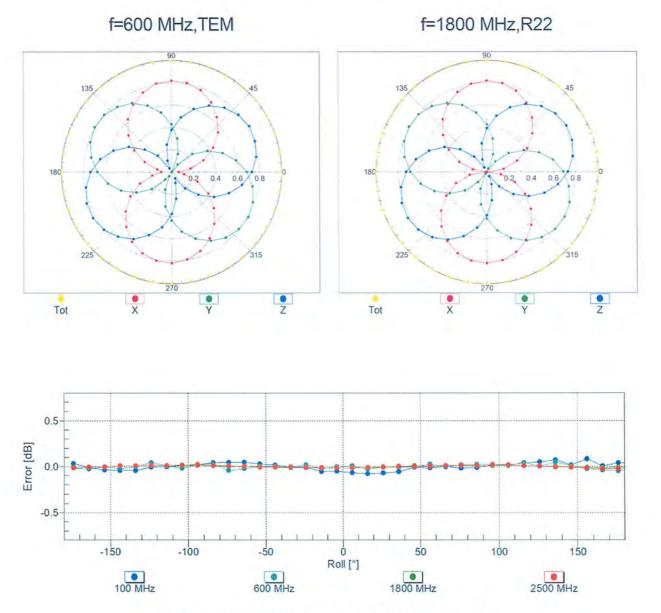
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

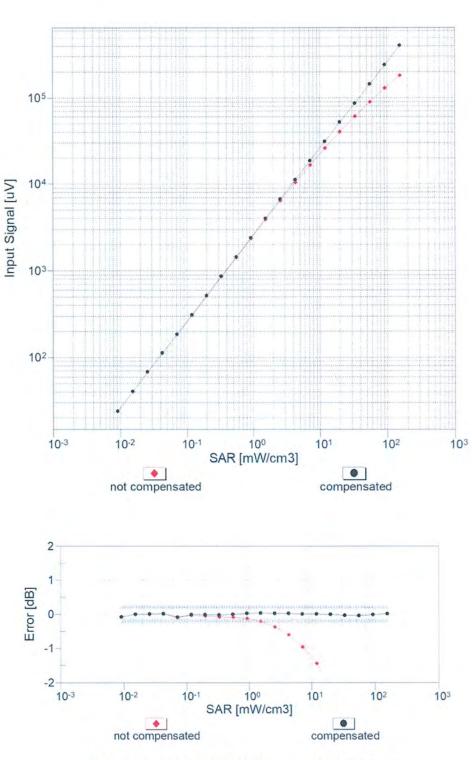

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
6500	34.5	6.07	4.75	4.75	4.75	0.20	2.50	± 18.6 %

Calibration Parameter Determined in Head Tissue Simulating Media

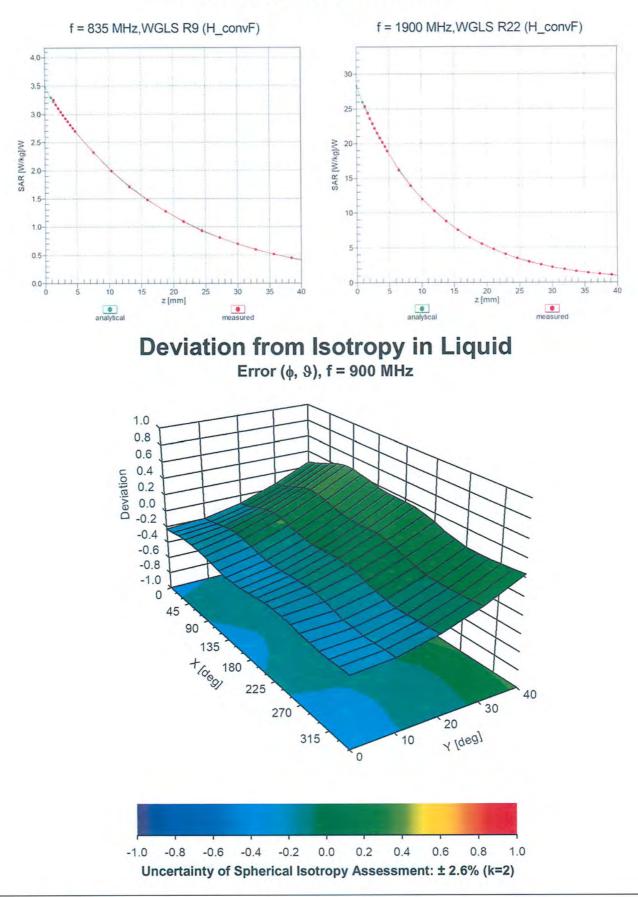
^c Frequency validity at 6.5 GHz is -600/+700 MHz, and ± 700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.


F At frequencies 6-10 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured

SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz; below ± 2% for frequencies between 3-6 GHz; and below ± 4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

APPENDIX F – DIPOLE CALIBRATION

Calibration Laboratory of Schmid & Partner **Engineering AG**

Celltech

Client

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
- Servizio svizzero di taratura S
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: CLA150-4007_Mar20

Object	CLA150 - SN: 4	007	
Calibration procedure(s)	QA CAL-15.v9 Calibration Proce	edure for SAR Validation Source	s below 700 MHz
Calibration date:	March 18, 2020		
the measurements and the uncer	tainties with confidence p	ional standards, which realize the physical ur probability are given on the following pages ar ry facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate.
Primary Standards	ID #		
minury orandarus	10 #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter NRP	SN: 104778	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893)	Scheduled Calibration
ower meter NRP ower sensor NRP-Z91		03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892)	Apr-20
ower meter NRP ower sensor NRP-Z91	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20 Apr-20
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91	SN: 104778 SN: 103244	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892)	Apr-20
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination	SN: 104778 SN: 103244 SN: 103245	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893)	Apr-20 Apr-20 Apr-20
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x)	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894)	Apr-20 Apr-20 Apr-20 Apr-20
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 deference 20 dB Attenuator ype-N mismatch combination deference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 5047.2 / 06327	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 5047.2 / 06327 SN: 3877	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-3877_Dec19)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-20
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B	SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 5047.2 / 06327 SN: 3877 SN: 654	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-3877_Dec19) 27-Jun-19 (No. DAE4-654_Jun19)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-20 Jun-20
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B	SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 5047.2 / 06327 SN: 3877 SN: 654	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-3877_Dec19) 27-Jun-19 (No. DAE4-654_Jun19) Check Date (in house)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-20 Jun-20 Scheduled Check
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 PAE4 Recondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 5047.2 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-3877_Dec19) 27-Jun-19 (No. DAE4-654_Jun19) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-20 Jun-20 Scheduled Check In house check: Jun-20
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A F generator HP 8648C	SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 5047.2 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: GB41293874 SN: MY41498087	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-3877_Dec19) 27-Jun-19 (No. DAE4-654_Jun19) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Jun-18)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-20 Jun-20 Scheduled Check In house check: Jun-20 In house check: Jun-20
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 deference 20 dB Attenuator ype-N mismatch combination deference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A F generator HP 8648C	SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 5047.2 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-3877_Dec19) 27-Jun-19 (No. DAE4-654_Jun19) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-20 Jun-20 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Agilent E8358A	SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 5047.2 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-3877_Dec19) 27-Jun-19 (No. DAE4-654_Jun19) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Jun-18)	Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-20 Jun-20 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Jun-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 5047.2 / 06327 SN: 654 ID # SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477	03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 31-Dec-19 (No. EX3-3877_Dec19) 27-Jun-19 (No. DAE4-654_Jun19) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 31-Mar-14 (in house check Oct-19)	Apr-20 Apr-20 Apr-20 Apr-20 Dec-20 Jun-20 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Oct-20

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- *Return Loss:* This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
EUT Positioning	Touch Position	
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	150 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	52.3	0.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	50.9 ± 6 %	0.76 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	1 W input power	3.89 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.87 W/kg ± 18.4 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	1 W input power	2.57 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	2.56 W/kg ± 18.0 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, trar	nsformed to feed point	44.9 Ω - 5.8 jΩ
Return Loss		- 21.8 dB

Additional EUT Data

Manufactured by	
manufactured by	SPEAG
	J JFEAG

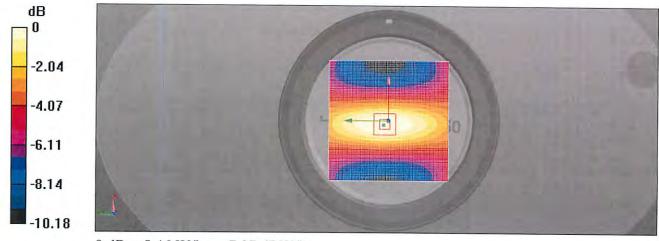
DASY5 Validation Report for Head TSL

Date: 18.03.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: CLA150; Type: CLA150; Serial: CLA150 - SN: 4007

Communication System: UID 0 - CW; Frequency: 150 MHz Medium parameters used: f = 150 MHz; $\sigma = 0.76$ S/m; $\varepsilon_r = 50.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(12.45, 12.45, 12.45) @ 150 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 27.06.2019
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

CLA Calibration for HSL-LF Tissue/CLA150, touch configuration, Pin=1W/Zoom Scan,

dist=1.4mm (8x10x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 85.15 V/m; Power Drift = -0.04 dB
Peak SAR (extrapolated) = 7.26 W/kg
SAR(1 g) = 3.89 W/kg; SAR(10 g) = 2.57 W/kg
Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 30 mm)
Ratio of SAR at M2 to SAR at M1 = 80.9%

Maximum value of SAR (measured) = 5.46 W/kg

0 dB = 5.46 W/kg = 7.37 dBW/kg

Impedance Measurement Plot for Head TSL

le <u>V</u> iew	2.111.101	augop	Calibration	Irace	Scale	Marker	System	Window	Help				
					K	_	12	1 15		0000 N			4.858
					$\langle \rangle$	\times	+-	A		182.22	2 pF	-5	.8227
				4	_/	X	X	11					
				1	7	4	XX	A					
				t		1 E			}				
				{	+	T	1-1	TH	ſ				
				t		X	X	DA.					
				1		X)	4-7	F 1					
	Ch 1 Avg =	~~			X		1-6	S.					
	1.01.4970 =	20				No.							
Ch1: St	art 100.000 M	Hz											
	art 100.000 M	Hz —	-									Stop 2	00.000 M
.00 [art 100.000 M	1Hz —	-				>	1 15	a dor	1000 M		-	
00	art 100.000 M	1Hz —					>	1: 15). doc	1000 M		-	^{оо.ооо} м .752 d
00 00 00	art 100.000 M	1Hz					>	1: 150).doc	1000 M		-	
00 00 00 00	art 100.000 M	4Hz —					, , ,	1: 150	D. Cloc	1000 M		-	
.00 00 .00 .00	art 100.000 M	4Hz					» {	1: 15	D. doc	1000 M		-	
00 00 00 00 00 00	art 100.000 M	4Hz					, 	1: 15	D. doc	0000 M		-	
00 00 00 00 00 3.00	art 100.000 M	4Hz					>	1: 15	D. doc	1000 M		-	
00 00 00 00 00 00 0.00 0.00 0.00 5.00	art 100.000 M	4H2					,	1: 15	D. C OC	0000 M		-	
00 00 .00 .00 .00 3.00 5.00	art 100.000 M	4H2					>	1: 15	D. C OC	1000 M		-	
00 00 00 00 00 00 3.00 3.00 3.00 3.00	art 100.000 h	1H2					>	1: 15		1000 M		-	
00 00 00 00 00 0.00 3.00 5.00 2.00	art 100.000 M	20					>	1: 150		1000 M	Hz	-21	

NCL CALIBRATION LABORATORIES

Calibration File No: DC-1905 Project Number: 5921

Client.: Celltech

Address: 21 - 364 Lougheed Road, Kelowna, BC V1X 7R8, Canada

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole (Head)

Manufacturer: SPEAG Part number: D450V3 Frequency: 450 MHz Serial No: 1068

Calibrated: 27/04/2021 Released on: 05/05/2021

This Calibration Certificate is incomplete unless accompanied by the Calibration Results Summary

Released by: Pieter Erasmus, Quality Manager Calibration Laboratories Suite 102, 303 Terryfox Dr. Division of APREL Lab. Ottawa, Ontario, K2K 3J1 Tel: (613) 435-8300 Canada Fax: (613) 435-8306

DC-1905

Conditions

Dipole SN 1068 was a re-calibration.

Ambient Temperature of the Laboratory: $21 \degree C + - 0.5\degree C$ Temperature of the Tissue: $21 \degree C + - 0.5\degree C$

Primary Measurement Standards

Instrument		Serial Number	r	Cal due date
Signal Generator	HP	83640B	3844A00689	Sept. 17, 2022
Network Analyzer	Keysight	E5063A	MY54502902	Mar. 9, 2023
Spectrum Analyzer	Keysight	N9030B	MY57140772	Apr. 20, 2023

Attestation

The below named signatories have conducted the calibration and review of the data which is presented in this calibration report.

We the undersigned attest that to the best of our knowledge the calibration has been accurately conducted and that all information contained within this report has been reviewed for accuracy and any uncertainties if applicable disclosed.

Pieter Erasmus **Quality** Manager

Maryna Nesterova Test and Calibration Engineer

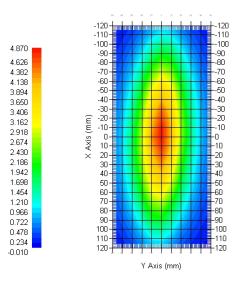
Calibration Results Summary

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions

Length	Height	Diameter
290.0 mm	166.7 mm	6.35 mm

Tissue Validation


Tissue	Frequency	Dielectric constant, εr	Conductivity, σ [S/m]
Head	450 MHz	45.10	0.86

Electrical Specification

Tissue	Frequency	Return Loss	Impedance	SWR
Head	450 MHz	-22.59 dB	47.12 Ω	1.16 U

System Validation Results

		ion results	1 W	1 W	
	Tissue	Frequency	1-Gram SAR	10-Gram SAR	Uncertainty
	Head	450 MHz	4.814	3.160	18.5%
-			250mW	250mW	
	Head		1.2035	0.79	

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Dipole 1068. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 30 MHz to 6 GHz E-Field Probe Serial Number 225.

References

o IEEE Standard 1528:2013

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques

- EN 62209-1:2016
 Human Exposure to RF Fields from hand-held and body-mounted wireless communication devices - Human models. instrumentation, and procedures - Part 1: Procedure to measure the Specific Absorption Rate (SAR) for hand-held mobile wireless devices
- IEC 62209-2:2019
 Human exposure to RF fields from hand-held and body-mounted wireless devices -Human models, instrumentation, and procedures - Part 2: specific absorption rate (SAR) for wireless communication devices (30 MHz - 6 GHz)
- o D22-012-Tissue dielectric tissue calibration procedure
- D28-002-Dipole procedure for validation of SAR system using a dipole
- IEEE 1309 Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9 kHz to 40 GHz

Conditions

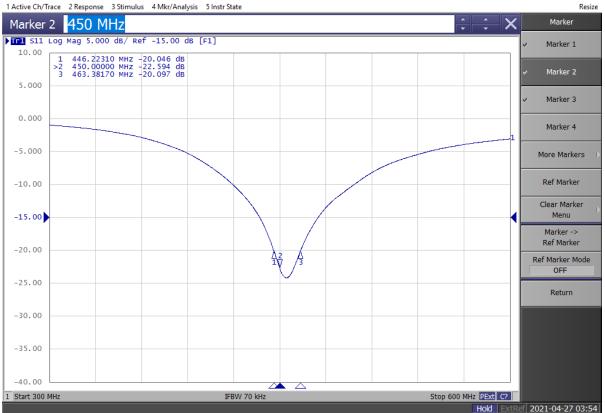
Ambient Temperature of the Laboratory:	21	°C +/-	• 0.5°C
Temperature of the Tissue:	21	°C +/-	∙ 0.5°C

Dipole Calibration uncertainty

The calibration uncertainty for the dipole is made up of various parameters presented below.

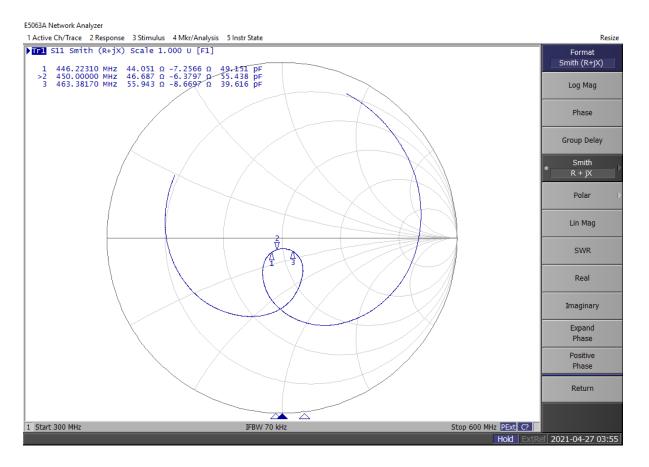
	Tolerance, %
Mechanical	2.00
Positioning Error	0.10
Electrical	0.37
Tissue Permittivity	3.68
Tissue Conductivity	1.51
Dipole Validation	1.70
Combined Uncertainty,	
k=2	3.90

The Following Graphs are the results as displayed on the Vector Network Analyzer. **Electrical Calibration**


Test	Head
S11 R/L	-22.59 dB
Impedance	47.12 Ω
SWR	1.16 U

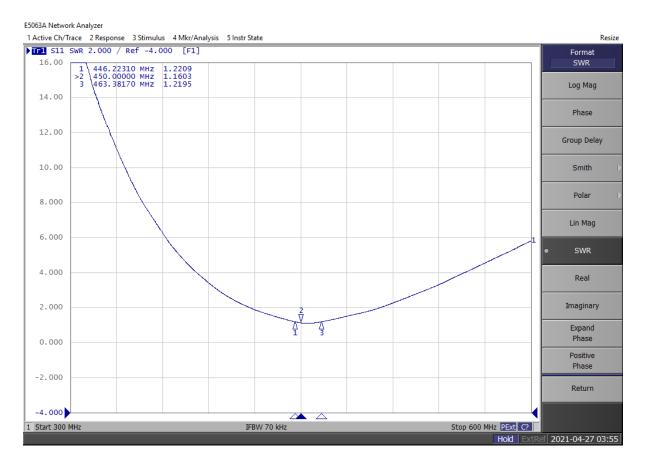
S11 Parameter Return Loss

Head


Frequency Range 446.22 MHz to 463.38MHz

E5063A Network Analyzer

Smith Chart Dipole Impedance


Head

Dipole SN: 1068

SWR

Head

Dipole SN: 1068

APPENDIX G - PHANTOM

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Certificate of Conformity / First Article Inspection

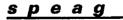
Item	Oval Flat Phantom ELI 5.0
Type No	QD OVA 002 A
Series No	1108 and higher
Manufacturer	Untersee Composites
	Knebelstrasse 8, CH-8268 Mannenbach, Switzerland

Tests

Complete tests were made on the prototype units QD OVA 001 A, pre-series units QD OVA 001 B as well as on some series units QD OVA 001 B. Some tests are made on all series units QD OVA 002 A.

Test	Requirement	Details	Units tested
Shape	Internal dimensions, depth and sagging are compatible with standards	Bottom elliptical 600 x 400 mm, Depth 190 mm, dimension compliant with [1] for f > 375 MHz	Prototypes
Material thickness	Bottom: 2.0mm +/- 0.2mm	dimension compliant with [3] for f > 800 MHz	all
Material parameters	rel. permittivity 2 – 5, loss tangent \leq 0.05, at f \leq 6 GHz	rel. permittivity 3.5 +/- 0.5 loss tangent ≤ 0.05	Material samples
Material resistivity	Compatibility with tissue simulating liquids .	Compatible with SPEAG liquids. **	Phantoms, Material sample
Sagging	Sagging of the flat section in tolerance when filled with tissue simulating liquid.	within tolerance for filling height up to 155 mm	Prototypes, samples

** Note: Compatibility restrictions apply certain liquid components mentioned in the standard, containing e.g. DGBE, DGMHE or Triton X-100. Observe technical note on material compatibility.


Standards

- [1] OET Bulletin 65, Supplement C, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition 01-01
- [2] IEEE 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, December 2003
- [3] IEC 62209–1 ed1.0, "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", 2005-02-18
- [4] IEC 62209–2 ed1.0, "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", 2010-03-30

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of **body-worn** SAR measurements and system performance checks as specified in [1 - 4] and further standards.

Date 25.7.2011

Schmid & Partner-Engineering/AG Zeugbavestrasse 43, 8004 Zorich, Switzerland Phone/441 44/255 9708, Fax 444 64445 9779 info@speag.com, http://www.speag.com

Signature / Stamp