

Test Report Serial Number: Test Report Date: Project Number: 45461754 R5.0 24 April 2023 1604

| SAR Test Report - New Certification                                                |                  |                                                                     |                                                 |            |  |  |
|------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------|-------------------------------------------------|------------|--|--|
| Applicant:<br><b>L3HARRIS™</b><br>FAST. FORWARD.                                   | TNF<br>Si        | mum <u>report</u><br>FACE:<br>BODY:<br>multaneous:<br>ionnal Limit: | <u>ted</u> 1g S<br>3.15<br>5.77<br>5.77<br>8.00 | AR<br>W/kg |  |  |
| L3Harris Corporation<br>221 Jefferson Ridge Parkway<br>Lynchburg, VA, 24501<br>USA |                  |                                                                     | 0.00                                            |            |  |  |
| FCC ID:                                                                            | 15               | ED Registratio                                                      | n Number                                        |            |  |  |
| OWDTR-0166-E                                                                       |                  | 3636B-0                                                             |                                                 |            |  |  |
| Product Name / PMN                                                                 | Pro              | duct Model Nur                                                      | mber / HVI                                      | N          |  |  |
| XL-95P                                                                             | XL-95P XL-x5-V/U |                                                                     |                                                 |            |  |  |
| XL-45P                                                                             |                  |                                                                     |                                                 |            |  |  |

In Accordance With:

# FCC 47 CFR §2.1093

Radiofrequency Radiation Exposure Evaluation: Portable Devices

# IC RSS-102 Issue 5

Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

Approved By:

Ben Hewson, President Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8 Canada





IC Registration 3874A



This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc.

© 2023 Celltech Labs Inc,



# **Table of Contents**

| 1.0 REVISION HISTORY                                   | 5  |
|--------------------------------------------------------|----|
| 2.0 CLIENT AND DEVICE INFORMATION                      | 6  |
| 3.0 SCOPE OF EVALUATION/DATA REUSE                     | 7  |
| 4.0 NORMATIVE REFERENCES                               |    |
| 5.0 STATEMENT OF COMPLIANCE                            |    |
| 6.0 RF CONDUCTED POWER MEASUREMENT                     |    |
| TABLE 6.1 CONDUCTED POWER – VHF/UHF                    |    |
| TABLE 6.2 CONDUCTED POWER – WIFI/BT                    |    |
| 7.0 NUMBER OF TEST CHANNELS (Nc)                       |    |
| 8.0 ACCESSORIES EVALUATED                              |    |
| TABLE 8.1 MANUFACTURER'S ACCESSORY LIST                |    |
| 9.0 SAR MEASUREMENT SUMMARY                            |    |
| TABLE 9.1: MEASURED RESULTS LMR VHF/UHF – BODY         |    |
| TABLE 9.2: MEASURED RESULTS WLAN 2.4G & BT BAND – BODY |    |
| TABLE 9.3: MEASURED RESULTS WLAN 5G BAND – BODY        |    |
| TABLE 9.4: MEASURED RESULTS LMR VHF/UHF – FACE         |    |
| TABLE 9.5: MEASURED RESULTS WLAN 2.4G & BT BAND – FACE |    |
| TABLE 9.6: MEASURED RESULTS WLAN 5G BAND – FACE        |    |
| 10.0 SCALING OF MAXIMUM MEASURE SAR                    | 21 |
| TABLE 10.1 SAR SCALING – LMR                           |    |
| TABLE 10.1 SAR SCALING – LMR (CONT.)                   |    |
| 11.0 ANALYSIS OF SIMULTANEOUS TRANSMISSION             |    |
| TABLE 11.1 LIST OF POSSIBLE TRANSMITTERS               |    |
| TABLE 11.2 LIST OF POSSIBLE TRANSMITTERS COMBINATIONS  |    |
| TABLE 11.3 ANALYSIS OF SUM-OF-THE-RATIOS               |    |
| 12.0 SAR EXPOSURE LIMITS                               |    |
| TABLE 12.1 EXPOSURE LIMITS                             |    |



| 13.0 DETAILS OF SAR EVALUATION                                           |    |
|--------------------------------------------------------------------------|----|
| TABLE 13.1 DAY LOG                                                       | 27 |
| TABLE 13.2 DUT POSITIONING                                               |    |
| TABLE 13.3 GENERAL PROCEDURES AND REPORT                                 |    |
| TABLE 13.4 FLUID DIELECTRIC AND SYSTEMS PERFORMANCE CHECK                |    |
| TABLE 13.5 SCAN RESOLUTION 100MHz TO 2GHz                                |    |
| TABLE 13.6 SCAN RESOLUTION 2GHz TO 3GHz                                  |    |
| TABLE 13.7 SCAN RESOLUTION 5GHz TO 6GHz                                  |    |
| 14.0 MEASUREMENT UNCERTAINTIES                                           |    |
| TABLE 14.1 MEASUREMENT UNCERTAINTY                                       |    |
| TABLE 14.2 CALCULATION OF DEGREES OF FREEDOM                             |    |
| 15.0 FLUID DIELECTRIC PARAMETERS                                         |    |
| TABLE 15.1 FLUID DIELECTRIC PARAMETERS 450MHz HEAD TSL, 26 AUGUST 2022   |    |
| TABLE 15.2 FLUID DIELECTRIC PARAMETERS 450MHz HEAD TSL, 29 AUGUST 2022   |    |
| TABLE 15.3 FLUID DIELECTRIC PARAMETERS 150MHz HEAD TSL, 1 SEPTEMBER 2022 |    |
| 16.0 SYSTEM VERIFICATION TEST RESULTS                                    |    |
| TABLE 16.1 SYSTEM VERIFICATION RESULTS 450MHz HEAD TSL, 26 AUGUST 2022   |    |
| TABLE 16.2 SYSTEM VERIFICATION RESULTS 450MHz HEAD TSL, 29 AUGUST 2022   |    |
| TABLE 16.3 SYSTEM VERIFICATION RESULTS 150MHz HEAD TSL, 1 SEPTEMBER 2022 |    |
| 17.0 MEASUREMENT SYSTEM SPECIFICATIONS                                   |    |
| TABLE 17.1 MEASUREMENT SYSTEM                                            |    |
| TABLE 17.2 MEASUREMENT SYSTEM SPECIFICATIONS                             |    |
| 18.0 TEST EQUIPMENT LIST                                                 |    |
| TABLE 18.1 EQUIPMENT LIST AND CALIBRATION                                |    |
| 19.0 SYSTEM VALIDATION SUMMARY                                           |    |
| 20.0 FLUID COMPOSITION                                                   |    |
| TABLE 20.1 FLUID COMPOSITION 150MHz HEAD TSL                             |    |
| TABLE 20.1 FLUID COMPOSITION 50MHz HEAD TSL                              |    |



| APPENDIX A – SYSTEM VERIFICATION PLOTS                      | 50 |
|-------------------------------------------------------------|----|
| PLOT A.1 SYSTEM VERIFICATION PLOT, 450MHz, 26 AUGUST 2022   |    |
| PLOT A.2 SYSTEM VERIFICATION PLOT, 450MHz, 29 AUGUST 2022   |    |
| PLOT A.3 SYSTEM VERIFICATION PLOT, 150MHz, 1 SEPTEMBER 2022 |    |
| APPENDIX B – MEASUREMENT PLOTS OF MAXIMUM MEASURED SAR      |    |
| PLOT B10 MEASUREMENT PLOT                                   |    |
| PLOT F10 MEASUREMENT PLOT                                   |    |
| PLOT B16 MEASUREMENT PLOT                                   |    |
| APPENDIX C - SETUP PHOTOS                                   |    |
| FIGURE C.1 - BODY CONFIGURATION, KRE1011223/12 ANTENNA      |    |
| FIGURE C.2 - FACE CONFIGURATION, KRE1011219/14 ANTENNA      |    |
| FIGURE C.3 - BODY CONFIGURATION, KRE1011219/14 ANTENNA      |    |
| APPENDIX D – DUT PHOTOS                                     |    |
| FIGURE D.1 – XL-95P – FRONT                                 | 65 |
| FIGURE D.2 – XL-95P – BACK                                  |    |
| FIGURE D.3 – XL-95P – RIGHT                                 | 67 |
| FIGURE D.4 – XL-95P – LEFT                                  | 67 |
| FIGURE D.5 – XL-95P – TOP                                   |    |
| FIGURE D.6 – XL-95P – BOTTOM                                |    |
| Figure D.7 – P3 – 14002-0214-01 Li-Ion Battery              |    |
| Figure D.8 – P5 – 14002-0214-03 – Li-Ion Battery            |    |
| FIGURE D.9– ANTENNA - T1, T2, T3, T4, T5                    | 71 |
| Figure D.10– Antenna - T6, T7, T8, T9, T10, T11             | 72 |
| FIGURE D.11– B2 - CC23894 BELT CLIP                         | 73 |
| FIGURE D.12– XL-95P, T11, B2, A53                           | 74 |
| APPENDIX E – PROBE CALIBRATION                              | 75 |
| APPENDIX F – DIPOLE CALIBRATION                             | 76 |
| APPENDIX G - PHANTOM                                        | 77 |



# **1.0 REVISION HISTORY**

|          |                  | Revision Hi                                            | story         |                                             |                   |  |  |  |
|----------|------------------|--------------------------------------------------------|---------------|---------------------------------------------|-------------------|--|--|--|
| San      | nples Tested By: | ples Tested By: Ben Hewson Trevor Whillock             |               | Date(s) of Evaluation: 26 Aug - 2 Sep, 2022 |                   |  |  |  |
| Rep      | ort Prepared By: | Art Voss, P.Eng.                                       | Rep           | ort Reviewed By:                            | Art Voss          |  |  |  |
| Report   | Revised          |                                                        | Revised       | Revised                                     | Revision Date     |  |  |  |
| Revision |                  | Description of Revision                                | Section       | Ву                                          | Revision Date     |  |  |  |
| 0.1      |                  | Draft                                                  | n/a           | Art Voss                                    | 20 September 2022 |  |  |  |
|          | Corrected refe   | erence to Audio Device evaluated, Tables 8.1, 9.1, 9.4 | 8.0, 9.0      |                                             |                   |  |  |  |
| 0.2      |                  | Corrected DUT Photos Appendic C                        | App. C        | Art Voss                                    | 23 September 2022 |  |  |  |
| ſ        |                  | Added Test Reduction note to Table 6.1                 | 6.0           |                                             |                   |  |  |  |
| 1.0      |                  | Initial Release                                        | n/a           | Art Voss                                    | 29 September 2022 |  |  |  |
|          |                  | Revised Rated Power                                    | 2.0, 6.0      |                                             |                   |  |  |  |
| 2.0      |                  | Removed Reference to U-NII-II Band                     | 6.0,9.0       | Art Voss                                    | 23 October 2022   |  |  |  |
| 2.0      |                  | Revised <u>reported</u> SAR                            | Cover, 10.0   | All VOSS                                    | 23 October 2022   |  |  |  |
| ſ        | Adde             | d Validation Source Extended Cal Information           | 19.0          |                                             |                   |  |  |  |
| 2.1      |                  | Corrected WiFi/BT Conducted Power                      | 2.0, 6.0      | Art Voss                                    | 26 October 2022   |  |  |  |
|          |                  | Corrected WiFi/BT Conducted Power                      | 6.0, 9.0      |                                             |                   |  |  |  |
| 3.0      | Add              | Added B3 measurement to reported SAR results           |               | Art Voss                                    | 1 February 2023   |  |  |  |
|          | Adde             | d Validation Source Extended Cal Information           | 19.0          |                                             |                   |  |  |  |
| 4.0      |                  | Revised for DTS/DSS/UNII Certification                 |               | Art Voss                                    | 22 March 2023     |  |  |  |
| 4.0      |                  | Corrected UNII Conducted Power                         | 2.0, 6.0, 9.0 | Art Voss                                    | 24 April 2023     |  |  |  |



### 2.0 CLIENT AND DEVICE INFORMATION

| Client Information                    |                                                                          |  |  |  |  |
|---------------------------------------|--------------------------------------------------------------------------|--|--|--|--|
| Applicant Name                        | Harris Corporation                                                       |  |  |  |  |
|                                       | 221 Jefferson Ridge Parkway                                              |  |  |  |  |
| Applicant Address                     | Lynchburg, VA, 24501                                                     |  |  |  |  |
|                                       | USA                                                                      |  |  |  |  |
| DUT Information                       |                                                                          |  |  |  |  |
| Device Identifier(s):                 | FCC ID: OWDTR-0166-E                                                     |  |  |  |  |
|                                       | ISED: 3636B-0166                                                         |  |  |  |  |
| Device Marketing Name / PMN:          | XL-95P, XL-45P                                                           |  |  |  |  |
| Device Model(s) / HVIN:               | XL-x5-V/U                                                                |  |  |  |  |
| Test Sample Serial No.:               | A40199E2A003                                                             |  |  |  |  |
|                                       | Licensed Non-Broadcast Transmitter Held to Face (TNF) FCC Part 90 - LMRS |  |  |  |  |
|                                       | Digital Transmission System (DTS) FCC Part 15C - WiFi                    |  |  |  |  |
| Equipment Class (FCC):                | Spread Spectrum Transmitter (DSS) FCC Part 15C - BT                      |  |  |  |  |
|                                       | Unlicensed National Information Infrastructure (NII) FCC Part 15E - WiFi |  |  |  |  |
|                                       | Land Mobile Radio - Portable (27.41-960MHz) RSS-119                      |  |  |  |  |
|                                       | Other - WiFi (RSS-247)                                                   |  |  |  |  |
| Equipment Class (ISED):               | Other - BT (RSS-247)                                                     |  |  |  |  |
|                                       | Wireless Local Area Network - (RSS-247)                                  |  |  |  |  |
|                                       | VHF: 136-174MHz                                                          |  |  |  |  |
|                                       | UHF: 378-522MHz                                                          |  |  |  |  |
| Transmit Frequency Range:             | BT: 2402-2480MHz                                                         |  |  |  |  |
|                                       | WiFI 2.4G: 2412-2462MHz                                                  |  |  |  |  |
|                                       | WiFi 5G: 5180-5240MHz, 5745-5825MHz                                      |  |  |  |  |
| Number of Channels:                   | Programmable                                                             |  |  |  |  |
| Transmitter Rated Power               | VHF: 38.1dBm +0.1dB                                                      |  |  |  |  |
| With Tune-Up Tolerance:               | UHF: 37.3dBm +0.1dB                                                      |  |  |  |  |
|                                       | BT: 0.0016W (2dBm) + 0.5 / -3dB                                          |  |  |  |  |
|                                       | WLAN 2.4G: 0.0083W (9.2dBm) +0.5 / -3dB                                  |  |  |  |  |
|                                       | WLAN 5G: 5180-5240MHz: 0.004W (6.3dBm) +0.5 / -3dB                       |  |  |  |  |
|                                       | WLAN 5G: 5745-5825MHz: 0.002W (3.3dBm) +0.5 / -3dB                       |  |  |  |  |
| Duty Cycle:                           | BT/WLAN: 100%, LMR: 50% PTT Duty Cycle                                   |  |  |  |  |
| DUT Power Source:                     | 7.4VDC Li-Ion Rechargeable Battery, AA Alkaline Battery                  |  |  |  |  |
| Deviation(s) from standard/procedure: | None                                                                     |  |  |  |  |
| Modification of DUT:                  | None                                                                     |  |  |  |  |



## 3.0 SCOPE OF EVALUATION/DATA REUSE

This Certification Report was prepared on behalf of:

#### Harris Corporation

,(the 'Applicant"), in accordance with the applicable Federal Communications Commission (FCC) CFR 47 and Innovation, Scientific and Economic Development (ISED) Canada rules parts and regulations (the '*Rules*'). The scope of this investigation was limited to only the equipment, devices and accessories (the '*Equipment*') supplied by the *Applicant*. The tests and measurements performed on this *Equipment* were only those set forth in the applicable *Rules* and/or the Test and Measurement Standards they reference. The *Rules* applied and the Test and Measurement Standards used during this evaluation appear in the Normative References section of this report. The limits set forth in the technical requirements of the applicable *Rules* were applied to the measurement results obtained during this evaluation and ,unless otherwise noted, these limits were used as the Pass/Fail criteria. The Pass/Fail statements made in this report apply to only the tests and measurement data and/or results from previous evaluations of same or similar equipment, devices and/or accessories may be cited in this report.

As per FCC 47 CFR Part §2.1091 and §2.1093, an RF Exposure evaluation report is required for this *Equipment* and the results of the RF Exposure evaluation appear in this report.

The XL-x5-V/U, FCC ID: **OWDTR-0166-E**, IC ID: **3636B-0166**, is a dual band VHF/UHF Push-To-Talk (PTT), Licensed Mobile Radio Service (LMRS) transceiver intended for Occupational Use. This "host" employs WiFi and Bluetooth transceivers. The XL-x5-V/U is similar to the XG-75P (FCC ID: OWDTR-0074-E, IC ID: 3636B-0074) and XL-x5-7/8 (FCC ID: OWDTR-0162-E IC ID: 3636B-0162), which have been previously evaluated for SAR and the results of those previous evaluations were taken into consideration when developing the XL-x5-V/U SAR Test Plan. The XL-x5-V/U uses the same accessories as the XG-75P and XL-x5-V/U and these accessories and additional accessories were also taken into consideration and/or evaluated. The XL-x5-V/U form-factor, PCB and WiFi/BT transmitter are identical to the XL-x5-7/8 with the exception of LMR component values. SAR measurement data from the XL-x5-7/8 WiFi/BT transmitters have also been taken into consideration.

#### **Application:**

This is an application for a new device certification.

#### Scope:

The scope of this investigation is to evaluate the SAR for intended use applications. It will include an extensive evaluation of the LMR transmitter and all simultaneous transmission conditions that can occur with this host device. The analysis of the Standalone and Simultaneous Transmission SAR if found in Section 11.0 of this report.

The Test Plan developed for this evaluation is based on the required test channels and configurations which produced the highest worst case SAR and where applicable, SAR test reduction and/or SAR test exclusion may be utilized. The DUT was evaluated for SAR at the maximum tune up tolerance and conducted output power level, preset by the manufacturer and in accordance with the procedures described in IEC/IEEE 62209-1528, FCC KDB 447498 D01v06r02, 643646, 248227, and RSS 102.



## **4.0 NORMATIVE REFERENCES**

|                             | Normative References*                                                                                           |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------|
| ANSI / ISO 17025:2017       | General Requirements for competence of testing and calibration laboratories                                     |
| FCC CFR Title 47 Part 2     | Code of Federal Regulations                                                                                     |
| Title 47:                   | Telecommunication                                                                                               |
| Part 2.1093:                | Radiofrequency Radiation Exposure Evaluation: Portable Devices                                                  |
| Health Canada               |                                                                                                                 |
| Safety Code 6 (2015)        | Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range<br>from 3kHz to 300GHz |
| Industry Canada Spectrum    | Management & Telecommunications Policy                                                                          |
| RSS-102 Issue 5:            | Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)                       |
| IEEE International Committe | ee on Electromagnetic Safety                                                                                    |
| IEC/IEEE 62209-1528         | frequency                                                                                                       |
|                             | fields from hand-held and body-mounted wireless communication devices –                                         |
|                             | Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz)                   |
| FCC KDB                     |                                                                                                                 |
| KDB 248227 D01v02r02        | SAR Guidance for IEEE 802.11 (WiFi) Transmitters                                                                |
| FCC KDB                     |                                                                                                                 |
| KDB 447498 D01v06           | Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies                         |
| FCC KDB                     |                                                                                                                 |
| KDB 643646 D01v01r03        | SAR Test Reduction Considerations for Occupational PTT Radios                                                   |
| FCC KDB                     |                                                                                                                 |
| KDB 690783 D01v01r03        | SAR Listings on Equipment Authorization Grants                                                                  |
| FCC KDB                     |                                                                                                                 |
| KDB 865664 D01v01r04        | SAR Measurement Requirements for 100MHz to 6GHz                                                                 |
| * When the issue number     | or issue date is omitted, the latest version is assumed.                                                        |



#### 5.0 STATEMENT OF COMPLIANCE

This measurement report demonstrates that samples of the product model(s) were evaluated for Specific Absorption Rate (SAR) on the date(s) shown, in accordance with the Measurement Procedures cited and were found to comply with the Standard(s) Applied based on the Exposure Limits of the Use Group indicated for which the product is intended to be used.

| Applicant:                    | Model Name / PMN:                  |                               |
|-------------------------------|------------------------------------|-------------------------------|
| Harris Corporation            | XL-95P, XL-45P                     |                               |
| Standard(s) Applied:          | Measurement Procedure(s):          |                               |
| FCC 47 CFR §2.1093            | FCC KDB 865664, FCC KDB 447498, FC | C KDB 643646, FCC KDB 248227  |
| Health Canada's Safety Code 6 | Industry Canada RSS-102 Issue 5    |                               |
|                               | IEC/IEEE 62209-1528                |                               |
| Reason For Issue:             | Use Group:                         | Limits Applied:               |
| X New Certification           | General Population / Uncontrolled  | 1.6W/kg - 1g Volume           |
| Class I Permissive Change     |                                    | X 8.0W/kg - 1g Volume         |
| Class II Permissive Change    | X Occupational / Controlled        | 4.0W/kg - 10g Volume          |
| Reason for Change:            | ·                                  | Date(s) Evaluated:            |
| Original Filing               |                                    | 26 August - 2 September, 2022 |

The results of this investigation are based solely on the test sample(s) provided by the applicant which was not adjusted, modified or altered in any manner whatsoever except as required to carry out specific tests or measurements. A description of the device, operating configuration, detailed summary of the test results, methodologies and procedures used during this evaluation, the equipment used and the various provisions of the rules are included in this test report.

| I attest that the data reported herein is true and accurate within the tolerance of the Measurement<br>Instrument Uncertainty; that all tests and measurements were performed in accordance with<br>accepted practices or procedures; and that all tests and measurements were performed by me or<br>by trained personnel under my direct supervision. The results of this investigation are based<br>solely on the test sample(s) provided by the client which were not adjusted, modified or altered in<br>any manner w hatsoever, except as required to carry out specific tests or measurements. This<br>test report has been completed in accordance with ISO/IEC 17025. | Technical Manager | A.F.VOSS<br>* 31327<br>C. U.W. C. V. S. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------|



## 6.0 RF CONDUCTED POWER MEASUREMENT

#### Table 6.1 Conducted Power – VHF/UHF

|          | Conducted Power Measurements |      |          |       |       |       |          |
|----------|------------------------------|------|----------|-------|-------|-------|----------|
|          | Frequency                    |      | Measured | Rated | Rated | Delta | SAR Test |
| Channel  | rrequency                    | Mode | Power    | Power | Power | Dena  | Channel  |
|          | (MHz)                        |      | (dBm)    | (dBm) | (W)   | (dBm) | (Y/N)    |
|          | 136.000                      |      | 37.99    | 38.20 | 6.61  | -0.21 | У        |
|          | 138.000                      |      | 37.94    | 38.20 | 6.61  | -0.26 |          |
|          | 141.000                      |      | 37.93    | 38.20 | 6.61  | -0.27 |          |
|          | 144.000                      |      | 37.88    | 38.20 | 6.61  | -0.32 |          |
| LMRS VHF | 148.000                      | CW   | 37.88    | 38.20 | 6.61  | -0.32 |          |
|          | 150.000                      |      | 37.91    | 38.20 | 6.61  | -0.29 |          |
|          | 156.800                      |      | 37.91    | 38.20 | 6.61  | -0.29 |          |
|          | 162.000                      |      | 37.88    | 38.20 | 6.61  | -0.32 | У        |
|          | 174.000                      |      | 37.83    | 38.20 | 6.61  | -0.37 |          |
|          | 378.000                      |      | 37.20    | 37.40 | 5.50  | -0.20 | У        |
|          | 406.000                      |      | 37.20    | 37.40 | 5.50  | -0.20 | У        |
|          | 418.000                      |      | 37.21    | 37.40 | 5.50  | -0.19 | У        |
|          | 430.000                      |      | 37.19    | 37.40 | 5.50  | -0.21 | У        |
|          | 450.000                      |      | 37.19    | 37.40 | 5.50  | -0.21 | У        |
| LMRS UHF | 454.000                      | CW   | 37.16    | 37.40 | 5.50  | -0.24 | У        |
|          | 456.000                      | Cvv  | 37.16    | 37.40 | 5.50  | -0.24 | У        |
|          | 459.025                      |      | 37.19    | 37.40 | 5.50  | -0.21 | У        |
|          | 459.975                      |      | 37.19    | 37.40 | 5.50  | -0.21 | У        |
|          | 470.000                      |      | 37.19    | 37.40 | 5.50  | -0.21 | У        |
|          | 512.000                      |      | 37.17    | 37.40 | 5.50  | -0.23 | У        |
|          | 522.000                      |      | 37.18    | 37.40 | 5.50  | -0.22 | У        |

SAR Test Reduction consideration in accordance with FCC KDB 643646 D01v01r03 1)

I) When the head SAR of an antenna tested in A) is:

a) ≤ 3.5 W/kg, testing of all other required channels is not necessary for that antenna

b) > 3.5 W/kg and  $\leq 4.0$  W/kg, testing of the required immediately adjacent channel(s) is not necessary; testing of the other required channels may still be required

c) > 4.0 W/kg and  $\leq$  6.0 W/kg, head SAR should be measured for that antenna on the required immediately adjacent channels; testing of the other required channels still needs consideration

d) > 6.0 W/kg, test all required channels for that antenna

e) for the remaining channels that cannot be excluded in b) and c), which still require consideration, the 3.5 W/kg exclusion in a) and 4.0 W/kg exclusion in b) may be applied recursively with respect to the highest output power channel among the remaining channels; measure the SAR for the remaining channels that cannot be excluded

i) if an immediately adjacent channel measured in c) or a remaining channel measured in e) is > 6.0 W/kg, test all required channels for that antenna



# Table 6.2 Conducted Power – WiFi/BT

| Conducted Power Measurements |           |                  |                   |                 |                 |       |                     |
|------------------------------|-----------|------------------|-------------------|-----------------|-----------------|-------|---------------------|
| Channel                      | Frequency | Mode             | Measured<br>Power | Rated<br>Power* | Rated<br>Power* | Delta | SAR Test<br>Channel |
|                              | (MHz)     |                  | (dBm)             | (dBm)           | (W)             | (dBm) | (Y/N)               |
|                              | 2412.000  |                  | 8.35              | 9.70            | 0.0093          | -1.35 | у                   |
|                              | 2437.000  | 802.11b 11Mbps   | 9.65              | 9.70            | 0.0093          | -0.05 | у                   |
|                              | 2462.000  |                  | 8.62              | 9.70            | 0.0093          | -1.08 | у                   |
|                              | 2412.000  |                  | 8.46              | 9.70            | 0.0093          | -1.24 |                     |
| WiFi                         | 2437.000  | 802.11g 24Mbps   | 8.68              | 9.70            | 0.0093          | -1.02 |                     |
|                              | 2462.000  |                  | 9.45              | 9.70            | 0.0093          | -0.25 |                     |
|                              | 2412.000  |                  | 8.15              | 9.70            | 0.0093          | -1.55 |                     |
|                              | 2437.000  | 802.11n 19.5Mbps | 8.39              | 9.70            | 0.0093          | -1.31 |                     |
|                              | 2462.000  |                  | 8.50              | 9.70            | 0.0093          | -1.20 |                     |
|                              | 2402.000  | GFSK             | 2.54              | 2.54            | 0.0018          | 0.00  | У                   |
|                              | 2440.000  |                  | 2.50              | 2.54            | 0.0018          | -0.04 | у                   |
|                              | 2480.000  |                  | 2.53              | 2.54            | 0.0018          | -0.01 | У                   |
|                              | 2402.000  | 2-EDR            | -1.09             | 2.54            | 0.0018          | -3.63 |                     |
| BT                           | 2440.000  |                  | 0.30              | 2.54            | 0.0018          | -2.24 |                     |
|                              | 2480.000  |                  | 0.86              | 2.54            | 0.0018          | -1.68 |                     |
|                              | 2402.000  |                  | -0.48             | 2.54            | 0.0018          | -3.02 |                     |
|                              | 2440.000  | 3-EDR            | 0.60              | 2.54            | 0.0018          | -1.94 |                     |
|                              | 2480.000  |                  | 1.19              | 2.54            | 0.0018          | -1.35 |                     |
|                              | 5180.000  |                  | 6.22              | 6.80            | 0.0048          | -0.58 | у                   |
| U-NII-1                      | 5220.000  | 802.11a          | 5.99              | 6.80            | 0.0048          | -0.81 | У                   |
|                              | 5260.000  |                  | 5.39              | 6.80            | 0.0048          | -1.41 | У                   |
|                              | 5745.000  |                  | 3.78              | 3.80            | 0.0024          | -0.02 | У                   |
| U-NII-3                      | 5785.000  | 802.11a          | 1.85              | 3.80            | 0.0024          | -1.95 | У                   |
|                              | 5825.000  |                  | 1.30              | 3.80            | 0.0024          | -2.50 | у                   |

\*Includes Tune-up Tolerance



### 7.0 NUMBER OF TEST CHANNELS (Nc)

The number of test channels and test configurations were determined in accordance with FCC KDB 447498, FCC KDB 643646 and FCC KDB 248227. When applicable, SAR Test Reduction was exercised in accordance with FCC KDB 643646 and FCC KDB 248227.

# 8.0 ACCESSORIES EVALUATED

#### Table 8.1 Manufacturer's Accessory List

|              | Change History |                |                       |                              |  |  |  |
|--------------|----------------|----------------|-----------------------|------------------------------|--|--|--|
| Change<br>ID | Date           | Change<br>Type | Description of Change | Test Report<br>Serial Number |  |  |  |
| 1            | 21 Sep 2022    | New Cert       | Initial Filing        | 45461754                     |  |  |  |

|             | Manufa         | acturer's Accessory List                |                   |                      |                    |                    |
|-------------|----------------|-----------------------------------------|-------------------|----------------------|--------------------|--------------------|
| Test Report | Manufacturer's | Description                             | Change            | Type II              | SAR <sup>(4)</sup> | SAR <sup>(5)</sup> |
| ID Num ber  | Part Number    | Description                             | ID <sup>(1)</sup> | Group <sup>(3)</sup> | Evaluated          | Tested             |
|             |                | Antenna                                 |                   |                      |                    |                    |
| T1          | 14035-4000-01  | Antenna, 136-870MHz, Helical Flex       | 1                 |                      | Y                  | Y                  |
| T2          | KRE1011219/1   | Antenna, 136-151MHz, Helical Coil       | 1                 |                      | Y                  | Y                  |
| Т3          | KRE1011219/2   | Antenna, 146-162MHz, Helical Coil       | 1                 |                      | Y                  | Y                  |
| T4          | KRE1011219/21  | Antenna, 150-174MHz, Wide Band, Helical | 1                 |                      | Y                  | Y                  |
| T5          | 14035-4420-01  | Antenna, Dual Band UHF/700/800MHz, Whip | 1                 |                      | Y                  | Y                  |
| Т6          | KRE1011219/9   | Antenna, 378-403MHz, Helical Coil       | 1                 |                      | Y                  | Y                  |
| T7          | KRE1011219/10  | Antenna, 378-440MHz, Helical Coil       | 1                 |                      | Y                  | Y                  |
| Т8          | KRE1011219/12  | Antenna, 440-494MHz, Helical Coil       | 1                 |                      | Y                  | Y                  |
| Т9          | KRE1011219/14  | Antenna, 470-512MHz, Helical Coil       | 1                 |                      | Y                  | Y                  |
| T10         | KRE1011223/10  | Antenna, 378-430MHz, Quarter-w ave Whip | 1                 |                      | Y                  | Y                  |
| T11         | KRE1011223/12  | Antenna, 450-512MHz, Quarter-w ave Whip | 1                 |                      | Y                  | Y                  |

|             | Manufa         | acturer's Accessory List                   |                   |                      |                    |                    |
|-------------|----------------|--------------------------------------------|-------------------|----------------------|--------------------|--------------------|
| Test Report | Manufacturer's | Description                                | Change            | Type II              | SAR <sup>(4)</sup> | SAR <sup>(5)</sup> |
| ID Number   | Part Number    | Description                                | ID <sup>(1)</sup> | Group <sup>(3)</sup> | Evaluated          | Tested             |
|             |                | Battery                                    |                   |                      |                    |                    |
| P1          | BT-023436-001  | Battery,Li-Polymer,3600 mAH                | 1                 |                      | Y                  | N                  |
| P2          | 14002-0199-01  | BATTERY, AA CLAMSHELL                      | 1                 |                      | Y                  | N                  |
| P3          | 14002-0214-01  | BATTERY, LI-ION,21WH                       | 1                 |                      | Y                  | Y                  |
| P4          | 14002-0214-02  | BATTERY, LI-ION, 15WH, SERPART, HAZLOC, UL | 1                 |                      | Y                  | N                  |
| P5          | 14002-0214-03  | BATTERY, LI-ION,21WH                       | 1                 |                      | Y                  | Y                  |
| P6          | 14002-0214-04  | BATTERY, LI-ION,21WH                       | 1                 |                      | Y                  | Ν                  |



|                          |                               | Manufacturer's Accessory List                                                    |                             |                      |                                 |                              |
|--------------------------|-------------------------------|----------------------------------------------------------------------------------|-----------------------------|----------------------|---------------------------------|------------------------------|
| Test Report<br>ID Number | Manufacturer's<br>Part Number | Description                                                                      | Change<br>ID <sup>(1)</sup> | Type II              | SAR <sup>(4)</sup><br>Evaluated | SAR <sup>(5)</sup><br>Tested |
| ID Number                | Part Number                   | Audio Accessory                                                                  | ID <sup>(*)</sup>           | Group <sup>(3)</sup> | Evaluated                       | Testeu                       |
| A1                       | EA-009580-001                 | Earphone Kit, Black                                                              | 1                           | Y                    | Y                               | N                            |
| A1<br>A2                 | EA-009580-002                 | Earphone Kit, Beige                                                              | 1                           | Y                    | Y                               | N                            |
| A3                       | EA-009580-003                 | 2-Wire Kit, Palmmic, Black                                                       | 1                           | Y                    | Y                               | N                            |
| A4                       | EA-009580-004                 | 2-Wire Kit, Palmmic, Beige                                                       | 1                           | Y                    | Y                               | N                            |
| A5                       | EA-009580-005                 | 3-Wire Kit, Mini-Lapel Mic, Black                                                | 1                           | Y                    | Y                               | N                            |
| A6                       | EA-009580-006                 | 3-Wire Kit, Mini-Lapel Mic, Beige                                                | 1                           | Y                    | Y                               | N                            |
| A7                       | EA-009580-007                 | Explorer Headset w / PTT                                                         | 1                           | Y                    | Y                               | N                            |
| A8                       | EA-009580-008                 | Lightweight headset single spkr w / PTT                                          | 1                           | Y                    | Y                               | N                            |
| A9                       | EA-009580-009                 | Breeze Headset w / PTT                                                           | 1                           | Y                    | Y                               | N                            |
| A10                      | EA-009580-010                 | Headset, heavy duty, NC behind the head, w / PTT                                 | 1                           | Y                    | Y                               | N                            |
| A11                      | EA-009580-011                 | Ranger Headset w / PTT                                                           | 1                           | Y                    | Y                               | N                            |
| A12                      | EA-009580-012                 | Skull mic w/body PTT & earcup                                                    | 1                           | Y                    | Y                               | N                            |
| A13                      | EA-009580-013                 | Headset, heavy duty, N/C over the head, w / PTT                                  | 1                           | Ŷ                    | Y                               | N                            |
| A14                      | EA-009580-014                 | Throat mic w /acoustic tube & body PTT                                           | 1                           | Y                    | Y                               | N                            |
| A15                      | EA-009580-015                 | Throat mic w/acoustic tube, body PTT, & ring PTT                                 | 1                           | Y                    | Y                               | N                            |
| A16                      | EA-009580-016                 | Breeze headset w / PTT & pigtail jack                                            | 1                           | Y                    | Y                               | N                            |
| A17                      | EA-009580-017                 | Hurricane headset w / PTT                                                        | 1                           | Y                    | Y                               | N                            |
| A18                      | EA-009580-018                 | Hurricane headset w / PTT & pigtail jack                                         | 1                           | Y                    | Y                               | N                            |
| A19                      | EA-009580-031                 | Tac4 Headset                                                                     | 1                           | Y                    | Y                               | N                            |
| A20                      | LS103239V2                    | Earphone for speaker/mic                                                         | 1                           | Y                    | Y                               | N                            |
| A21                      | LS103239V1                    | Earphone for Speaker-Mic <is></is>                                               | 1                           | Y                    | Y                               | N                            |
| A22                      | MC-009104-002                 | Speaker-Mic, GPS, non-IS                                                         | 1                           | Y                    | Y                               | N                            |
| A23                      | MC-011617-601                 | Ruggedized Speaker Mic-Coil Cord                                                 | 1                           | Y                    | Y                               | N                            |
| A24                      | MC-011617-611                 | Speaker-Microphone                                                               | 1                           | Y                    | Y                               | N                            |
| A25                      | MC-011617-701                 | Standard Speaker Mic - Non Ant                                                   | 1                           | Y                    | Y                               | N                            |
| A26                      | MC-011617-651                 | Rugged Speaker-Microphone w / man-dow n                                          | 1                           | Y                    | Y                               | N                            |
| A27                      | MC-023933-001                 | Speaker-Mic, No Ant. (cc), <is></is>                                             | 1                           | Y                    | Y                               | N                            |
| A28                      | MC-023933-002                 | Speaker-Mic, W/ Ant. (cc) provision, <is></is>                                   | 1                           | Y                    | Y                               | N                            |
| A29                      | 12082-0660-02                 | Push-To-Talk Pushbutton for Hazardous Locations, 60mm, Nexus, Mushroom Top, 4Pin | 1                           | Y                    | Y                               | N                            |
| A30                      | 12082-0660-04                 | Push-To-Talk Pushbutton for Hazardous Locations, 60mm, Nexus, Flat Top, 4Pin     | 1                           | Y                    | Y                               | N                            |
| A31                      | 12150-4001-03                 | Fire Speaker MIC                                                                 | 1                           | Y                    | Y                               | N                            |
| A32                      | 12150-4001-04                 | Fire Speaker MIC                                                                 | 1                           | Y                    | Y                               | N                            |
| A50                      | MC-011617-730                 | Spkrmic,Antenna,Straight,30in                                                    | 1                           | Y                    | Y                               | Ν                            |
| A51                      | MC-011617-703                 | Spkrmic,Straight Cord,25.6in,Antenna                                             | 1                           | Y                    | Y                               | N                            |
| A52                      | MC-011617-718                 | Spkrmic,Antenna,Straight,18in                                                    | 1                           | Y                    | Y                               | Ν                            |
| A53                      | MC-011617-606                 | Spkrmic,Rugged,Coiled Cord,Yellow                                                | 1                           | Y                    | Y                               | Y                            |
| A54                      | MC-011617-602                 | Spkrmic,Rugged,Antenna,Straight,P7300                                            | 1                           | Y                    | Y                               | N                            |
| A55                      | 12150-1000-03                 | SPKR MIC, PREMIUM, FIRE, XG FAMILY, BLK                                          | 1                           | Y                    | Y                               | N                            |
| A56                      | 12150-1000-07                 | SPKR MIC, PREMIUM, FIRE, XG FAMILY, YLW                                          | 1                           | Y                    | Y                               | N                            |
| A57                      | 12082-0800-02                 | MIC, WIRELESS, BLUETOOTH, ADVANCED, NA                                           | 1                           | Y                    | Y                               | N                            |
| A58                      | 12082-0684-01                 | BLUETOOTH, COVERT, EARPIECE /MIC /PTT                                            | 1                           | Y                    | Y                               | N                            |



|                               | Manufacturer's Accessory List                                                        |                             |                                 |                                 |                              |
|-------------------------------|--------------------------------------------------------------------------------------|-----------------------------|---------------------------------|---------------------------------|------------------------------|
| Manufacturer's<br>Part Number | Description                                                                          | Change<br>ID <sup>(1)</sup> | Type II<br>Group <sup>(3)</sup> | SAR <sup>(4)</sup><br>Evaluated | SAR <sup>(5)</sup><br>Tested |
|                               | Below Requires UDC to 6-pin Hirose Adapter                                           |                             |                                 |                                 |                              |
| 14002-0197-02                 | UDC to 6-pin Hirose adapter                                                          | 1                           | Y                               | Y                               | N                            |
| V1-10168                      | 1 Wire Earphone Kit Black (Receive only no transmit)                                 | 1                           | Y                               | Y                               | Ν                            |
| V1-10167                      | 1 Wire Earphone Kit Beige (Receive only no transmit)                                 | 1                           | Y                               | Y                               | N                            |
| V1-10166                      | 2 Wire Palm Microphone Kit Black                                                     | 1                           | Y                               | Y                               | Ν                            |
| V1-10165                      | 2 Wire Palm Microphone Kit Beige                                                     | 1                           | Y                               | Y                               | Ν                            |
| V1-10164                      | 3 Wire Mini Lapel Microphone Kit Black                                               | 1                           | Y                               | Y                               | N                            |
| V1-10163                      | 3 Wire Mini Lapel Microphone Kit Beige                                               | 1                           | Y                               | Y                               | N                            |
| V4-BA2MD1                     | Breeze, lightweight, behind-the-head, single spkr with std PTT                       | 1                           | Y                               | Y                               | Ν                            |
| V4-BA2MD3B                    | Breeze, lightweight, behind-the-head, single spkr w/std. PTT & 2.5mm pigtail for PTT | 1                           | Y                               | Y                               | N                            |
| V4-10190                      | Lightweight Single Spkr Padded Headband with std PTT                                 | 1                           | Y                               | Y                               | N                            |
| V4-NR2MD1                     | Ranger Single Speaker behind-the-head with std PTT                                   | 1                           | Y                               | Y                               | Ν                            |
| V4-10148                      | Over-the-head Dual Speaker Heavy Duty with std PTT                                   | 1                           | Y                               | Y                               | N                            |
| V4-10148-S                    | Over-the-head Dual Speaker Heavy Duty with std PTT-IS/ATEX                           | 1                           | Y                               | Y                               | Ν                            |
| V4-10001                      | Behind-the-Head Dual Speaker Heavy Duty with std PTT                                 | 1                           | Y                               | Y                               | Ν                            |
| V4-10001-S                    | Behind-the-Head Dual Speaker Heavy Duty with std PTT-IS/ATEX                         | 1                           | Y                               | Y                               | N                            |
| V1-T12MD137                   | Professional Throat Mic with Acoustic Tube & 80mm PTT                                | 1                           | Y                               | Y                               | Ν                            |
| V4-10279                      | Professional Skull Mic with Earcup, Aviation Quality & 80 MM PTT                     | 1                           | Y                               | Y                               | N                            |



|                          |                               | Manufacturer's Accessory List                                                                                                                                              |                             |                                 |                                 |                              |
|--------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------|---------------------------------|------------------------------|
| Test Report<br>ID Number | Manufacturer's<br>Part Number | Description                                                                                                                                                                | Change<br>ID <sup>(1)</sup> | Type II<br>Group <sup>(3)</sup> | SAR <sup>(4)</sup><br>Evaluated | SAR <sup>(5)</sup><br>Tested |
|                          |                               | Body-Worn Accessory                                                                                                                                                        |                             |                                 |                                 |                              |
| B1                       | CC-014527                     | Belt Loop, Leather (BEE)                                                                                                                                                   | 1                           | Y                               | Y                               | N                            |
| B2                       | CC23894                       | Metal Belt Clip                                                                                                                                                            | 1                           | (6)                             | Y                               | Y                            |
| B3                       | KT-016201-001 (kit)           | Kit containing: FM-016199-001 P7300 BEE Nylon case (Black) (with radio retaining strap) & CC 014527 BEE Leather Belt Loop                                                  | 1                           | Y                               | Y                               | N                            |
| B4                       | KT-016201-002 (kit)           | Kit contains: FM-016199-002 P7300 BEE Nylon case (Orange) (with radio retaining strap) & CC 014527 BEE Leather Beit Loop                                                   | 1                           | Y                               | Y                               | N                            |
| B5                       | KT-016201-003 (kit)           | Kit contains: FM-016199-003 P7300 BEE Leather Case (with radio retaining strap) w/o<br>Shoulder Strap D-rings, KRY1011608/2 Swivel Mount & CC-014527 BEE Leather Belt Loop | 1                           | Y                               | Y                               | N                            |
| B6                       | KT-016201-004 (kit)           | Kit contains: FM-016199-004 P7300 BEE Leather Case with Shoulder Strap D-rings (with radio retaining strap), KRY1011608/2 Swivel Mount & CC-014524-001 BEE Shoulder Strap  | 1                           | Y                               | Y                               | N                            |
| B7                       | FM-017262-001                 | Swivel Mount                                                                                                                                                               | 1                           | Y                               | Y                               | N                            |
| B8                       | 14002-0187-09                 | Premium Leather Case Elastic Strap                                                                                                                                         | 1                           | Y                               | Y                               | N                            |
| B9                       | 14002-0215-01                 | Premium Leather Case Kit containing: 14002-0187-01 Leather case, KRY1011609/1 Leather<br>Belt Loop, FM-017262-001 D-sw ivel.                                               | 1                           | Y                               | Y                               | N                            |
| B10                      | 14002-0215-02                 | Premium Shoulder Strap Leather Case Kit containing: 14002-0187-02 Leather case with D-<br>rings, CC103333V1 Shoulder strap, FM-017262-001 D-sw ivel.                       | 1                           | Y                               | Y                               | N                            |
| B11                      | 14002-0215-03                 | Premium Black Nylon Case Kit containing: 14002-0187-03 black nylon case, KRY1011609/1<br>Leather Belt Loop.                                                                | 1                           | Y                               | Y                               | N                            |
| B12                      | 14002-0215-04                 | Premium Orange Nylon Case Kit containing: 14002-0187-04 orange nylon case,<br>KRY1011609/1 Leather Belt Loop.                                                              | 1                           | Y                               | Y                               | N                            |
| B13                      | 14002-0217-01                 | Olive Drab Nylon Case                                                                                                                                                      | 1                           | Y                               | Y                               | N                            |
| B14                      | 14002-0218-01                 | BELT LOOP, LEATHER, PREMIUM                                                                                                                                                | 1                           | Y                               | Y                               | N                            |
| B15                      | 14011-0012-01                 | Black Nylon Case with Belt Loop Kit (BEE)                                                                                                                                  | 1                           | Y                               | Y                               | N                            |
| B16                      | 14011-0012-02                 | Orange Nylon Case with Belt Loop Kit (BEE)                                                                                                                                 | 1                           | Y                               | Y                               | N                            |
| B17                      | 14011-0012-03                 | Leather Case with Belt Loop Kit (BEE)                                                                                                                                      | 1                           | Y                               | Y                               | N                            |
| B18                      | 14011-0012-04                 | Leather Case with Shoulder Strap Kit (BEE)                                                                                                                                 | 1                           | Y                               | Y                               | N                            |
| B26                      | 14002-0215-01                 | CASE, LEATHER, PREMIUM, XG75/25, BELT LOOP                                                                                                                                 | 1                           | Y                               | Y                               | N                            |
| B27                      | CC-014524-002                 | Strap,Stnd,Retaining,Use w / Shlder Strap                                                                                                                                  | 1                           | Y                               | Y                               | N                            |



Manufacturer's Accessory List Test Report Manufacturer's Change Type II SAR(4) SAR<sup>(5)</sup> Description Group<sup>(3)</sup> ID Number Part Number ID<sup>(1)</sup> Evaluated Tested Merzon Combinations KRY1011609/1 or 14002-0218-0 Leather Belt Loop 1 Ν Y Υ B19 FM-017262-001 Swivel Mount 1 Υ Υ Ν 14011-0011-01 Nylon Case (Black) 1 Υ Υ Ν B20 KRY1011609/1 or 14002-0218-0 Leather Belt Loop 1 Y Υ Ν 14011-0011-02 Nylon Case (Orange) 1 Y Υ Ν B21 KRY1011609/1 or 14002-0218-0 Leather Belt Loop 1 Y Υ Ν 14011-0011-03 Nylon Case 1 Υ Υ Ν KRY1011609/1 or 14002-0218-0 Leather Belt Loop B22 1 Υ Y Ν FM-017262-001 Swivel Mount 1 Υ Y Ν FM-016199-001 Nylon Case (Black) Υ 1 Υ Ν B23 KRY1011609/1 or 14002-0218-0 Leather Belt Loop 1 Y Y Ν FM-016199-002 Nylon Case (Orange) 1 Y Y Ν B24 KRY1011609/1 or 14002-0218-0 Leather Belt Loop 1 Y Y Ν FM-016199-003 Nylon Case 1 Y Y Ν B25 KRY1011609/1 or 14002-0218-0 Leather Belt Loop 1 Y Υ Ν FM-017262-001 Swivel Mount 1 Y Y Ν

(1) Change ID: Indicates the change number in which the accessory was added.

(3) Type II Group: "y" indicates that this accessory was evaluated with similar devices and found to have no significant contribution to the <u>reported SAR</u> (4) SAR Evaluated: Indicates the accessory was visually evaluated and may or may not have tested.

(5) SAR Tested: Indicates the accessory was SAR tested during the course of this investigation.

(6) These accessories produced the highest SAR in previous evaluations.

(7) These antennas are similar physically, electrically and frequency response.



### 9.0 SAR MEASUREMENT SUMMARY

#### Table 9.1: Measured Results LMR VHF/UHF – BODY

|             |                                            |           |              |          | Measu      | ured 1g | SAR Resul | ts - BOD`                      | Y Config | juratio | n     |        |               |          |        |        |
|-------------|--------------------------------------------|-----------|--------------|----------|------------|---------|-----------|--------------------------------|----------|---------|-------|--------|---------------|----------|--------|--------|
|             |                                            | Test      |              |          | DUT        |         |           |                                | Access   | ories   |       | DUT    | Spacing       | Measured | 50%    | SAR    |
| Date        | Plot                                       | Frequency |              | С        | onfigurati | ion     |           | Antenna                        | Battery  | Body    | Audio | DUT    | Antenna       | SAR      | SAR    | Drift  |
|             | ID                                         | (MHz)     | Pos          | Mode     | BW         | Mod     | BR        | ID                             | ID       | ID      | ID    | (mm)   | ( <i>mm</i> ) | (W/kg)   | (W/kg) | (dB)   |
| 26 Aug 2022 | B1                                         | 418       | Body Touch   | UHF      | HOPC       | CW      | HOPC      | T1                             | P5       | B2      | A53   | 0      | 20            | 5.300    | 2.650  | -0.870 |
| 28 Aug 2022 | B4                                         | 418       | Body Touch   | UHF      | HOPC       | CW      | HOPC      | T1                             | P3       | B2      | A53   | 0      | 20            | 4.780    | 2.390  | -0.710 |
| 29 Aug 2022 | B5                                         | 418       | Body Touch   | UHF      | HOPC       | CW      | HOPC      | T5                             | P5       | B2      | A53   | 0      | 20            | 6.970    | 3.485  | -0.120 |
| 29 Aug 2022 | B6                                         | 430       | Body Touch   | UHF      | HOPC       | CW      | HOPC      | T5                             | P5       | B2      | A53   | 0      | 20            | 5.860    | 2.930  | 0.020  |
| 29 Aug 2022 | B7                                         | 418       | Body Touch   | UHF      | HOPC       | CW      | HOPC      | T10                            | P5       | B2      | A53   | 0      | 20            | 6.470    | 3.235  | -0.160 |
| 29 Aug 2022 | B8                                         | 378       | Body Touch   | UHF      | HOPC       | CW      | HOPC      | Т6                             | P5       | B2      | A53   | 0      | 20            | 1.570    | 0.785  | -0.280 |
| 30 Aug 2022 | B9                                         | 418       | Body Touch   | UHF      | HOPC       | CW      | HOPC      | T7                             | P5       | B2      | A53   | 0      | 20            | 5.350    | 2.675  | -0.490 |
| 30 Aug 2022 | B10                                        | 459.025   | Body Touch   | UHF      | HOPC       | CW      | HOPC      | T11                            | P5       | B2      | A53   | 0      | 20            | 8.860    | 4.430  | -0.910 |
| 30 Aug 2022 | B11                                        | 459.975   | Body Touch   | UHF      | HOPC       | CW      | HOPC      | T11                            | P5       | B2      | A53   | 0      | 20            | 7.450    | 3.725  | -0.940 |
| 30 Aug 2022 | B12                                        | 470       | Body Touch   | UHF      | HOPC       | CW      | HOPC      | T11                            | P5       | B2      | A53   | 0      | 20            | 7.930    | 3.965  | -1.110 |
| 30 Aug 2022 | B13                                        | 450       | Body Touch   | UHF      | HOPC       | CW      | HOPC      | T11                            | P5       | B2      | A53   | 0      | 20            | 6.580    | 3.290  | -0.930 |
| 30 Aug 2022 | B14                                        | 512       | Body Touch   | UHF      | HOPC       | CW      | HOPC      | T11                            | P5       | B2      | A53   | 0      | 20            | 6.840    | 3.420  | -0.210 |
| 30 Aug 2022 | B15                                        | 459.025   | Body Touch   | UHF      | HOPC       | CW      | HOPC      | Т8                             | P5       | B2      | A53   | 0      | 20            | 4.460    | 2.230  | -1.840 |
| 30 Aug 2022 | B16                                        | 470       | Body Touch   | UHF      | HOPC       | CW      | HOPC      | T9                             | P5       | B2      | A53   | 0      | 20            | 9.670    | 4.835  | -0.150 |
| 30 Aug 2022 | B17                                        | 512       | Body Touch   | UHF      | HOPC       | CW      | HOPC      | Т9                             | P5       | B2      | A53   | 0      | 20            | 8.100    | 4.050  | -0.550 |
| 1 Sep 2022  | B20                                        | 136       | Body Touch   | VHF      | HOPC       | CW      | HOPC      | T1                             | P5       | B2      | A53   | 0      | 20            | 1.680    | 0.840  | -0.230 |
| 1 Sep 2022  | B21                                        | 136       | Body Touch   | VHF      | HOPC       | CW      | HOPC      | T1                             | P3       | B2      | A53   | 0      | 20            | 2.170    | 1.085  | 0.260  |
| 2 Sep 2022  | B22                                        | 156.8     | Body Touch   | VHF      | HOPC       | CW      | HOPC      | T4                             | P3       | B2      | A53   | 0      | 20            | 3.070    | 1.535  | -0.160 |
| 2 Sep 2022  | B23                                        | 156.8     | Body Touch   | VHF      | HOPC       | CW      | HOPC      | Т3                             | P3       | B2      | A53   | 0      | 20            | 1.740    | 0.870  | -0.160 |
| 2 Sep 2022  | B24                                        | 136       | Body Touch   | VHF      | HOPC       | CW      | HOPC      | T2                             | P3       | B2      | A53   | 0      | 20            | 2.530    | 1.265  | -0.620 |
|             |                                            |           | Applicable S | AR Limit |            |         |           |                                |          | Use G   | iroup |        |               |          | Limit  |        |
| FCC         | FCC CFR 2.1093 Health Canada Safety Code 6 |           |              |          |            |         |           | Occupational/User Aware 8 W/kg |          |         |       | 8 W/kg |               |          |        |        |

Note: Plot B16 had the highest measured SAR however Plot B10 produced the highest *reported* SAR.



# Table 9.2: Measured Results WLAN 2.4G & BT Band – BODY

From Previous Evaluation of XL-x5-7/8

|             |         |           |         | Measure   | ed SAR Res                          | ults (1g) | - BODY  | Config | guratior | ו (FCC | /ISED)        |            |            |                 |       |
|-------------|---------|-----------|---------|-----------|-------------------------------------|-----------|---------|--------|----------|--------|---------------|------------|------------|-----------------|-------|
|             |         | DUT       | -       | Test      |                                     |           | Access  | ories  |          | DUT    | Spacing       | Conducted  | Measured   | SAR (1g)        | SAR   |
| Date        | Plot    | 501       |         | Frequency | Modulation                          | Antenna   | Battery | Body   | Audio    | DUT    | Antenna       | Power      | 100% DC    | 50% DC          | Drift |
|             | ID      |           |         |           |                                     | ID        | ID      | ID     | ID       | (mm)   | ( <i>mm</i> ) | (dBm)      | (W/kg)     | ( <i>W/kg</i> ) | (dB)  |
| 19 Jan 2021 | B1      | XL-95     | PTT     | 2412      | DSSS 6Mbps                          | T2        | P1      | B2     | A53      | 0      |               | 8.35       | 0.000      |                 | 0.000 |
| 19 Jan 2021 | B2      | XL-95     | PTT     | 2437      | DSSS 6Mbps                          | T2        | P1      | B2     | A53      | 0      |               | 9.65       | 0.000      |                 | 0.000 |
| 19 Jan 2021 | B3      | XL-95     | PTT     | 2462      | DSSS 6Mbps                          | T2        | P1      | B2     | A53      | 0      |               | 8.62       | 0.000      |                 | 0.000 |
| 19 Jan 2021 | B4      | XL-95     | PTT     | 2437      | HT20 MCS12                          | T2        | P1      | B2     | A53      | 0      |               | 8.39       | 0.000      |                 | 0.000 |
| 19 Jan 2021 | B5      | XL-95     | PTT     | 2437      | DSSS 6Mbps                          | T2        | P1      | n/a    | A53      | 0      |               | 9.65       | 0.000      |                 | 0.000 |
| 19 Jan 2021 | B6      | XL-95     | PTT     | 2402      | GFSK                                | T2        | P1      | B2     | A53      | 0      |               | 2.54       | 0.001      |                 | 0.000 |
|             |         |           | SAR Lim | nit       | Spatial Peak Head/Body I            |           |         |        |          |        | R             | F Exposure | Category   |                 |       |
| F           | CC 47 C | FR 2.1093 |         | Health Ca | Canada Safety Code 6 1 Gram Average |           |         |        |          | 1.6    | W/kg          | Genera     | Population | /User Unav      | vare  |

#### Table 9.3: Measured Results WLAN 5G Band – BODY

From Previous Evaluation of XL-x5-7/8

|             |                                             |       |     | Measure   | ed SAR Res | ults (1g) | - BODY               | Config | guratior      | ו (FCC         | /ISED)          |           |               |            |       |
|-------------|---------------------------------------------|-------|-----|-----------|------------|-----------|----------------------|--------|---------------|----------------|-----------------|-----------|---------------|------------|-------|
|             |                                             | DUT   | r   | Test      |            |           | Access               | ories  |               | DUT            | Spacing         | Conducted | Measured      | SAR (1g)   | SAR   |
| Date        | Plot                                        | 201   |     | Frequency | Modulation | Antenna   | Battery              | Body   | Audio         | DUT            | Antenna         | Power     | 100% DC       | 50% DC     | Drift |
|             | ID                                          | M/N   |     | ID        | ID         | ID        | ID                   | (mm)   | ( <i>mm</i> ) | ( <i>dBm</i> ) | ( <i>W/kg</i> ) | (W/kg)    | ( <i>dB</i> ) |            |       |
| 21 Jan 2021 | B1                                          | XL-95 | PTT | 5220      | OFDM 6Mbps | T2        | P1                   | B2     | A53           | 0              |                 | 5.99      | 0.000         |            | 0.000 |
| 21 Jan 2021 | B1                                          | XL-95 | PTT | 5785      | OFDM 6Mbps | T2        | P1                   | B2     | A53           | 0              |                 | 1.85      | 0.000         |            | 0.000 |
| 21 Jan 2021 | B3                                          | XL-95 | PTT | 5745      | OFDM 6Mbps | T2        | P1                   | B2     | A53           | 0              |                 | 3.78      | 0.000         |            | 0.000 |
|             | Spatial Pea                                 |       |     |           | Hea        | d/Body    | RF Exposure Category |        |               |                |                 |           |               |            |       |
| F           | FCC 47 CFR 2.1093 Health Canada Safety Code |       |     |           |            |           |                      |        | rage          | 1.6            | 6 W/kg          | Genera    | I Populatior  | /User Unaw | vare  |



| Test Report S/N:        | 4541754 R5.0  |
|-------------------------|---------------|
| Test Report Issue Date: | 24 April 2023 |

## Table 9.4: Measured Results LMR VHF/UHF – FACE

|             |                                            |           |              |          | Measu      | ured 1g | SAR Resul | ts - FACI | E Config | juratio | n        |               |               |          |        |               |
|-------------|--------------------------------------------|-----------|--------------|----------|------------|---------|-----------|-----------|----------|---------|----------|---------------|---------------|----------|--------|---------------|
|             |                                            | Test      |              |          | DUT        |         |           |           | Access   | ories   |          | DUT           | Spacing       | Measured | 50%    | SAR           |
| Date        | Plot                                       | Frequency |              | С        | onfigurati | ion     |           | Antenna   | Battery  | Body    | Audio    | DUT           | Antenna       | SAR      | SAR    | Drift         |
|             | ID                                         | (MHz)     | Pos          | Mode     | BW         | Mod     | BR        | ID        | ID       | ID      | ID       | ( <i>mm</i> ) | ( <i>mm</i> ) | (W/kg)   | (W/kg) | ( <i>dB</i> ) |
| 28 Aug 2022 | F1                                         | 418       | Face         | UHF      | HOPC       | CW      | HOPC      | T1        | P5       | B2      | A53      | 25            | 65            | 2.930    | 1.465  | -0.660        |
| 28 Aug 2022 | F3                                         | 418       | Face         | UHF      | HOPC       | CW      | HOPC      | T1        | P3       | B2      | A53      | 25            | 65            | 2.370    | 1.185  | -0.770        |
| 29 Aug 2022 | F4                                         | 418       | Face         | UHF      | HOPC       | CW      | HOPC      | T5        | P5       | B2      | A53      | 25            | 65            | 3.290    | 1.645  | -0.250        |
| 29 Aug 2022 | F5                                         | 418       | Face         | UHF      | HOPC       | CW      | HOPC      | T10       | P5       | B2      | A53      | 25            | 65            | 3.010    | 1.505  | -0.510        |
| 29 Aug 2022 | F6                                         | 378       | Face         | UHF      | HOPC       | CW      | HOPC      | T6        | P5       | B2      | A53      | 25            | 65            | 0.923    | 0.462  | -0.890        |
| 30 Aug 2022 | F7                                         | 418       | Face         | UHF      | HOPC       | CW      | HOPC      | T7        | P5       | B2      | A53      | 25            | 65            | 3.420    | 1.710  | -0.180        |
| 30 Aug 2022 | F8                                         | 459.025   | Face         | UHF      | HOPC       | CW      | HOPC      | T11       | P5       | B2      | A53      | 25            | 65            | 2.850    | 1.425  | -0.960        |
| 30 Aug 2022 | F9                                         | 459.025   | Face         | UHF      | HOPC       | CW      | HOPC      | T8        | P3       | B2      | A53      | 25            | 65            | 2.750    | 1.375  | -0.910        |
| 30 Aug 2022 | F10                                        | 470       | Face         | UHF      | HOPC       | CW      | HOPC      | Т9        | P5       | B2      | A53      | 25            | 65            | 5.620    | 2.810  | -0.280        |
| 1 Sep 2022  | F20                                        | 136       | Face         | VHF      | HOPC       | CW      | HOPC      | T1        | P5       | B2      | A53      | 25            | 65            | 1.550    | 0.775  | -1.670        |
| 1 Sep 2022  | F21                                        | 136       | Face         | VHF      | HOPC       | CW      | HOPC      | T1        | P3       | B2      | A53      | 25            | 65            | 1.500    | 0.750  | 2.720         |
| 2 Sep 2022  | F22                                        | 156.8     | Face         | VHF      | HOPC       | CW      | HOPC      | T4        | P5       | B2      | A53      | 25            | 65            | 2.890    | 1.445  | -0.160        |
| 2 Sep 2022  | F23                                        | 156.8     | Face         | VHF      | HOPC       | CW      | HOPC      | Т3        | P5       | B2      | A53      | 25            | 65            | 2.780    | 1.390  | -0.110        |
| 2 Sep 2022  | F24                                        | 136       | Face         | VHF      | HOPC       | CW      | HOPC      | T2        | P5       | B2      | A1       | 25            | 65            | 0.274    | 0.137  | -1.210        |
|             |                                            |           | Applicable S | AR Limit |            |         |           |           |          | Use G   | iroup    |               |               |          | Limit  |               |
| FCC         | FCC CFR 2.1093 Health Canada Safety Code 6 |           |              |          |            |         |           |           | Occu     | pationa | /User Av | vare          |               | 8 W/kg   |        |               |



### Table 9.5: Measured Results WLAN 2.4G & BT Band – FACE

From Previous Evaluation of XL-x5-7/8

|             |                                                                                                                               |       |     | Measure   | ed SAR Res | ults (1g) | - FACE  | Config | juration         | (FCC          | /ISED)        |           |              |                      |               |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------|-------|-----|-----------|------------|-----------|---------|--------|------------------|---------------|---------------|-----------|--------------|----------------------|---------------|--|
|             |                                                                                                                               | DUT   | r   | Test      |            |           | Access  | ories  |                  | DUT           | Spacing       | Conducted | Measured     | SAR (1g)             | SAR           |  |
| Date        | Plot                                                                                                                          | 001   |     | Frequency | Modulation | Antenna   | Battery | Body   | Audio            | DUT           | Antenna       | Power     | 100% DC      | 50% DC               | Drift         |  |
|             | ID         M/N         Type         (MHz)           p 2021         E1         YL 05         BTT         2427         DSSS 6MB |       |     |           |            |           | ID      | ID     | ID               | ( <i>mm</i> ) | ( <i>mm</i> ) | (dBm)     | (W/kg)       | ( <i>W/kg</i> )      | ( <i>dB</i> ) |  |
| 19 Jan 2021 | F1                                                                                                                            | XL-95 | PTT | 2437      | DSSS 6Mbps | T2        | P1      | n/a    | n/a              | 25            |               | 9.65      | 0.000        |                      | 0.000         |  |
| 19 Jan 2021 | F2*                                                                                                                           | XL-95 | PTT | 2437      | DSSS 6Mbps | T2        | P1      | n/a    | n/a              | 0             |               | 9.65      | 0.010        |                      | 0.000         |  |
| 19 Jan 2021 | F3                                                                                                                            | XL-95 | PTT | 2402      | GFSK       | T2        | P1      | n/a    | n/a              | 25            |               | 2.54      | 0.000        |                      | 0.000         |  |
| 19 Jan 2021 | F4*                                                                                                                           | XL-95 | PTT | 2402      | GFSK       | T2        | P1      | n/a    | n/a              | 0             |               | 2.54      | 0.004        |                      | 0.000         |  |
|             | SAR Limit                                                                                                                     |       |     |           |            |           |         |        | Spatial Peak Hea |               |               |           |              | RF Exposure Category |               |  |
| F           | FCC 47 CFR 2.1093 Health Canada Safety Cod                                                                                    |       |     |           |            |           |         |        | age              | 1.6           | W/kg          | Genera    | I Populatior | /User Unav           | vare          |  |

#### Table 9.6: Measured Results WLAN 5G Band – FACE

From Previous Evaluation of XL-x5-7/8

|             |                                             |       |      | Measure   | ed SAR Res | ults (1g) | - FACE  | Config       | juration | (FCC | /ISED)        |           |              |             |       |
|-------------|---------------------------------------------|-------|------|-----------|------------|-----------|---------|--------------|----------|------|---------------|-----------|--------------|-------------|-------|
|             |                                             | DU    | -    | Test      |            |           | Access  | ories        |          | DUT  | Spacing       | Conducted | Measured     | SAR (1g)    | SAR   |
| Date        | Plot                                        | DU    |      | Frequency | Modulation | Antenna   | Battery | Body         | Audio    | DUT  | Antenna       | Power     | 100% DC      | 50% DC      | Drift |
|             | ID                                          | M/N   | Туре | (MHz)     |            | ID        | ID      | ID           | ID       | (mm) | ( <i>mm</i> ) | (dBm)     | (W/kg)       | (W/kg)      | (dB)  |
| 20 Jan 2021 | F1*                                         | XL-95 | PTT  | 5220      | OFDM 6Mbps | T2        | P1      | n/a          | n/a      | 0    |               | 5.99      | 0.166        |             | 0.000 |
| 20 Jan 2021 | F2                                          | XL-95 | PTT  | 5220      | OFDM 6Mbps | T2        | P1      | n/a          | n/a      | 25   |               | 5.99      | 0.013        |             | 0.000 |
| 21 Jan 2021 | F3                                          | XL-95 | PTT  | 5180      | OFDM 6Mbps | T2        | P1      | n/a          | n/a      | 25   |               | 6.22      | 0.017        |             | 0.000 |
| 21 Jan 2021 | F5*                                         | XL-95 | PTT  | 5180      | OFDM 6Mbps | T2        | P1      | n/a          | n/a      | 0    |               | 6.22      | 0.145        |             | 0.000 |
| 21 Jan 2021 | F1*                                         | XL-95 | PTT  | 5785      | OFDM 6Mbps | T2        | P1      | n/a          | n/a      | 0    |               | 1.85      | 0.069        |             | 0.000 |
| 21 Jan 2021 | F2                                          | XL-95 | PTT  | 5785      | OFDM 6Mbps | T2        | P1      | n/a          | n/a      | 25   |               | 1.85      | 0.016        |             | 0.000 |
| 21 Jan 2021 | F3                                          | XL-95 | PTT  | 5745      | OFDM 6Mbps | T2        | P1      | n/a          | n/a      | 25   |               | 3.78      | 0.018        |             | 0.000 |
| 21 Jan 2021 | F4                                          | XL-95 | PTT  | 5825      | OFDM 6Mbps | T2        | P1      | n/a          | n/a      | 25   |               | 1.30      | 0.001        |             | 0.000 |
| 21 Jan 2021 | F5*                                         | XL-95 | PTT  | 5745      | OFDM 6Mbps | T2        | P1      | n/a          | n/a      | 0    |               | 3.78      | 0.084        |             | 0.000 |
|             | SAR Limit                                   |       |      |           |            |           |         | Spatial Peak |          |      |               | R         | F Exposure   | Category    |       |
| F           | FCC 47 CFR 2.1093 Health Canada Safety Code |       |      |           |            |           |         | am Avei      | rage     | 1.6  | W/kg          | Genera    | I Populatior | n/User Unaw | vare  |

\* Due to the low conducted power and the extremely low SAR, these measurements were made with a 0mm separation as verification of DUT operation. Since this was an exceptional test configuration, these measurement values will not be used as the <u>reported</u> SAR.



### **10.0 SCALING OF MAXIMUM MEASURE SAR**

### Table 10.1 SAR Scaling – LMR

| Scaling of Maximum Measured SAR (1g) |                                 |         |               |  |        |  |  |
|--------------------------------------|---------------------------------|---------|---------------|--|--------|--|--|
| N                                    | leasured Parameters             |         | Configuration |  |        |  |  |
| IV                                   | leasureu Parameters             | Body    | Face          |  |        |  |  |
|                                      | Plot ID                         | B10     | F10           |  |        |  |  |
| Max                                  | kimum Measured SAR <sub>M</sub> | 4.430   | 2.810         |  | (W/kg) |  |  |
|                                      | Frequency                       | 459.025 | 470           |  | (MHz)  |  |  |
| Drif                                 | t Power Drift                   | -0.910  | -0.280        |  | (dB)   |  |  |
|                                      | Conducted Power                 | 37.190  | 37.190        |  | (dBm)  |  |  |
| DC                                   | Transmit Duty Cycle             | 100.000 | 100.0         |  | (%)    |  |  |
|                                      | Fluid Deviation from Target     |         |               |  |        |  |  |
| Δe                                   | Permitivity                     | 7.10%   | 7.10%         |  |        |  |  |
| Δσ                                   | Conductivity                    | 1.15%   | 3.45%         |  |        |  |  |

| Fluid Sensitivity Calculation (1g)                                     |                 |                  | IEC 62209-2 Annex F |       |  |
|------------------------------------------------------------------------|-----------------|------------------|---------------------|-------|--|
|                                                                        | Delta SAR = 0   | Ce * Δe + Cσ * Δ | σ                   | (F.1) |  |
| (                                                                      | (F.2)           |                  |                     |       |  |
| $C\sigma = (0.009804*f^3) - (0.08661*f^2) + (0.02981*f) + 0.7829$ (F.3 |                 |                  |                     |       |  |
| f                                                                      | Frequency (GHz) | 0.459025         | 0.47                |       |  |
|                                                                        | Ce              | -0.213           | -0.213              |       |  |
|                                                                        | Cσ              | 0.779            | 0.779               |       |  |
| Ce * ∆e                                                                |                 | -0.015           | -0.015              |       |  |
|                                                                        | Cσ * Δσ         | 0.009            | 0.027               |       |  |
|                                                                        | ΔSAR            | -0.006           | 0.012 (3)           |       |  |

Note(3): Delta SAR is Positive, SAR Adjustment for Fluid Sensitivity is not Required, in accordance with ISED Notice 2012-DRS0529

| Manufacturer's Tuneup Tolerance |        |        |  |       |  |
|---------------------------------|--------|--------|--|-------|--|
| Measured Conducted Power        | 37.190 | 37.190 |  | (dBm) |  |
| Rated Conducted Power           | 37.400 | 37.400 |  | (dBm) |  |
| ΔΡ                              | -0.210 | -0.210 |  | (dB)  |  |

Note(4): SAR was Evaluated at the Maximum Tuneup Tolerance. SAR Adjustment is not Required.

| Crest Factor             |           |         |  |     |  |  |
|--------------------------|-----------|---------|--|-----|--|--|
| Transmit Duty Cycle (DC) | 100.000   | 100.0   |  | (%) |  |  |
| CF (1/DC)                | 1.000 (5) | 1.00 (5 |  |     |  |  |

Note(5): Crest Factor = 1 (100% Duty Cycle), Crest Factor Adjustment not Required.



## Table 10.1 SAR Scaling – LMR (Cont.)

| Scaling of M                                  | Scaling of Maximum Measured SAR (1g) |               |        |  |  |  |
|-----------------------------------------------|--------------------------------------|---------------|--------|--|--|--|
| Measured Parameters                           |                                      | Configuration |        |  |  |  |
| Measureu Farameters                           | Body                                 | Face          |        |  |  |  |
| Plot ID                                       | B10                                  | F10           |        |  |  |  |
| Maximum Measured SAR <sub>M</sub>             | 4.430                                | 2.810         | (W/kg) |  |  |  |
| Frequency                                     | 459.025                              | 470           | (MHz)  |  |  |  |
| SAR Adjus                                     | stment for Fluid                     | Sensitivity   |        |  |  |  |
| $SAR_1 = SAR_M X [\Delta SAR]$                | 4.457                                | 2.810         | (W/kg) |  |  |  |
| SAR Adjus                                     | tment for Tuneu                      | p Tolerance   |        |  |  |  |
| $SAR_2 = SAR_1 + [\Delta P]$                  | 4.678                                | 2.949         | (W/kg) |  |  |  |
| SAR                                           | Adjustment for                       | Drift         |        |  |  |  |
| SAR <sub>3</sub> = SAR <sub>2</sub> + [Drift] | 5.769                                | 3.146         | (W/kg) |  |  |  |
| SAR Adjustment for Crest Factor               |                                      |               |        |  |  |  |
| SAR <sub>4</sub> = SAR <sub>3</sub> x [CF]    | 5.769                                | 3.146         | (W/kg) |  |  |  |
| reported 1g SAR                               |                                      |               |        |  |  |  |
| SAR <sub>4</sub>                              | 5.77                                 | 3.15          | (W/kg) |  |  |  |

#### NOTES to Table

(1) Scaling of the Maximum Measured SAR is based on the highest, 100% duty cycle, Face, Body and/or Head SAR measured of ALL test channels, configurations and accessories used during THIS evaluation. The Measured Fluid Deviation parameters apply only to deviation of the tissue equivalent fluids used at the frequencies which produced the highest measured SAR. The Measured Conducted Power applies to the Conducted Power measured at the frequencies producing the highest Face, Body and/or Head SAR. The Measured Drift is the SAR drift associated with that specific SAR measurement. The Reported SAR is the accumulation of all SAR Adjustments from the applicable Steps 1 through 3. The Plot ID is for indentification of the SAR Measurement Plots in the Annexes of this report.

NOTE: Some of the scaling factors in Steps 1 through 3 may not apply and are identified by grayed fields.

#### Step 1

Per IEC-62209-1 and FCC KDB 865664. Scaling required only when Measured Fluid Deviation is greater than 5%. If the Measured Fluid Deviation is greater than 5%, Table 10.1 will be shown and will indicate the SAR scaling factor in percent (%). SAR is MULTIPLIED by this scaling factor only when the scaling factor is positive (+).

#### Step 2

Per KDB 447498. Scaling required only when the difference (Delta) between the Measured Conducted Power and the Manufacturer's Rated Conducted Power is (-) Negative. The absolute value of Delta is ADDED to the SAR.

#### Step 3

Per IEC 62209-1. Scaling required only when Measured Drift is (-) Negative. The absolute value of Measured Drift is added to Reported.

#### Step 4

The Reported SAR is the Maximum Final Adjusted SAR from the applicable Steps 1 through 3 and are reported on Page 1 of this report.



## 11.0 ANALYSIS OF SIMULTANEOUS TRANSMISSION

#### **Simultaneous Transmission Analysis**

The XL-95P employs Wi-Fi and BlueTooth capable of simultaneously transmitting with the LMR transmitter. The Wi-Fi and BlueTooth transmitters share the same antenna and the transmissions are interleaved such that only one transmitter is transmitting at a time. As per FCC KDB 447498, simultaneous transmission analysis is required for devices capable of simultaneous transmission. The Wi-Fi and BT SAR are subject to General Population limits of 1.6W/kg. The LMR SAR is subject to Occupational limits of 8.0W/kg. To determine Simultaneous Transmission SAR Test Exclusion when different SAR limits are applied to the different transmit modes, the Sum-of-the-Ratios of the SAR to the respective SAR limit is applied. When the Sum-of-the-Ratios is  $\leq$  1.0, Simultaneous Transmission SAR Test Exclusion may be applied.

When the Sum-of-the-Ratios exceeds 1.0, the SAR to Peak Location Separation Ration (SPLSR) may be used to determine simultaneous transmission SAR test exclusion. However, the equation for determining this exclusion applies to General Population limits only. Reference Operation Description Part 2. When mixed Occupational and General Population exposure limits are used, the SAR of the Occupational configuration is normalize to the General Population limit. For example if SAR<sub>Occupational</sub> = 6.4W/kg and SAR<sub>GenPop</sub> = 0.65W/kg, normalizing the Occupational SAR to General Population limits yields SAR<sub>OccNorm</sub> = 1.28W/kg. The SPLSR equation of KDB 447498 4.3.2 c) becomes

$$(SAR_1 + SAR_2)^{1.5}/R_i \le 0.04 = (SAR_{OccNorm} + SAR_{GenPop})^{1.5}/R_i = (1.28 + 0.65)^{1.5}/R_i \le 0.04$$

SAR for each transmission band, transmission mode and/or equipment class was evaluated with Body-Worn and Audio Accessories in the BODY configuration and with no Accessories in the HEAD configurations. The DUT was configured with the maximum Transmit Time Invertal (TTI) at 100% trasmit duty cycle. Only the Maximum <u>reported</u> SAR for BODY and HEAD configuration is used in the Sum-of-the-Ratios or SPLSR calculation and the worst case of all possible combinations is considered.

| List of Possible Transmitters |       |         |          |              |  |  |  |
|-------------------------------|-------|---------|----------|--------------|--|--|--|
|                               |       | Frequen | cy Range | Rated Output |  |  |  |
| Туре                          | Class | Lower   | Upper    | Power        |  |  |  |
|                               |       | (MHz)   | (MHz)    | (dBm)        |  |  |  |
| LMR VHF                       | TNF   | 136.0   | 174.0    | 37.80        |  |  |  |
| LMR UHF                       | LINE  | 378.0   | 522.0    | 37.00        |  |  |  |
| BlueTooth                     | DSS   | 2402.0  | 2480.0   | 2.04         |  |  |  |
| WiFi 2.4                      | DTS   | 2412.0  | 2462.0   | 9.20         |  |  |  |
| WiFi 5                        | NII   | 5150.0  | 5240.0   | 11.76        |  |  |  |
| WiFi 5                        | NII   | 5745.0  | 5825.0   | 4.77         |  |  |  |

### Table 11.1 List of Possible Transmitters



### Table 11.2 List of Possible Transmitters Combinations

|                         | Simultaneous Transmitter Combinations |           |          |        |  |  |  |  |
|-------------------------|---------------------------------------|-----------|----------|--------|--|--|--|--|
| n                       |                                       | Trans     | mitter   |        |  |  |  |  |
| Configuration<br>Number | LMR 7/800                             | BlueTooth | WiFi 2.4 | WiFi 5 |  |  |  |  |
| 1                       | Х                                     | X         |          |        |  |  |  |  |
| 2                       | X                                     |           | X        |        |  |  |  |  |
| 3                       | Х                                     |           |          | Х      |  |  |  |  |

Indicates this configuration is not supported



### Table 11.3 Analysis of Sum-of-the-Ratios

|               | Analysis of Sum-of-the-Ratios<br>For All Transmitters and Configurations |                             |       |                    |                                          |                    |       |                    |        |        |       |
|---------------|--------------------------------------------------------------------------|-----------------------------|-------|--------------------|------------------------------------------|--------------------|-------|--------------------|--------|--------|-------|
| er.           |                                                                          |                             |       |                    | Transmi                                  | tter Type          |       |                    |        | 6m     | Sum   |
| Number        | _                                                                        | LMR Ba                      | nd    | BlueToc            | oth                                      | WiFi 2.            | .4    | WiFi 5             | 5      | Sum    | Sum   |
|               | tior                                                                     | <u>stand-alone</u>          | Ratio | <u>stand-alone</u> | Ratio                                    | <u>stand-alone</u> | Ratio | <u>stand-alone</u> | Ratio  | of     | of    |
| ion           | ura                                                                      | SAR                         | to    | SAR                | to                                       | SAR                | to    | SAR                | to     | Detice |       |
| ırat          | Configuration                                                            | (W/kg)                      | Limit | (W/kg)             | (W/kg) Limit (W/kg) Limit (W/kg) Limit   |                    |       |                    | Ratios | SARs   |       |
| Configuration | 00                                                                       | SAR Limit = 8<br>(Occupatio | •     | S                  | SAR Limit = 1.6W/kg (General Population) |                    |       |                    |        | (W/kg) |       |
| 1             |                                                                          |                             |       | 0.004              | 0.003                                    |                    |       |                    |        | 0.724  | 5.774 |
| 2             | BODY                                                                     | 5.770                       | 0.721 |                    |                                          | 0.000              | 0.000 |                    |        | 0.721  | 5.770 |
| 3             |                                                                          |                             |       |                    |                                          |                    |       | 0.000              | 0.000  | 0.721  | 5.770 |
| 1             |                                                                          |                             |       | 0.001              | 0.001                                    |                    |       |                    |        | 0.394  | 3.151 |
| 2             | HEAD                                                                     | 3.150                       | 0.394 |                    |                                          | 0.010              | 0.006 |                    |        | 0.400  | 3.160 |
| 3             |                                                                          |                             |       |                    |                                          |                    |       | 0.018              | 0.011  | 0.405  | 3.168 |



Indicates this combination is not supported

Simultaneous Transmission SAR Test Exclusion may be determined by applying the Sum-of-the-Ratios for the worst-case combinations of all simultaneously transmitting transmitters. From the above table, none of the stand-alone transmitters exceed their respective limit. Additionally, the Sum-of-the-Ratios for the worst-case combinations of the transmitters with General Population limits do not exceed 1.0.



### **12.0 SAR EXPOSURE LIMITS**

### Table 12.1 Exposure Limits

| SAR RF EXPOSURE LIMITS                                                                                                                                                 |                                                             |                 |                                                      |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------|------------------------------------------------------|--|--|
| FCC 47 CFR§2.1093                                                                                                                                                      | 47 CFR§2.1093 Health Canada Safety Code 6                   |                 | Occupational /<br>Controlled Exposure <sup>(5)</sup> |  |  |
| Spatial Average <sup>(1)</sup><br>(averaged over the whole body)                                                                                                       |                                                             | 0.08 W/kg       | 0.4 W/kg                                             |  |  |
| •                                                                                                                                                                      | atial Peak <sup>(2)</sup><br>eraged over any 1 g of tissue) | 1.6 W/kg        | 8.0 W/kg                                             |  |  |
| •                                                                                                                                                                      | atial Peak <sup>(3)</sup><br>t/Ankles averaged over 10 g)   | 4.0 W/kg        | 20.0 W/kg                                            |  |  |
| (1) The Spatial Average                                                                                                                                                | e value of the SAR averaged over                            | the whole body. |                                                      |  |  |
| (2) The Spatial Peak value of the SAR averaged over any 1 gram of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.   |                                                             |                 |                                                      |  |  |
| (3) The Spatial Peak value of the SAR averaged over any 10 grams of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time. |                                                             |                 |                                                      |  |  |

(4) Uncontrolled environments are defined as locations where there is potential exposure to individuals who have no knowledge or control of their potential exposure.

(5) Controlled environments are defined as locations where there is potential exposure to individuals who have knowledge of their potential exposure and can exercise control over their exposure.



#### **13.0 DETAILS OF SAR EVALUATION**

# Table 13.1 Day Log

| DAY LOG     |                 |               |                      |                        |              |     |      |      |
|-------------|-----------------|---------------|----------------------|------------------------|--------------|-----|------|------|
| Date        | Ambient<br>Temp | Fluid<br>Temp | Relative<br>Humidity | Barometric<br>Pressure | d Dielectric |     |      |      |
| Date        | (°C)            | (°C)          | (%)                  | (kPa)                  | Fluid        | SPC | Test | TSL  |
| 26 Aug 2022 | 25.2            | 24.7          | 41%                  | 100.4                  | Х            | Х   | Х    | 450H |
| 27 Aug 2022 | 22.2            | 20.2          | 41%                  | 101.1                  |              |     | Х    | 450H |
| 28 Aug 2022 | 19.4            | 18.6          | 42%                  | 101.5                  |              |     | Х    | 450H |
| 29 Aug 2022 | 22.2            | 23.2          | 42%                  | 101.5                  | Х            | Х   | Х    | 450H |
| 30 Aug 2022 | 19.4            | 18.6          | 42%                  | 101.5                  |              |     | Х    | 450H |
| 1 Sep 2022  | 23.0            | 22.5          | 42%                  | 101.6                  | Х            | Х   | Х    | 150H |
| 2 Sep 2022  | 23.5            | 23.6          | 30%                  | 101.0                  |              |     | Х    | 150H |



## Table 13.2 DUT Positioning

#### **DUT Positioning**

#### Positioning

The DUT Positioner was securely fastened to the Phantom Platform. Registration marks were placed on the DUT and the Positioner to ensure consistent positioning of the DUT for each test evaluation.

#### FACE Configuration

The DUT was securely clamped into the device holder with the surface of the DUT normally held to the user's face facing the phantom. The device holder was adjusted to ensure that the horizontal axis of the DUT was parallel to the bottom of the phantom. A 25mm spacer block was used to set the separation distance between the DUT and the phantom to 25mm. When applicable and unless by design, the antenna of the DUT was prevented from sagging away from the phantom. The spacer block was removed before testing.

### BODY Configuration

Body-Worn and Audio Accessories were affixed to the DUT in the manner in which they are intended to be used. The DUT, with its accessories, were securely clamped into the device holder with the surface of the DUT normally in contact with the body in direct contact with the bottom of the phantom, or 0mm separation from the DUTs accessory to the phantom. Body-Worn Accessory straps, linkages, etc. were positioned in a fashion resembling that for which they were intended to be used. Audio Accessory cables, etc., were positioned in a fashion resembling that for which they were intended to be used.

#### HEAD Configuration

This device is not intended to be held to the ear and was not tested in the HEAD configuration.

#### **Table 13.3 General Procedures and Report**

#### **General Procedures and Reporting**

#### General Procedures

The fluid dielectric parameters of the Active Tissue Simulating Liquid (TSL) were measured as described in this Section, recorded and entered into the DASY Measurement Server. Active meaning the TSL used during the SAR evaluation of the DUT. The temperature of the Active TSL was measured and recorded prior to performing a System Performance Check (SPC). An SPC was performed with the Active TSL prior to the start of the test series. The temperature of the Active TSL was measured throughout the day and the Active TSL temperature was maintained to  $\pm 0.5^{\circ}$ C. The Active TSL temperature was maintained to within  $\pm 1.0^{\circ}$ C throughout the test series. TSL analysis and SPC were repeated when the Active TSL use exceeded 84 hours.

An Area Scan exceeding the length and width of the DUT projection was performed and the locations of all maximas within 2dB of the Peak SAR recorded. A Zoom Scan centered over the Peak SAR location(s) was performed and the 1g and 10g SAR values recorded. The resolutions of the Area Scan and Zoom Scan are described in the Scan Resolution table(s) in this Section. A Power Reference Measurement was taken at the phantom reference point immediately prior to the Area Scan. A Power Drift measurement was taken at the phantom reference point immediately prior to determine the power drift. A Z-Scan from the <u>Maximum Distance to Phantom Surface</u> to the fluid surface was performed following the power drift measurement.

#### Reporting

The 1g SAR, 10g SAR and power drift measurements are recorded in the SAR Measurement Summary tables in the SAR Measurement Summary Section of this report. The SAR values shown in the 100% DC (Duty Cycle) column are the SAR values reported by the SAR Measurement Server with the DUT operating at 100% transmit duty cycle. The SAR values in the 50% DC column have been scaled by 50% for 50% Push-To-Talk duty cycle compensation. These tables also include other information such as transmit channel and frequency, modulation, accessories tested and DUT-phantom separation distance.

In the Scaling of Maximum Measured SAR Section of this report, the highest measured SAR in the BODY and FACE configurations, within the entire scope of this assessment, are, when applicable, scaled for Fluid Sensitivity, Manufacturer's Tune-Up Tolerance, Simultaneous Transmission and Drift. With the exception of Duty Cycle correction/compensation, SAR values are <u>ONLY</u> scaled up, not down. The final results of this scaling is the <u>reported SAR</u> which appears on the Cover Page of this report.



### Table 13.4 Fluid Dielectric and Systems Performance Check

#### Fluid Dielectric and Systems Performance Check

#### Fluid Dielectric Measurement Procedure

The fluid dielectric parameters of the Tissue Simulating Liquid (TSL) are measured using the Open-Ended Coax Method connected to an Agilent 8753ET Network Analyzer connected to a measurement server running Aprel Dielectric Property Measurement System. A frequency range of  $\pm$  100MHz for frequencies > 300MHz and  $\pm$  50MHz for frequencies  $\leq$  300MHz with frequency step size of 10MHz is used. The center frequency is centered around the SAR measurement probe's calibration point for that TSL frequency range. A calibration of the setup is performed using a short-open-deionized water (at 23°C in a 300ml beaker) method. A sample of the TSL is placed in a 300ml beaker and the open-ended coax is submerged approximately 8mm below the fluid surface in the approximate center of the beaker. A check of the setup is made to ensure no air is trapped under the open-ended coax. The sample of TSL is measured and compared to the FCC OET Bulletin 65 Supplement C targets for HEAD or BODY for the entire fluid measurement range. Fluid adjustment are made if the dielectric parameters are > 5% in range that the DUT is to be tested. If the adjustments fail to bring the parameters to  $\leq$  5% but are < 10%, the SAR Fluid Sensitivity as per IEC 62201-1 and FCC KDB 865664 are applied to the highest measured SAR. A TSL with dielectric parameters > 10% in the DUT test frequency range are not used.

#### Systems Performance Check

The fluid dielectric parameters of the Active TSL are entered into the DASY Measurement Server at each of the 10MHz step size intervals. Active meaning the TSL used during the SAR evaluation of the DUT. The DASY Measurement System will automatically interpolate the dielectric parameters for DUT test frequencies that fall between the 10MHz step intervals.

A Systems Performance Check (SPC) is performed in accordance with IEEE 1528 "System Check" and FCC KDB 865664 "System Verification". A validation source, dipole or Confined Loop Antenna (CLA), is placed under the geometric center of the phantom and separated from the phantom in accordance to the validation source's Calibration Certificate data. A CW signal set to the frequency of the validate source's and SAR measurement probe's calibration frequency with a forward power set to the validation source's Calibration Certificate data power setting is applied to the validation source. An Area Scan is centered over the projection of the validation source's feed point and an Area Scan is taken. A Zoom Scan centered over the Peak SAR measurement of the Area Scan and the 1g and 10g SAR is measured. The measured 1g and 10g SAR is compared to the 1g and 10g SAR measurements from the validation source's Calibration Certificate. When required, the measured SAR is normalized to 1.0W and compared to the normalized SAR indicated on the validation source's Calibration Certificate. The SPC is considered valid when the measured and normalized SAR is  $\leq 10\%$  of the measured and normalize SAR of the validation source's Calibration Certificate.

The fluid dielectric parameters of the Active TSL and SPC are repeated when the Active TSL has been in use for greater than 84 hours or if the Active TSL temperature has exceed ± 1°C of the initial fluid analysis.

| Scan Resolution 100MHz to 2GHz                                                                                                  |            |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|
| Maximum distance from the closest measurement point to phantom surface:                                                         | 4 ± 1 mm   |  |  |  |
| (Geometric Center of Probe Center)                                                                                              | 41100      |  |  |  |
| Maximum probe angle normal to phantom surface.                                                                                  | 5° ± 1°    |  |  |  |
| (Flat Section ELI Phantom)                                                                                                      | 5 11       |  |  |  |
| Area Scan Spatial Resolution $\Delta X$ , $\Delta Y$                                                                            | 15 mm      |  |  |  |
| Zoom Scan Spatial Resolution $\Delta X$ , $\Delta Y$                                                                            | 7.5 mm     |  |  |  |
| Zoom Scan Spatial Resolution ∆Z                                                                                                 | E mana     |  |  |  |
| (Uniform Grid)                                                                                                                  | 5 mm       |  |  |  |
| Zoom Scan Volume X, Y, Z                                                                                                        | 30 mm      |  |  |  |
| Phantom                                                                                                                         | ELI        |  |  |  |
| Fluid Depth                                                                                                                     | 150 ± 5 mm |  |  |  |
| An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima. |            |  |  |  |
| A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used                                         |            |  |  |  |
| to determine the 1-gram and 10-gram peak spatial-average SAR                                                                    |            |  |  |  |

#### Table 13.5 Scan Resolution 100MHz to 2GHz



# Table 13.6 Scan Resolution 2GHz to 3GHz

| Scan Resolution 2GHz to 3GHz                                                            |                           |  |  |  |
|-----------------------------------------------------------------------------------------|---------------------------|--|--|--|
| Maximum distance from the closest measurement point to phantom surface:                 | 4 + 4 mm                  |  |  |  |
| (Geometric Center of Probe Center)                                                      | 4 ± 1 mm                  |  |  |  |
| Maximum probe angle normal to phantom surface.                                          | 5° ± 1°                   |  |  |  |
| (Flat Section ELI Phantom)                                                              | $5^{\circ} \pm 1^{\circ}$ |  |  |  |
| Area Scan Spatial Resolution $\Delta X$ , $\Delta Y$                                    | 12 mm                     |  |  |  |
| Zoom Scan Spatial Resolution $\Delta X$ , $\Delta Y$                                    | 5 mm                      |  |  |  |
| Zoom Scan Spatial Resolution ΔZ                                                         | 5 mm                      |  |  |  |
| (Uniform Grid)                                                                          | 5 1111                    |  |  |  |
| Zoom Scan Volume X, Y, Z                                                                | 30 mm                     |  |  |  |
| Phantom                                                                                 | ELI                       |  |  |  |
| Fluid Depth                                                                             | 150 ± 5 mm                |  |  |  |
| An Area Scan with an area extending beyond the device was used to locate the candi      | date maximas              |  |  |  |
| within 2dB of the global maxima.                                                        |                           |  |  |  |
| A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used |                           |  |  |  |
| to determine the 1-gram and 10-gram peak spatial-average SAR                            |                           |  |  |  |

### Table 13.7 Scan Resolution 5GHz to 6GHz

| Scan Resolution 5GHz to 6GHz                                                                                                    |            |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|--|--|
| Maximum distance from the closest measurement point to phantom surface:                                                         |            |  |  |  |  |  |  |
| (Geometric Center of Probe Center)                                                                                              |            |  |  |  |  |  |  |
| Maximum probe angle normal to phantom surface.                                                                                  |            |  |  |  |  |  |  |
| (Flat Section ELI Phantom)                                                                                                      |            |  |  |  |  |  |  |
| Area Scan Spatial Resolution $\Delta X$ , $\Delta Y$                                                                            | 10 mm      |  |  |  |  |  |  |
| Zoom Scan Spatial Resolution $\Delta X$ , $\Delta Y$                                                                            | 4 mm       |  |  |  |  |  |  |
| Zoom Scan Spatial Resolution ∆Z                                                                                                 |            |  |  |  |  |  |  |
| (Uniform Grid)                                                                                                                  | 2 mm       |  |  |  |  |  |  |
| Zoom Scan Volume X, Y, Z                                                                                                        |            |  |  |  |  |  |  |
| Phantom                                                                                                                         | ELI        |  |  |  |  |  |  |
| Fluid Depth                                                                                                                     | 100 ± 5 mm |  |  |  |  |  |  |
| An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima. |            |  |  |  |  |  |  |
| A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used                                         |            |  |  |  |  |  |  |
| to determine the 1-gram and 10-gram peak spatial-average SAR                                                                    |            |  |  |  |  |  |  |



### **14.0 MEASUREMENT UNCERTAINTIES**

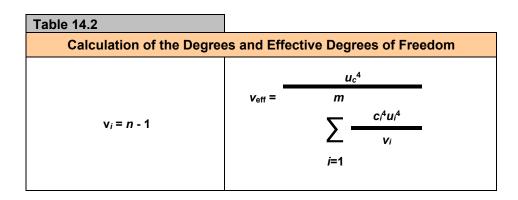
### **Table 14.1 Measurement Uncertainty**

| IEEE 1528 Table E.9                                                             |                         |             |              |              |          |      |                    |                     |                     |                                          |
|---------------------------------------------------------------------------------|-------------------------|-------------|--------------|--------------|----------|------|--------------------|---------------------|---------------------|------------------------------------------|
| UNCERTAINTY BUDGET FOR DEVICE EVALUATION (IEEE 1528-2013 Table 9)               |                         |             |              |              |          |      |                    |                     |                     |                                          |
| Source of Uncertainty                                                           | IEEE<br>1528<br>Section | Toler<br>±% | Prob<br>Dist | Div          | Div      | Ci   | Ci                 | Stand<br>Unct<br>±% | Stand<br>Unct<br>±% | V <sub>i</sub><br>or<br>V <sub>eff</sub> |
| Measurement System                                                              |                         |             |              |              |          | (1g) | (10g)              | (1g)                | (10g)               |                                          |
| EX3DV4 Probe Calibration** (k=1)                                                | E.2.1                   | 6.7         | N            | 1.00         | 1        | 1    | 1                  | 6.7                 | 6.7                 | ~                                        |
| Axial Isotropy** ( <i>k</i> =1)                                                 | E.2.2                   | 0.6         | R            | 1.73         | √3       | 0.7  | 0.7                | 0.2                 | 0.2                 | 8                                        |
| Hemispherical Isotropy** (k=1)                                                  | E.2.2                   | 3.2         | R            | 1.73         | √3       | 0.7  | 0.7                | 1.3                 | 1.3                 | 8                                        |
| Boundary Effect*                                                                | E.2.3                   | 1.0         | R            | 1.73         | √3       | 1    | 1                  | 0.6                 | 0.6                 | 8                                        |
| Linearity** ( <i>k</i> =1)                                                      | E.2.4                   | 0.5         | R            | 1.73         | √3       | 1    | 1                  | 0.3                 | 0.3                 | 8                                        |
| System Detection Limits*                                                        | E.2.4                   | 1.0         | R            | 1.73         | √3       | 1    | 1                  | 0.6                 | 0.6                 | 8                                        |
| Modulation Response** (k=1)                                                     | E.2.5                   | 8.3         | R            | 1.73         | √3       | 1    | 1                  | 4.8                 | 4.8                 | 8                                        |
| Readout Electronics*                                                            | E.2.6                   | 0.3         | N            | 1.00         | 1        | 1    | 1                  | 0.3                 | 0.3                 | 8                                        |
| Response Time*                                                                  | E.2.7                   | 0.8         | R            | 1.73         | √3       | 1    | 1                  | 0.5                 | 0.5                 | 8                                        |
| Integration Time*                                                               | E.2.8                   | 2.6         | R            | 1.73         | √3       | 1    | 1                  | 1.5                 | 1.5                 | 8                                        |
| RF Ambient Conditions - Noise                                                   | E.6.1                   | 0.0         | R            | 1.73         | √3       | 1    | 1                  | 0.0                 | 0.0                 | 10                                       |
| RF Ambient Conditions - Reflection<br>Probe Positioner Mechanical<br>Tolerance* | E.6.1<br>E.6.2          | <b>0.0</b>  | R<br>R       | 1.73<br>1.73 | √3<br>√3 | 1    | 1                  | 0.0<br>0.0          | 0.0                 | <b>10</b><br>∞                           |
| Probe Positioning wrt Phantom Shell*                                            | E.6.3                   | 0.4         | R            | 1.73         | √3       | 1    | 1                  | 0.2                 | 0.2                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  |
| Post-processing*                                                                | E.5                     | 2.0         | R            | 1.73         | √3       | 1    | 1                  | 1.2                 | 1.2                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  |
| Test Sample Related                                                             |                         |             |              |              | 10       |      |                    |                     |                     |                                          |
| Test Sample Positioning                                                         | E.4.2                   | 2.2         | N            | 1.00         | 1        | 1    | 1                  | 2.2                 | 2.2                 | 5                                        |
| Device Holder Uncertainty*                                                      | E.4.1                   | 3.6         | N            | 1.00         | 1        | 1    | 1                  | 3.6                 | 3.6                 | 8                                        |
| SAR Drift Measurement <sup>(2)</sup>                                            | E.2.9                   | 0.0         | R            | 1.73         | √3       | 1    | 1                  | 0.0                 | 0.0                 | 8                                        |
| SAR Power Scaling <sup>(3)</sup>                                                | E.6.5                   | 0.0         | R            | 1.73         | √3       | 1    | 1                  | 0.0                 | 0.0                 | 8                                        |
| Phantom and Tissue Parameters                                                   |                         |             |              |              |          |      |                    |                     |                     |                                          |
| Phantom Uncertainty*                                                            | E.3.1                   | 6.1         | R            | 1.73         | √3       | 1    | 1                  | 3.5                 | 3.5                 | 8                                        |
| SAR Correction Uncertainty                                                      | E.3.2                   | 1.6         | N            | 1.00         | 1        | 1    | 0.84               | 1.6                 | 1.3                 | ∞                                        |
| Liquid Conductivity (measurement)                                               | E.3.3                   | 5.0         | N            | 1.00         | 1        | 0.78 | 0.71               | 3.9                 | 3.6                 | 10                                       |
| Liquid Permittivity (measurement)                                               | E.3.3                   | 5.0         | N            | 1.00         | 1        | 0.23 | 0.26               | 1.2                 | 1.3                 | 10                                       |
| Liquid Conductivity (Temperature)                                               | E.3.2                   | 0.4         | R            | 1.73         | √3       | 0.78 | 0.71               | 0.2                 | 0.2                 | 10                                       |
| Liquid Permittivity Temperature)                                                | E.3.2                   | 0.2         | R            | 1.73         | √3       | 0.23 | 0.26               | 0.0                 | 0.0                 | 10                                       |
| Effective Degrees of Freedom                                                    |                         |             |              |              |          |      | V <sub>eff</sub> = | 1141                |                     |                                          |
| Combined Standard Uncertainty                                                   |                         |             |              |              |          |      |                    | 11.1                | 11.0                |                                          |
| Expanded Uncertainty (95% Confiden                                              | ce Interval)            |             | k=2          |              |          |      |                    | 22.2                | 21.9                |                                          |
| Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003        |                         |             |              |              |          |      |                    |                     |                     |                                          |

(1) The Effective Degrees of Freedom is > 30

Therefore a coverage factor of k=2 represents an approximate confidence level of 95%.

(2) The SAR Value is compensated for Drift


(3) SAR Power Scaling not Required

\* Provided by SPEAG for DASY4

\*\* Standard Uncertainty Calibration Data Provided by SPEAG for EX3DEV4 Probe



# Table 14.2 Calculation of Degrees of Freedom





### **15.0 FLUID DIELECTRIC PARAMETERS**

Note: Effective February 19, 2019 TCB Workshop: FCC has permitted the use of single head-tissue simulating liquid specified in IEC/IEEE 62209-1528 for all SAR tests.

## Table 15.1 Fluid Dielectric Parameters 450MHz HEAD TSL, 26 August 2022

| **************                                                                                                                                                                                                                                                                                          |        |        |         |        |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|---------|--------|--|--|--|--|
| Aprel Laboratory<br>Test Result for UIM Dielectric Parameter<br>Fri 26/Aug/2022 16:29:46<br>Freq Frequency(GHz)<br>FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon<br>FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma<br>Test_e Epsilon of UIM<br>Test_s Sigma of UIM |        |        |         |        |  |  |  |  |
| Freq                                                                                                                                                                                                                                                                                                    | FCC eH | FCC sH | HTest e | Test s |  |  |  |  |
| 0.3500                                                                                                                                                                                                                                                                                                  | 44.70  | 0.87   | 47.59   | 0.79   |  |  |  |  |
| 0.3600                                                                                                                                                                                                                                                                                                  | 44.58  | 0.87   | 48.32   | 0.80   |  |  |  |  |
| 0.3700                                                                                                                                                                                                                                                                                                  | 44.46  | 0.87   | 47.63   | 0.80   |  |  |  |  |
| 0.3800                                                                                                                                                                                                                                                                                                  | 44.34  | 0.87   | 47.12   | 0.83   |  |  |  |  |
| 0.3900                                                                                                                                                                                                                                                                                                  | 44.22  | 0.87   | 47.04   | 0.83   |  |  |  |  |
| 0.4000                                                                                                                                                                                                                                                                                                  | 44.10  | 0.87   | 47.18   | 0.84   |  |  |  |  |
| 0.4100                                                                                                                                                                                                                                                                                                  | 43.98  | 0.87   | 46.80   | 0.84   |  |  |  |  |
| 0.4200                                                                                                                                                                                                                                                                                                  | 43.86  | 0.87   | 46.87   | 0.83   |  |  |  |  |
| 0.4300                                                                                                                                                                                                                                                                                                  | 43.74  | 0.87   | 46.35   | 0.86   |  |  |  |  |
| 0.4400                                                                                                                                                                                                                                                                                                  | 43.62  | 0.87   | 45.79   | 0.87   |  |  |  |  |
| 0.4500                                                                                                                                                                                                                                                                                                  | 43.50  | 0.87   | 45.82   | 0.88   |  |  |  |  |
| 0.4600                                                                                                                                                                                                                                                                                                  | 43.45  | 0.87   | 45.42   | 0.88   |  |  |  |  |
| 0.4700                                                                                                                                                                                                                                                                                                  | 43.40  | 0.87   | 45.70   | 0.91   |  |  |  |  |
| 0.4800                                                                                                                                                                                                                                                                                                  | 43.34  | 0.87   | 45.75   | 0.91   |  |  |  |  |
| 0.4900                                                                                                                                                                                                                                                                                                  | 43.29  | 0.87   | 45.03   | 0.91   |  |  |  |  |
| 0.5000                                                                                                                                                                                                                                                                                                  | 43.24  | 0.87   | 45.29   | 0.93   |  |  |  |  |
| 0.5100                                                                                                                                                                                                                                                                                                  | 43.19  | 0.87   | 45.16   | 0.93   |  |  |  |  |
| 0.5200                                                                                                                                                                                                                                                                                                  | 43.14  | 0.88   | 45.08   | 0.95   |  |  |  |  |
| 0.5300                                                                                                                                                                                                                                                                                                  | 43.08  | 0.88   | 44.17   | 0.94   |  |  |  |  |
| 0.5400                                                                                                                                                                                                                                                                                                  | 43.03  | 0.88   | 44.69   | 0.95   |  |  |  |  |
| 0.5500                                                                                                                                                                                                                                                                                                  | 42.98  | 0.88   | 43.71   | 0.96   |  |  |  |  |



| FLUID DIELECTRIC PARAMETERS |                                                    |         |        |          |          |                           |                           |  |
|-----------------------------|----------------------------------------------------|---------|--------|----------|----------|---------------------------|---------------------------|--|
| Date: 26 Aug                | ug 2022 Fluid Temp: 24.7 Frequency: 450MHz Tissue: |         |        |          | Head     |                           |                           |  |
| Freq (MHz)                  |                                                    | Test_e  | Test_s | Target_e | Target_s | Deviation<br>Permittivity | Deviation<br>Conductivity |  |
| 350.0000                    |                                                    | 47.5900 | 0.7900 | 44.7000  | 0.87     | 6.47%                     | -9.20%                    |  |
| 360.0000                    |                                                    | 48.3200 | 0.8000 | 44.5800  | 0.87     | 8.39%                     | -8.05%                    |  |
| 370.0000                    |                                                    | 47.6300 | 0.8000 | 44.4600  | 0.87     | 7.13%                     | -8.05%                    |  |
| 378.0000                    | *                                                  | 47.2220 | 0.8240 | 44.3640  | 0.87     | 6.44%                     | -5.29%                    |  |
| 380.0000                    |                                                    | 47.1200 | 0.8300 | 44.3400  | 0.87     | 6.27%                     | -4.60%                    |  |
| 390.0000                    |                                                    | 47.0400 | 0.8300 | 44.2200  | 0.87     | 6.38%                     | -4.60%                    |  |
| 400.0000                    |                                                    | 47.1800 | 0.8400 | 44.1000  | 0.87     | 6.98%                     | -3.45%                    |  |
| 406.0000                    | *                                                  | 46.9520 | 0.8400 | 44.0280  | 0.87     | 6.64%                     | -3.45%                    |  |
| 410.0000                    |                                                    | 46.8000 | 0.8400 | 43.9800  | 0.87     | 6.41%                     | -3.45%                    |  |
| 418.0000                    | *                                                  | 46.8560 | 0.8320 | 43.8840  | 0.87     | 6.77%                     | -4.37%                    |  |
| 420.0000                    |                                                    | 46.8700 | 0.8300 | 43.8600  | 0.87     | 6.86%                     | -4.60%                    |  |
| 430.0000                    | *                                                  | 46.3500 | 0.8600 | 43.7400  | 0.87     | 5.97%                     | -1.15%                    |  |
| 440.0000                    |                                                    | 45.7900 | 0.8700 | 43.6200  | 0.87     | 4.97%                     | 0.00%                     |  |
| 450.0000                    | *                                                  | 45.8200 | 0.8800 | 43.5000  | 0.87     | 5.33%                     | 1.15%                     |  |
| 454.0000                    | *                                                  | 45.6600 | 0.8800 | 43.4800  | 0.87     | 5.01%                     | 1.15%                     |  |
| 456.0000                    | *                                                  | 45.5800 | 0.8800 | 43.4700  | 0.87     | 4.85%                     | 1.15%                     |  |
| 459.0250                    | *                                                  | 45.4590 | 0.8800 | 43.4549  | 0.87     | 4.61%                     | 1.15%                     |  |
| 459.9750                    | *                                                  | 45.4210 | 0.8800 | 43.4501  | 0.87     | 4.54%                     | 1.15%                     |  |
| 460.0000                    |                                                    | 45.4200 | 0.8800 | 43.4500  | 0.87     | 4.53%                     | 1.15%                     |  |
| 470.0000                    | *                                                  | 45.7000 | 0.9100 | 43.4000  | 0.87     | 5.30%                     | 4.60%                     |  |
| 480.0000                    |                                                    | 45.7500 | 0.9100 | 43.3400  | 0.87     | 5.56%                     | 4.60%                     |  |
| 490.0000                    |                                                    | 45.0300 | 0.9100 | 43.2900  | 0.87     | 4.02%                     | 4.60%                     |  |
| 500.0000                    |                                                    | 45.2900 | 0.9300 | 43.2400  | 0.87     | 4.74%                     | 6.90%                     |  |
| 510.0000                    |                                                    | 45.1600 | 0.9300 | 43.1900  | 0.87     | 4.56%                     | 6.90%                     |  |
| 512.0000                    | *                                                  | 45.1440 | 0.9340 | 43.1800  | 0.87     | 4.55%                     | 7.11%                     |  |
| 520.0000                    |                                                    | 45.0800 | 0.9500 | 43.1400  | 0.88     | 4.50%                     | 7.95%                     |  |
| 522.0000                    | *                                                  | 44.8980 | 0.9480 | 43.1280  | 0.88     | 4.10%                     | 7.73%                     |  |
| 530.0000                    |                                                    | 44.1700 | 0.9400 | 43.0800  | 0.88     | 2.53%                     | 6.82%                     |  |
| 540.0000                    |                                                    | 44.6900 | 0.9500 | 43.0300  | 0.88     | 3.86%                     | 7.95%                     |  |
| 550.0000                    |                                                    | 43.7100 | 0.9600 | 42.9800  | 0.88     | 1.70%                     | 9.09%                     |  |

\*Channel Frequency Tested



# Table 15.2 Fluid Dielectric Parameters 450MHz HEAD TSL, 29 August 2022

| **************                                                                                                                                                                                                                                                                                          |       |      |       |      |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-------|------|--|--|--|--|--|
| Aprel Laboratory<br>Test Result for UIM Dielectric Parameter<br>Mon 29/Aug/2022 10:24:56<br>Freq Frequency(GHz)<br>FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon<br>FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma<br>Test_e Epsilon of UIM<br>Test_s Sigma of UIM |       |      |       |      |  |  |  |  |  |
| Freq FCC eHFCC sHTest e Test s                                                                                                                                                                                                                                                                          |       |      |       |      |  |  |  |  |  |
| 0.3500                                                                                                                                                                                                                                                                                                  | 44.70 | 0.87 | 49.63 | 0.77 |  |  |  |  |  |
| 0.3600                                                                                                                                                                                                                                                                                                  | 44.58 | 0.87 | 49.22 | 0.79 |  |  |  |  |  |
| 0.3700                                                                                                                                                                                                                                                                                                  | 44.46 | 0.87 | 48.70 | 0.78 |  |  |  |  |  |
| 0.3800                                                                                                                                                                                                                                                                                                  | 44.34 | 0.87 | 48.19 | 0.80 |  |  |  |  |  |
| 0.3900                                                                                                                                                                                                                                                                                                  | 44.22 | 0.87 | 48.18 | 0.80 |  |  |  |  |  |
| 0.4000                                                                                                                                                                                                                                                                                                  | 44.10 | 0.87 | 48.19 | 0.82 |  |  |  |  |  |
| 0.4100                                                                                                                                                                                                                                                                                                  | 43.98 | 0.87 | 48.03 | 0.83 |  |  |  |  |  |
| 0.4200                                                                                                                                                                                                                                                                                                  | 43.86 | 0.87 | 47.92 | 0.84 |  |  |  |  |  |
| 0.4300                                                                                                                                                                                                                                                                                                  | 43.74 | 0.87 | 46.70 | 0.85 |  |  |  |  |  |
| 0.4400                                                                                                                                                                                                                                                                                                  | 43.62 | 0.87 | 47.44 | 0.87 |  |  |  |  |  |
| 0.4500                                                                                                                                                                                                                                                                                                  | 43.50 | 0.87 | 46.80 | 0.88 |  |  |  |  |  |
| 0.4600                                                                                                                                                                                                                                                                                                  | 43.45 | 0.87 | 46.51 | 0.88 |  |  |  |  |  |
| 0.4700                                                                                                                                                                                                                                                                                                  | 43.40 | 0.87 | 46.48 | 0.90 |  |  |  |  |  |
| 0.4800                                                                                                                                                                                                                                                                                                  | 43.34 | 0.87 | 46.38 | 0.90 |  |  |  |  |  |
| 0.4900                                                                                                                                                                                                                                                                                                  | 43.29 | 0.87 | 45.91 | 0.89 |  |  |  |  |  |
| 0.5000                                                                                                                                                                                                                                                                                                  | 43.24 | 0.87 | 45.85 | 0.91 |  |  |  |  |  |
| 0.5100                                                                                                                                                                                                                                                                                                  | 43.19 | 0.87 | 45.82 | 0.94 |  |  |  |  |  |
| 0.5200                                                                                                                                                                                                                                                                                                  | 43.14 | 0.88 | 45.27 | 0.93 |  |  |  |  |  |
| 0.5300                                                                                                                                                                                                                                                                                                  | 43.08 | 0.88 | 45.14 | 0.95 |  |  |  |  |  |
| 0.5400                                                                                                                                                                                                                                                                                                  | 43.03 | 0.88 | 44.75 | 0.95 |  |  |  |  |  |
| 0.5500                                                                                                                                                                                                                                                                                                  | 42.98 | 0.88 | 44.48 | 0.96 |  |  |  |  |  |



| FLUID DIELECTRIC PARAMETERS |                                                                |         |        |          |          |                           |                           |  |
|-----------------------------|----------------------------------------------------------------|---------|--------|----------|----------|---------------------------|---------------------------|--|
| Date: 29 Auc                | Date: 29 Aug 2022 Fluid Temp: 22.2 Frequency: 450MHz Tissue: H |         |        |          |          |                           | Head                      |  |
| Freq (MHz)                  | ,                                                              | Test_e  | Test_s | Target_e | Target_s | Deviation<br>Permittivity | Deviation<br>Conductivity |  |
| 350.0000                    |                                                                | 49.6300 | 0.7700 | 44.7000  | 0.87     | 11.03%                    | -11.49%                   |  |
| 360.0000                    |                                                                | 49.2200 | 0.7900 | 44.5800  | 0.87     | 10.41%                    | -9.20%                    |  |
| 370.0000                    |                                                                | 48.7000 | 0.7800 | 44.4600  | 0.87     | 9.54%                     | -10.34%                   |  |
| 378.0000                    | *                                                              | 48.2920 | 0.7960 | 44.3640  | 0.87     | 8.85%                     | -8.51%                    |  |
| 380.0000                    |                                                                | 48.1900 | 0.8000 | 44.3400  | 0.87     | 8.68%                     | -8.05%                    |  |
| 390.0000                    |                                                                | 48.1800 | 0.8000 | 44.2200  | 0.87     | 8.96%                     | -8.05%                    |  |
| 400.0000                    |                                                                | 48.1900 | 0.8200 | 44.1000  | 0.87     | 9.27%                     | -5.75%                    |  |
| 406.0000                    | *                                                              | 48.0940 | 0.8260 | 44.0280  | 0.87     | 9.24%                     | -5.06%                    |  |
| 410.0000                    |                                                                | 48.0300 | 0.8300 | 43.9800  | 0.87     | 9.21%                     | -4.60%                    |  |
| 418.0000                    | *                                                              | 47.9420 | 0.8380 | 43.8840  | 0.87     | 9.25%                     | -3.68%                    |  |
| 420.0000                    |                                                                | 47.9200 | 0.8400 | 43.8600  | 0.87     | 9.26%                     | -3.45%                    |  |
| 430.0000                    | *                                                              | 46.7000 | 0.8500 | 43.7400  | 0.87     | 6.77%                     | -2.30%                    |  |
| 440.0000                    |                                                                | 47.4400 | 0.8700 | 43.6200  | 0.87     | 8.76%                     | 0.00%                     |  |
| 450.0000                    | *                                                              | 46.8000 | 0.8800 | 43.5000  | 0.87     | 7.59%                     | 1.15%                     |  |
| 454.0000                    | *                                                              | 46.6840 | 0.8800 | 43.4800  | 0.87     | 7.37%                     | 1.15%                     |  |
| 456.0000                    | *                                                              | 46.6260 | 0.8800 | 43.4700  | 0.87     | 7.26%                     | 1.15%                     |  |
| 459.0250                    | *                                                              | 46.5383 | 0.8800 | 43.4549  | 0.87     | 7.10%                     | 1.15%                     |  |
| 459.9750                    | *                                                              | 46.5107 | 0.8800 | 43.4501  | 0.87     | 7.04%                     | 1.15%                     |  |
| 460.0000                    |                                                                | 46.5100 | 0.8800 | 43.4500  | 0.87     | 7.04%                     | 1.15%                     |  |
| 470.0000                    | *                                                              | 46.4800 | 0.9000 | 43.4000  | 0.87     | 7.10%                     | 3.45%                     |  |
| 480.0000                    |                                                                | 46.3800 | 0.9000 | 43.3400  | 0.87     | 7.01%                     | 3.45%                     |  |
| 490.0000                    |                                                                | 45.9100 | 0.8900 | 43.2900  | 0.87     | 6.05%                     | 2.30%                     |  |
| 500.0000                    |                                                                | 45.8500 | 0.9100 | 43.2400  | 0.87     | 6.04%                     | 4.60%                     |  |
| 510.0000                    |                                                                | 45.8200 | 0.9400 | 43.1900  | 0.87     | 6.09%                     | 8.05%                     |  |
| 512.0000                    | *                                                              | 45.7100 | 0.9380 | 43.1800  | 0.87     | 5.86%                     | 7.57%                     |  |
| 520.0000                    |                                                                | 45.2700 | 0.9300 | 43.1400  | 0.88     | 4.94%                     | 5.68%                     |  |
| 522.0000                    | *                                                              | 45.2440 | 0.9340 | 43.1280  | 0.88     | 4.91%                     | 6.14%                     |  |
| 530.0000                    |                                                                | 45.1400 | 0.9500 | 43.0800  | 0.88     | 4.78%                     | 7.95%                     |  |
| 540.0000                    |                                                                | 44.7500 | 0.9500 | 43.0300  | 0.88     | 4.00%                     | 7.95%                     |  |
| 550.0000                    |                                                                | 44.4800 | 0.9600 | 42.9800  | 0.88     | 3.49%                     | 9.09%                     |  |

\*Channel Frequency Tested



#### Table 15.3 Fluid Dielectric Parameters 150MHz HEAD TSL, 1 September 2022

0.1900

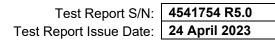
0.2000

#### Aprel Laboratory Test Result for UIM Dielectric Parameter Thu 01/Sep/2022 09:07:03 Freq Frequency(GHz) FCC\_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC\_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma Test\_e Epsilon of UIM Test\_s Sigma of UIM \*\*\*\*\* \*\*\*\*\* FCC\_eHFCC\_sHTest\_e Test\_s Freq 0.1000 54.63 0.72 66.30 0.79 0.1100 54.17 0.73 57.30 0.77 0.1200 59.01 0.77 53.70 0.74 0.75 53.50 0.81 0.1300 53.23 0.1400 52.77 0.75 54.16 0.80 0.1500 52.30 0.76 55.90 0.83 0.1600 51.83 0.77 52.17 0.80 0.1700 51.37 0.77 0.82 53.17 0.1800 50.90 0.78 52.45 0.83

50.43

49.97

0.79


0.80

52.42

50.69

0.85

0.85





|        | FLUID DIELECTRIC PARAMETERS |     |           |           |   |            |          |                           |                           |
|--------|-----------------------------|-----|-----------|-----------|---|------------|----------|---------------------------|---------------------------|
| Date:  | 1 Sep                       | 202 | 2 Fluid T | emp: 22.5 | 5 | Frequency: | 150MHz   | Tissue:                   | Head                      |
| Freq   | (MHz)                       |     | Test_e    | Test_s    |   | Target_e   | Target_s | Deviation<br>Permittivity | Deviation<br>Conductivity |
| 100.00 | 000                         |     | 66.3000   | 0.7900    |   | 54.6300    | 0.72     | 21.36%                    | 9.72%                     |
| 110.00 | 000                         |     | 57.3000   | 0.7700    |   | 54.1700    | 0.73     | 5.78%                     | 5.48%                     |
| 120.00 | 000                         |     | 59.0100   | 0.7700    |   | 53.7000    | 0.74     | 9.89%                     | 4.05%                     |
| 130.00 | 000                         |     | 53.5000   | 0.8100    |   | 53.2300    | 0.75     | 0.51%                     | 8.00%                     |
| 136.0  | 000                         | *   | 53.8960   | 0.8040    |   | 52.9540    | 0.75     | 1.78%                     | 7.20%                     |
| 140.00 | 000                         |     | 54.1600   | 0.8000    |   | 52.7700    | 0.75     | 2.63%                     | 6.67%                     |
| 150.00 | 000                         |     | 55.9000   | 0.8300    |   | 52.3000    | 0.76     | 6.88%                     | 9.21%                     |
| 156.8  | 000                         | *   | 53.3636   | 0.8096    |   | 51.9804    | 0.77     | 2.66%                     | 5.58%                     |
| 160.00 | 000                         |     | 52.1700   | 0.8000    |   | 51.8300    | 0.77     | 0.66%                     | 3.90%                     |
| 170.0  | 000                         |     | 53.1700   | 0.8200    |   | 51.3700    | 0.77     | 3.50%                     | 6.49%                     |
| 180.00 | 000                         |     | 52.4500   | 0.8300    |   | 50.9000    | 0.78     | 3.05%                     | 6.41%                     |
| 190.00 | 000                         |     | 52.4200   | 0.8500    |   | 50.4300    | 0.79     | 3.95%                     | 7.59%                     |
| 200.0  | 000                         |     | 50.6900   | 0.8500    |   | 49.9700    | 0.80     | 1.44%                     | 6.25%                     |

\*Channel Frequency Tested



#### **16.0 SYSTEM VERIFICATION TEST RESULTS**

#### Table 16.1 System Verification Results 450MHz HEAD TSL, 26 August 2022

| System Verification Test Results                                                                                                                                                                                                                                                                                                                                                                                                  |              |              |                   |              |           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|-------------------|--------------|-----------|--|
| De                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Frequency    | Validation Source |              |           |  |
| Da                                                                                                                                                                                                                                                                                                                                                                                                                                | ate          | (MHz)        | P                 | /N           | S/N       |  |
| 26 Au                                                                                                                                                                                                                                                                                                                                                                                                                             | g 2022       | 450          | D45               | 0V3          | 1068      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fluid        | Ambient      | Ambient           | Forward      | Source    |  |
| Fluid Type                                                                                                                                                                                                                                                                                                                                                                                                                        | Temp         | Temp         | Humidity          | Power        | Spacing   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   | °C           | °C           | (%)               | (mW)         | (mm)      |  |
| Head                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.7         | 25           | 41%               | 250          | 15        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | Fluid Pa     | rameters          |              |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   | Permittivity |              |                   | Conductivity |           |  |
| Measured                                                                                                                                                                                                                                                                                                                                                                                                                          | Target       | Deviation    | Measured          | Target       | Deviation |  |
| 45.82                                                                                                                                                                                                                                                                                                                                                                                                                             | 43.50        | 5.33%        | 0.88              | 0.87         | 1.15%     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | Measur       | ed SAR            |              |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 gram       |              | 10 gram           |              |           |  |
| Measured                                                                                                                                                                                                                                                                                                                                                                                                                          | Target       | Deviation    | Measured          | Target       | Deviation |  |
| 1.11                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.20         | -7.77%       | 0.75              | 0.79         | -5.44%    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ме           | asured SAR N | ormalized to 1.   | 0W           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 gram       |              |                   | 10 gram      |           |  |
| Normalized                                                                                                                                                                                                                                                                                                                                                                                                                        | Target       | Deviation    | Normalized        | Target       | Deviation |  |
| 4.44                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.81         | -7.77%       | 2.99              | 3.16         | -5.44%    |  |
| Prior to the SAR evaluations, system checks were performed on the<br>planar section of the phantom and a SPEAG validation dipole in<br>accordance with the procedures described in IEEE 1528-2013, FCC<br>KDB 846224, IEC 62209-1 and IEC 62209-1528.<br>The dielectric parameters of the simulated tissue mixture were<br>measured prior to the system performance check using a Dielectric<br>Probe Kit and a Network Analyzer. |              |              |                   |              |           |  |
| The forward power was applied to the dipole and the system was                                                                                                                                                                                                                                                                                                                                                                    |              |              |                   |              |           |  |

verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.



#### Table 16.2 System Verification Results 450MHz HEAD TSL, 29 August 2022

| System Verification Test Results                                                                                                                                                                                                             |                          |                 |                              |              |            |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------|------------------------------|--------------|------------|--|
| Da                                                                                                                                                                                                                                           | 4.                       | Frequency       | Validation Source            |              |            |  |
| Da                                                                                                                                                                                                                                           | ite                      | (MHz)           | P/N                          |              | S/N        |  |
| 29 Aug                                                                                                                                                                                                                                       | g 2022                   | 450             | D45                          | 0V3          | 1068       |  |
|                                                                                                                                                                                                                                              | Fluid                    | Ambient         | Ambient                      | Forward      | Source     |  |
| Fluid Type                                                                                                                                                                                                                                   | Temp                     | Temp            | Humidity                     | Power        | Spacing    |  |
|                                                                                                                                                                                                                                              | °C                       | °C              | (%)                          | (mW)         | (mm)       |  |
| Head                                                                                                                                                                                                                                         | 23.2                     | 22              | 42%                          | 250          | 15         |  |
|                                                                                                                                                                                                                                              |                          | Fluid Pa        | rameters                     |              |            |  |
|                                                                                                                                                                                                                                              | Permittivity             |                 |                              | Conductivity |            |  |
| Measured                                                                                                                                                                                                                                     | Target                   | Deviation       | Measured                     | Target       | Deviation  |  |
| 46.80                                                                                                                                                                                                                                        | 43.50                    | 7.59%           | 0.88                         | 0.87         | 1.15%      |  |
|                                                                                                                                                                                                                                              |                          | Measu           | ed SAR                       |              |            |  |
|                                                                                                                                                                                                                                              | 1 gram                   |                 | 10 gram                      |              |            |  |
| Measured                                                                                                                                                                                                                                     | Target                   | Deviation       | Measured                     | Target       | Deviation  |  |
| 1.14                                                                                                                                                                                                                                         | 1.20                     | -5.28%          | 0.78                         | 0.79         | -1.14%     |  |
|                                                                                                                                                                                                                                              | Ме                       | asured SAR N    | ormalized to 1.              | 0W           |            |  |
|                                                                                                                                                                                                                                              | 1 gram                   |                 |                              | 10 gram      |            |  |
| Normalized                                                                                                                                                                                                                                   | Target                   | Deviation       | Normalized                   | Target       | Deviation  |  |
| 4.56                                                                                                                                                                                                                                         | 4.81                     | -5.28%          | 3.12                         | 3.16         | -1.14%     |  |
| Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224, IEC 62209-1 and IEC 62209-1528. |                          |                 |                              |              |            |  |
| The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.                                                                           |                          |                 |                              |              |            |  |
| verified to a calibration ta                                                                                                                                                                                                                 | tolerance of arget SAR v | +10% from alue. | e dipole and<br>the system r | nanufacture  | r's dipole |  |

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.



#### Table 16.3 System Verification Results 150MHz HEAD TSL, 1 September 2022

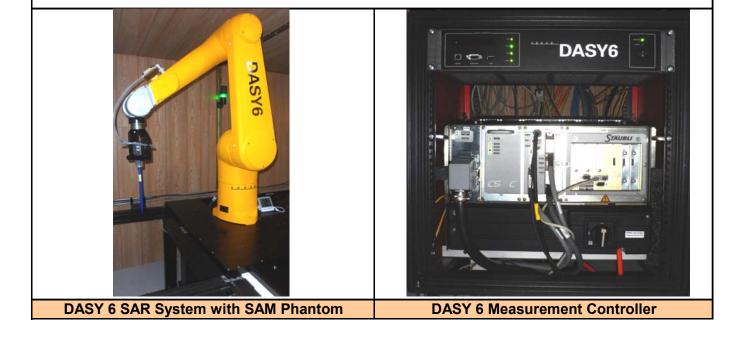
| System Verification Test Results                                                                                                                                                                 |        |              |                   |         |           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|-------------------|---------|-----------|--|
| Dr                                                                                                                                                                                               | ate    | Frequency    | Validation Source |         | ;e        |  |
| Da                                                                                                                                                                                               | ile    | (MHz)        | P                 | P/N     |           |  |
| 1 Sep                                                                                                                                                                                            | 2022   | 150          | CLA               | -150    | 4007      |  |
|                                                                                                                                                                                                  | Fluid  | Ambient      | Ambient           | Forward | Source    |  |
| Fluid Type                                                                                                                                                                                       | Temp   | Temp         | Humidity          | Power   | Spacing   |  |
|                                                                                                                                                                                                  | °C     | °C           | (%)               | (mW)    | (mm)      |  |
| Head                                                                                                                                                                                             | 22.5   | 23           | 42%               | 1000    | 0         |  |
|                                                                                                                                                                                                  |        | Fluid Pa     | rameters          |         |           |  |
| Permittivity                                                                                                                                                                                     |        |              | Conductivity      |         |           |  |
| Measured                                                                                                                                                                                         | Target | Deviation    | Measured          | Target  | Deviation |  |
| 55.90                                                                                                                                                                                            | 52.30  | 6.88%        | 0.83              | 0.76    | 9.21%     |  |
|                                                                                                                                                                                                  |        | Measur       | ed SAR            |         |           |  |
|                                                                                                                                                                                                  | 1 gram |              | 10 gram           |         |           |  |
| Measured                                                                                                                                                                                         | Target | Deviation    | Measured          | Target  | Deviation |  |
| 4.14                                                                                                                                                                                             | 3.89   | 6.43%        | 2.75              | 2.57    | 7.00%     |  |
|                                                                                                                                                                                                  | Ме     | asured SAR N | ormalized to 1.   | 0W      |           |  |
|                                                                                                                                                                                                  | 1 gram |              | 10 gram           |         |           |  |
| Normalized                                                                                                                                                                                       | Target | Deviation    | Normalized        | Target  | Deviation |  |
| 4.14                                                                                                                                                                                             | 3.87   | 6.98%        | 2.75              | 2.56    | 7.42%     |  |
| Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013. ECC |        |              |                   |         |           |  |

accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224, IEC 62209-1 and IEC 62209-1528.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.




#### **17.0 MEASUREMENT SYSTEM SPECIFICATIONS**

#### Table 17.1 Measurement System

#### SAR Measurement System

Celltech Labs Inc. SAR measurement facility employs a Dosimetric Assessment System (DASY<sup>™</sup>) manufactured by Schmid & Partner Engineering AG (SPEAG<sup>™</sup>) of Zurich, Switzerland. The DASY6 measurement system is comprised of the measurement server, a robot controller, a computer, a near-field probe, a probe alignment sensor, an Elliptical Planar Phantom (ELI) phantom and a specific anthropomorphic mannequin (SAM) phantom for Head and/or Body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller and a teach pendant (Joystick) to control the robot's servo motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical form the DAE to digital electronic signal and transfers data to the DASY6 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter, a command decoder and a control logic unit. Transmission to the DASY6 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot utilizes a controller with built in VME-bus computer.





#### **Table 17.2 Measurement System Specifications**

| Measurement System Specification |                                                                                   |  |  |  |  |  |
|----------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|--|
| Specifications                   |                                                                                   |  |  |  |  |  |
| Positioner                       | Stäubli Unimation Corp. Robot Model: TX90XL                                       |  |  |  |  |  |
| Repeatability                    | +/- 0.035 mm                                                                      |  |  |  |  |  |
| No. of axis                      | 6.0                                                                               |  |  |  |  |  |
| Data Acquisition Electronic (D   | DAE) System                                                                       |  |  |  |  |  |
| Cell Controller                  |                                                                                   |  |  |  |  |  |
| Processor                        | Intel(R) Core(TM) i7-7700                                                         |  |  |  |  |  |
| Clock Speed                      | 3.60 GHz                                                                          |  |  |  |  |  |
| Operating System                 | Windows 10 Professional                                                           |  |  |  |  |  |
| Data Converter                   |                                                                                   |  |  |  |  |  |
| Features                         | Signal Amplifier, multiplexer, A/D converter, and control logic                   |  |  |  |  |  |
| Software                         | Measurement Software: DASY6, V 6.4.0.12171 / DASY52 V10.2(1504)                   |  |  |  |  |  |
| Soltware                         | Postprocessing Software: SEMCAD X, V14.6.12(7470)                                 |  |  |  |  |  |
| Connecting Lines                 | Optical downlink for data and status info., Optical uplink for commands and clock |  |  |  |  |  |
| DASY Measurement Server          |                                                                                   |  |  |  |  |  |
| Function                         | Real-time data evaluation for field measurements and surface detection            |  |  |  |  |  |
| Hardware                         | Intel ULV Celeron CPU 400 MHz; 128 MB chip disk; 128 MB RAM                       |  |  |  |  |  |
| Connections                      | COM1, COM2, DAE, Robot, Ethernet, Service Interface                               |  |  |  |  |  |
| E-Field Probe                    |                                                                                   |  |  |  |  |  |
| Model                            | EX3DV4                                                                            |  |  |  |  |  |
| Serial No.                       | 3600                                                                              |  |  |  |  |  |
| Construction                     | Triangular core fiber optic detection system                                      |  |  |  |  |  |
| Frequency                        | 10 MHz to 6 GHz                                                                   |  |  |  |  |  |
| Linearity                        | ±0.2 dB (30 MHz to 3 GHz)                                                         |  |  |  |  |  |
| Phantom                          |                                                                                   |  |  |  |  |  |
| Туре                             | ELI Elliptical Planar Phantom                                                     |  |  |  |  |  |
| Shell Material                   | Fiberglass                                                                        |  |  |  |  |  |
| Thickness                        | 2mm +/2mm                                                                         |  |  |  |  |  |
| Volume                           | > 30 Liter                                                                        |  |  |  |  |  |



| Measurement System Specification                                        |                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |  |  |  |  |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|--|
|                                                                         | Probe Specification                                                                                                                                                                                                                                                                                                                                                                                            |                      |  |  |  |  |  |
| Construction:                                                           | Symmetrical design with triangular core;<br>Built-in shielding against static charges<br>PEEK enclosure material (resistant to organic solvents, glycol)                                                                                                                                                                                                                                                       |                      |  |  |  |  |  |
| Calibration:                                                            | and 1.8 GHz (accuracy ± 8%)                                                                                                                                                                                                                                                                                                                                                                                    |                      |  |  |  |  |  |
| Frequency:                                                              | 10 MHz to > 6 GHz; Linearity: $\pm$ 0.2 dB (30 MHz to 3 GHz)                                                                                                                                                                                                                                                                                                                                                   |                      |  |  |  |  |  |
| Directivity:                                                            | $\pm$ 0.2 dB in head tissue (rotation around probe axis) $\pm$ 0.4 dB in head tissue (rotation normal to probe axis)                                                                                                                                                                                                                                                                                           |                      |  |  |  |  |  |
| Dynamic Range:                                                          | 5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB                                                                                                                                                                                                                                                                                                                                                                      |                      |  |  |  |  |  |
| Surface Detect:                                                         | $\pm$ 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces                                                                                                                                                                                                                                                                                                                           |                      |  |  |  |  |  |
| Dimensions:                                                             | Overall length: 330 mm; Tip length: 16 mm;<br>Body diameter: 12 mm; Tip diameter: 6.8 mm                                                                                                                                                                                                                                                                                                                       |                      |  |  |  |  |  |
|                                                                         | Distance from probe tip to dipole centers: 2.7 mm                                                                                                                                                                                                                                                                                                                                                              |                      |  |  |  |  |  |
| Application:                                                            | General dosimetry up to 3 GHz; Compliance tests of mobile phone Phantom Specification                                                                                                                                                                                                                                                                                                                          | EX3DV4 E-Field Probe |  |  |  |  |  |
| 2.0mm +/2mm at t                                                        | The SAM V5.0 phantom is an elliptical planar fiberglass shell phantom with a shell thickness of 2.0mm +/2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEEE 1528-2013, IEC 62209-1 and IEC 62209-2.                                                                                                                                                                           |                      |  |  |  |  |  |
|                                                                         | Device Desitioner Oresitiontion                                                                                                                                                                                                                                                                                                                                                                                | ELI Phantom          |  |  |  |  |  |
| and the device inclina<br>between the ear ope<br>contains three pair of | Device Positioner Specification<br>positioner has two scales for device rotation (with respect to the body axis)<br>ation (with respect to the line between the ear openings). The plane<br>nings and the mouth tip has a rotation angle of 65 <sup>°°</sup> . The bottom plate<br>f bolts for locking the device holder. The device holder positions are<br>lard measurement positions in the three sections. | Device Positioner    |  |  |  |  |  |



#### **18.0 TEST EQUIPMENT LIST**

#### Table 18.1 Equipment List and Calibration

| Т                                           | est Equipm | ent List    |            |             |
|---------------------------------------------|------------|-------------|------------|-------------|
| DESCRIPTION                                 | ASSET      | SERIAL NO.  | DATE       | CALIBRATION |
| DESCRIPTION                                 | NO.        | SERIAL NO.  | CALIBRATED | DUE         |
| Schmid & Partner DASY 6 System              | -          | -           | -          | -           |
| -DASY Measurement Server                    | 00158      | 1078        | CNR        | CNR         |
| -Robot                                      | 00046      | 599396-01   | CNR        | CNR         |
| -DAE4                                       | 00019      | 353         | 14-Apr-22  | 14-Apr-23   |
| -EX3DV4 E-Field Probe                       | 00213      | 3600        | 20-Apr-22  | 20-Apr-23   |
| -CLA 30 Validation Dipole                   | 00300      | 1005        | 18-Mar-20  | 18-Mar-23   |
| -CLA150 Validation Dipole                   | 00251      | 4007        | 18-Mar-20  | 18-Mar-23   |
| -D450V3 Validation Dipole                   | 00221      | 1068        | 27-Apr-21  | 27-Apr-24   |
| -D750V3 Validation Dipole                   | 00238      | 1061        | 14-Apr-22  | 14-Apr-25   |
| -D835V2 Validation Dipole                   | 00217      | 4D075       | 27-Apr-21  | 27-Apr-24   |
| -D900V2 Validation Dipole                   | 00020      | 54          | 16-Mar-20  | 16-Mar-23   |
| ALS-D-01640-S-2                             | 00299      | 207-00102   | 15-Dec-20  | 15-Dec-23   |
| -D1800V2 Validation Dipole                  | 00222      | 247         | 16-Mar-20  | 16-Mar-23   |
| -D1900V2 Validation Dipole                  | 00218      | 5d107       | 16-Mar-20  | 16-Mar-23   |
| ALS-D-2300-S-2                              | 00328      | 218-00201   | 18-Jan-22  | 18-Jan-25   |
| -D2450V2 Validation Dipole                  | 00219      | 825         | 24-Apr-21  | 24-Apr-24   |
| ALS-D-2600-S-2                              | 00327      | 225-00926   | 18-Jan-22  | 18-Jan-25   |
| -D5GHzV2 Validation Dipole                  | 00126      | 1031        | 27-Apr-21  | 27-Apr-24   |
| ELI Phantom                                 | 00247      | 1234        | CNR        | CNR         |
| SAM Phantom                                 | 00154      | 1033        | CNR        | CNR         |
| HP 85070C Dielectric Probe Kit              | 00033      | none        | CNR        | CNR         |
| Gigatronics 8652A Power Meter               | 00007      | 1835801     | 13-May-22  | 13-May-25   |
| Gigatronics 80701A Power Sensor             | 00186      | 1837002     | 13-May-22  | 13-May-25   |
| Gigatronics 80334A Power Sensor             | 00237      | 1837001     | 13-May-22  | 13-May-25   |
| HP 8753ET Network Analyzer                  | 00134      | US39170292  | 6-Jan-21   | 6-Jan-24    |
| Rohde & Schwarz SMR20 Signal Generator      | 00006      | 100104      | 11-Aug-20  | 11-Aug-23   |
| Amplifier Research 10W1000C Power Amplifier | 00041      | 27887       | CNR        | CNR         |
| Amplifier Research 5S1G4 Power Amplifier    | 00106      | 26235       | CNR        | CNR         |
| Narda Directional Coupler 3020A             | 00064      | -           | CNR        | CNR         |
| Kangaroo VWR Humidity/Thermometer           | 00334      | 192385455   | 5-Aug-19   | 6-Aug-22    |
| Digital Multi Meter DMR-1800                | 00250      | TE182       | 23-Jun-20  | 23-Jun-23   |
| Bipolar Power Supply 6299A                  | 00086      | 1144A02155  | CNR        | CNR         |
| DC-18G 10W 30db Attenuator                  | 00102      | -           | COU        | COU         |
| R&S FSP40 Spectrum Analyzer                 | 00241      | 100500      | 9-Aug-21   | 9-Aug-24    |
| HP 8566B Spectrum Analyzer                  | 00051      | 2747A055100 | 29-Jun-20  | 29-Jun-23   |
| RF Cable-SMA                                | 00311      | -           | CNR        | CNR         |
| HP Calibration Kit                          | 00145      | -           | CNR        | CNR         |

CNR = Calibration Not Required

COU = Calibrate on Use



#### **19.0 SYSTEM VALIDATION SUMMARY**

| SAR Validation SummaryChart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |     |                       |   |   |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----|-----------------------|---|---|--|--|
| ValidationValidationLinearityIsotropyExtrapolationDateSourceFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequencyFrequenc |                               |     |                       |   |   |  |  |
| ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ✓ = Complete ✓ = Not Required |     |                       |   |   |  |  |
| 27-May-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CLA150                        | 150 | <ul> <li>✓</li> </ul> | ✓ | ✓ |  |  |
| 14-Jul-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D450V2                        | 450 | >                     | ✓ | ✓ |  |  |







#### 20.0 FLUID COMPOSITION

Table 20.1 Fluid Composition 150MHz HEAD TSL

| Tissue Simula                                                   | 150MHz Head |  |  |  |  |  |  |
|-----------------------------------------------------------------|-------------|--|--|--|--|--|--|
| Component by Percent Weight                                     |             |  |  |  |  |  |  |
| Water Sugar Salt <sup>(1)</sup> HEC <sup>(2)</sup> Bacteriacide |             |  |  |  |  |  |  |
| 38.35 55.5 5.15 0.9 0.1                                         |             |  |  |  |  |  |  |

(1) Non-lodinized

(2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g

(3) Dow Chemical Dowicil 75 Antimicrobial Perservative

#### Table 20.1 Fluid Composition 50MHz HEAD TSL

| Tissue Simula | 150MHz Head                                        |  |  |  |  |  |  |  |
|---------------|----------------------------------------------------|--|--|--|--|--|--|--|
|               | Component by Percent Weight                        |  |  |  |  |  |  |  |
| Water         | Water Sugar Salt <sup>(1)</sup> HEC <sup>(2)</sup> |  |  |  |  |  |  |  |
| 38.35         | 0.1                                                |  |  |  |  |  |  |  |

(1) Non-lodinized

(2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g

(3) Dow Chemical Dowicil 75 Antimicrobial Perservative



#### **APPENDIX A – SYSTEM VERIFICATION PLOTS**

Plot A.1 System Verification Plot, 450MHz, 26 August 2022

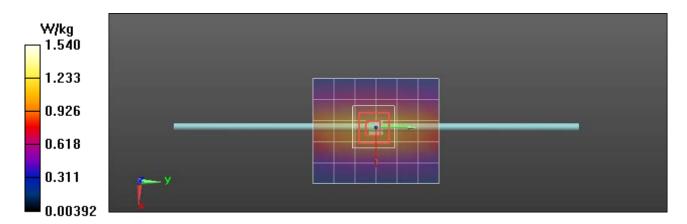
#### DUT: Dipole 450 MHz D450V3; Type: D450V3; Serial: D450V3 - SN:1068 Procedure Name: SPC 450H, Input 250mW, Taget[1.08315][1.2035][1.32385] W/kg\_

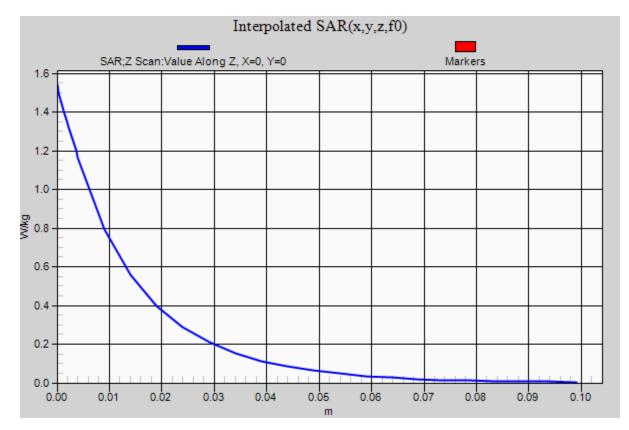
Communication System: UID 0, CW (0); Frequency: 450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 450 MHz;  $\sigma$  = 0.88 S/m;  $\epsilon_r$  = 45.82;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Date/Time: 8/26/2022 5:16:25 PM

DASY5 Configuration:

- Probe: EX3DV4 SN3600; ConvF(8.78, 8.78, 8.78) @ 450 MHz; Calibrated: 4/20/2022
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/14/2022
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)


SPC/SPC 450H, Input 250mW, Taget[1.08315][1.2035][1.32385] W/kg\_/Area Scan (6x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.16 W/kg


**SPC/SPC 450H, Input 250mW, Taget[1.08315][1.2035][1.32385] W/kg\_/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 38.29 V/m; Power Drift = -0.43 dB Peak SAR (extrapolated) = 1.62 W/kg

SAR(1 g) = 1.11 W/kg; SAR(10 g) = 0.747 W/kg Ratio of SAR at M2 to SAR at M1 = 68.3% Maximum value of SAR (measured) = 1.19 W/kg

**SPC/SPC 450H, Input 250mW, Taget[1.08315][1.2035][1.32385] W/kg\_/Z Scan (1x1x31):** Measurement grid: dx=20mm, dy=20mm, dz=5mm Penetration depth = 14.05 (13.04, 14.71) [mm] Maximum value of SAR (interpolated) = 1.54 W/kg









#### Plot A.2 System Verification Plot, 450MHz, 29 August 2022

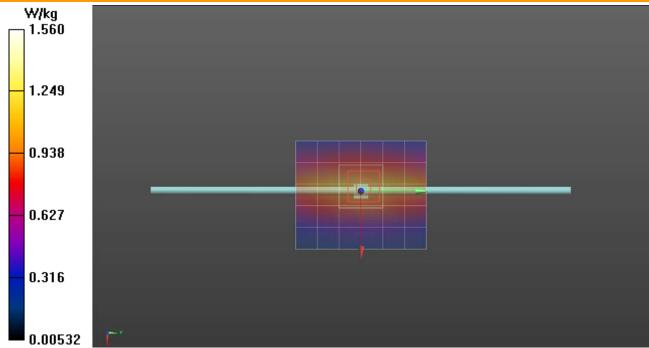
#### DUT: Dipole 450 MHz D450V3; Type: D450V3; Serial: D450V3 - SN:1068 Procedure Name: SPC 450H, Input 250mW, Taget[1.08315][1.2035][1.32385] W/kg\_ 2 2

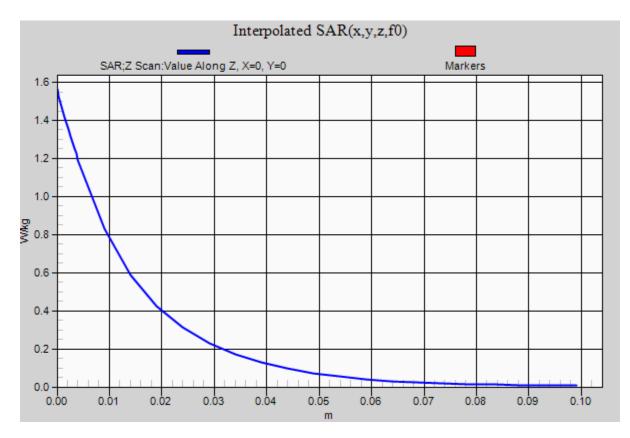
Communication System: UID 0, CW (0); Frequency: 450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 450 MHz;  $\sigma$  = 0.88 S/m;  $\epsilon_r$  = 46.8;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Date/Time: 8/29/2022 11:22:03 AM

DASY5 Configuration:

- Probe: EX3DV4 SN3600; ConvF(8.78, 8.78, 8.78) @ 450 MHz; Calibrated: 4/20/2022
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/14/2022
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)


SPC/SPC 450H, Input 250mW, Taget[1.08315][1.2035][1.32385] W/kg\_ 2 2/Area Scan (6x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.22 W/kg


**SPC/SPC 450H, Input 250mW, Taget[1.08315][1.2035][1.32385] W/kg\_ 2 2/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 37.08 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.66 W/kg **SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.781 W/kg** Ratio of SAR at M2 to SAR at M1 = 69.2% Maximum value of SAR (measured) = 1.22 W/kg

# SPC/SPC 450H, Input 250mW, Taget[1.08315][1.2035][1.32385] W/kg\_ 2 2/Z Scan (1x1x31): Measurement grid:

dx=20mm, dy=20mm, dz=5mm Penetration depth = 14.63 (13.78, 15.42) [mm] Maximum value of SAR (interpolated) = 1.56 W/kg









#### Plot A.3 System Verification Plot, 150MHz, 1 September 2022

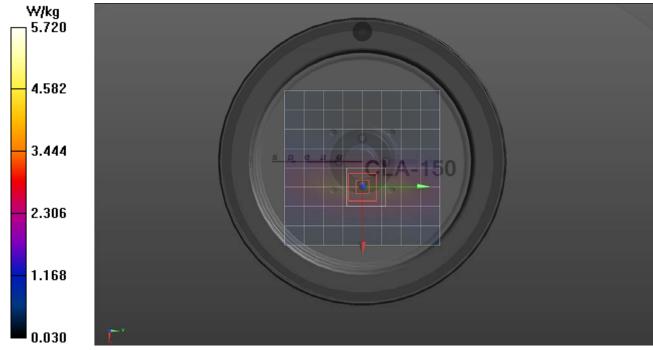
#### DUT: CLA-150; Type: CLA-150; Serial: 4007 Procedure Name: SPC 150H Input=1.0W, Target[3.5][3.89][4.3]W/kg\_ 2 2 2 2

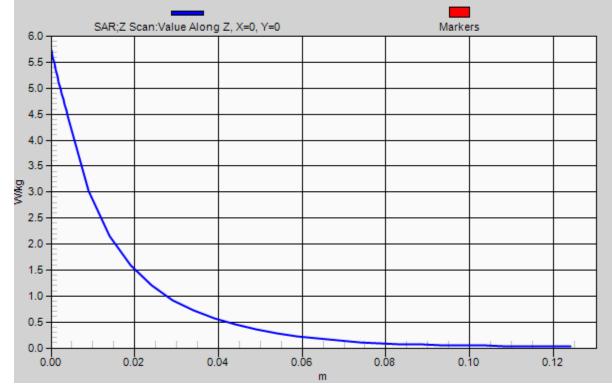
Communication System: UID 0, CW (0); Frequency: 150 MHz;Duty Cycle: 1:1 Medium parameters used: f = 150 MHz;  $\sigma$  = 0.83 S/m;  $\epsilon_r$  = 55.9;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Date/Time: 9/1/2022 10:15:06 AM

DASY5 Configuration:

- Probe: EX3DV4 SN3600; ConvF(9.65, 9.65, 9.65) @ 150 MHz; Calibrated: 4/20/2022
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/14/2022
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)


SPC/SPC 150H Input=1.0W, Target[3.5][3.89][4.3]W/kg\_ 2 2 2/Area Scan (9x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 4.46 W/kg


**SPC/SPC 150H Input=1.0W, Target[3.5][3.89][4.3]W/kg\_2 2 2 2/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 74.09 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 6.39 W/kg **SAR(1 g) = 4.14 W/kg; SAR(10 g) = 2.75 W/kg** Ratio of SAR at M2 to SAR at M1 = 67.6% Maximum value of SAR (measured) = 4.43 W/kg

# SPC/SPC 150H Input=1.0W, Target[3.5][3.89][4.3]W/kg\_ 2 2 2/Z Scan (1x1x36): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Penetration depth = 14.80 (12.77, 16.37) [mm] Maximum value of SAR (interpolated) = 5.72 W/kg









#### APPENDIX B – MEASUREMENT PLOTS OF MAXIMUM MEASURED SAR

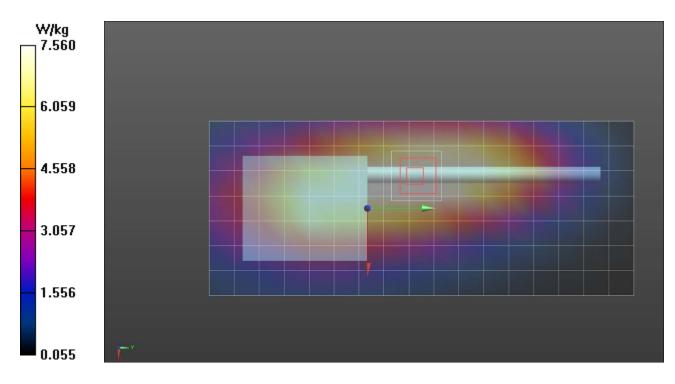
Plot B10 Measurement Plot

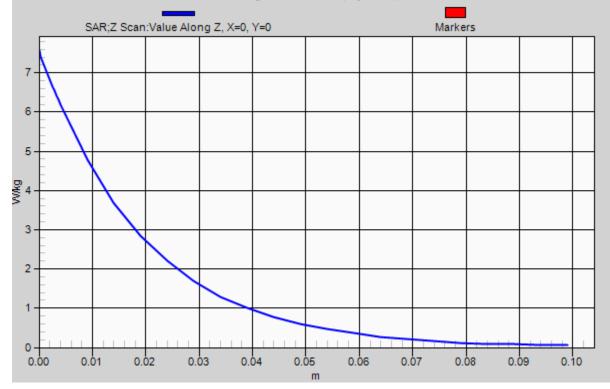
#### DUT: Harris XL-95; Type: PTT; Serial: A40199E2A003 Procedure Name: B10-Harris XL-95, 459.025MHz Body Config, Ant 1011223/12,Bat-P3, A1,B1

Communication System: UID 0, CW (0); Frequency: 459.025 MHz;Duty Cycle: 1:1 Medium parameters used: f = 460 MHz;  $\sigma$  = 0.88 S/m;  $\epsilon_r$  = 46.51;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Date/Time: 8/30/2022 11:49:15 AM

DASY5 Configuration:


- Probe: EX3DV4 SN3600; ConvF(8.78, 8.78, 8.78) @ 459.025 MHz; Calibrated: 4/20/2022
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/14/2022
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)


**450H/B10-Harris XL-95, 459.025MHz Body Config, Ant 1011223/12,Bat-P3, A1,B1/Area Scan (8x18x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 9.82 W/kg

**450H/B10-Harris XL-95, 459.025MHz Body Config, Ant 1011223/12,Bat-P3, A1,B1/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 96.36 V/m; Power Drift = -0.91 dB Peak SAR (extrapolated) = 12.3 W/kg **SAR(1 g) = 8.86 W/kg; SAR(10 g) = 6.28 W/kg** Ratio of SAR at M2 to SAR at M1 = 72% Maximum value of SAR (measured) = 9.41 W/kg

**450H/B10-Harris XL-95, 459.025MHz Body Config, Ant 1011223/12,Bat-P3, A1,B1/Z Scan (1x1x31):** Measurement grid: dx=20mm, dy=20mm, dz=5mm Penetration depth = 19.33 (19.54, 19.22) [mm] Maximum value of SAR (interpolated) = 7.56 W/kg









#### Plot F10 Measurement Plot

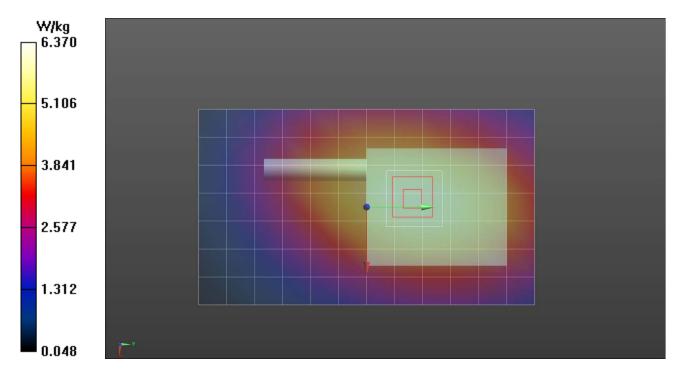
#### DUT: Harris XL-95; Type: PTT; Serial: A40199E2A003 Procedure Name: F10-Harris XL-95,470MHz, Face Config 25mm, Ant 1219/14,Bat-P3

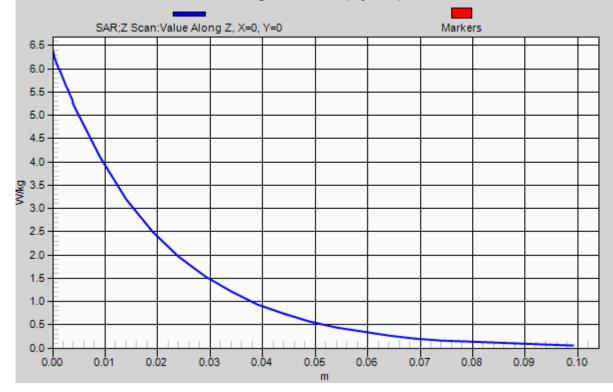
Communication System: UID 0, CW (0); Frequency: 470 MHz;Duty Cycle: 1:1 Medium parameters used: f = 470 MHz;  $\sigma$  = 0.9 S/m;  $\epsilon_r$  = 46.48;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Date/Time: 8/30/2022 8:45:02 PM

DASY5 Configuration:

- Probe: EX3DV4 SN3600; ConvF(8.78, 8.78, 8.78) @ 470 MHz; Calibrated: 4/20/2022
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/14/2022
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)


**450H/F10-Harris XL-95,470MHz, Face Config 25mm, Ant 1219/14,Bat-P3/Area Scan (8x13x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.81 W/kg


450H/F10-Harris XL-95,470MHz, Face Config 25mm, Ant 1219/14,Bat-P3/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 79.39 V/m; Power Drift = -0.28 dB Peak SAR (extrapolated) = 7.07 W/kg SAR(1 g) = 5.62 W/kg; SAR(10 g) = 4.33 W/kg Ratio of SAR at M2 to SAR at M1 = 78.2% Maximum value of SAR (measured) = 5.88 W/kg

### 450H/F10-Harris XL-95,470MHz, Face Config 25mm, Ant 1219/14,Bat-P3/Z Scan (1x1x31): Measurement grid:

dx=20mm, dy=20mm, dz=5mm Penetration depth = 20.22 (20.15, 20.25) [mm] Maximum value of SAR (interpolated) = 6.37 W/kg









Plot B16 Measurement Plot

#### DUT: Harris XL-95; Type: PTT; Serial: A40199E2A003 Procedure Name: B16-Harris XL-95,470MHz Body Config, Ant 1219/14,Bat-P3, A1,B1\_

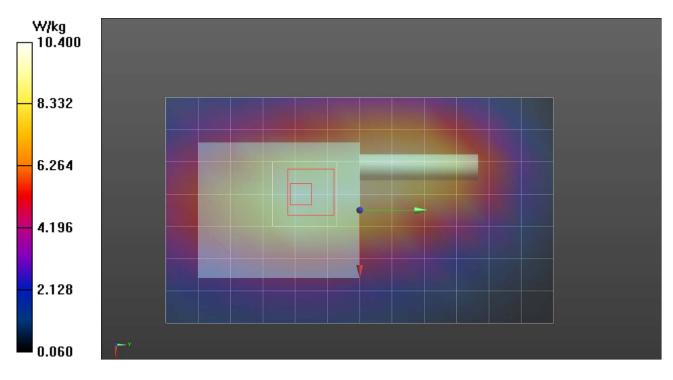
Communication System: UID 0, CW (0); Frequency: 470 MHz;Duty Cycle: 1:1 Medium parameters used: f = 470 MHz;  $\sigma$  = 0.9 S/m;  $\epsilon_r$  = 46.48;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

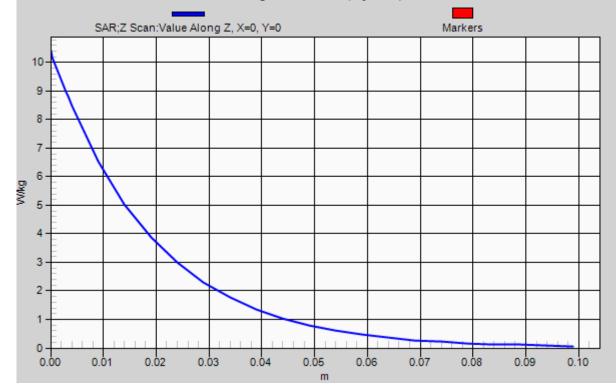
Date/Time: 8/31/2022 9:08:01 AM

DASY5 Configuration:

- Probe: EX3DV4 SN3600; ConvF(8.78, 8.78, 8.78) @ 470 MHz; Calibrated: 4/20/2022
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/14/2022
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

**450H/B16-Harris XL-95,470MHz Body Config, Ant 1219/14,Bat-P3, A1,B1\_/Area Scan (8x13x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 10.2 W/kg


450H/B16-Harris XL-95,470MHz Body Config, Ant 1219/14,Bat-P3, A1,B1\_/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 99.96 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 13.2 W/kg SAR(1 g) = 9.67 W/kg; SAR(10 g) = 7.03 W/kg Ratio of SAR at M2 to SAR at M1 = 74% Maximum value of SAR (measured) = 10.2 W/kg

## 450H/B16-Harris XL-95,470MHz Body Config, Ant 1219/14, Bat-P3, A1, B1\_/Z Scan (1x1x31): Measurement grid:

dx=20mm, dy=20mm, dz=5mm Penetration depth = 19.21 (19.28, 19.03) [mm] Maximum value of SAR (interpolated) = 10.4 W/kg





