

Test Report Serial Number:
Test Report Date:
Project Number:

45461394 R2.2 22 August 2017

1373

SAR Test Report - New Filing

Applicant:

Harris Corporation 221 Jefferson Ridge Parkway Lynchburg, VA, 24501 USA

	Maximum Reported 1g SAR						
	FCC	ECC HEAD:					
	rcc [BODY:	4.80				
	ISED	HEAD:	1.33	W/kg			
		BODY:	5.01				
	Occupa	ational Limit:	8.00				

FCC ID:

OWDTR-0148-E

Product Model Number / HVIN

See Section 2.0

IC Registration Number

ro regionation realise.
3636B-0148
Product Name / PMN
XL-185P

In Accordance With:

FCC 47 CFR §2.1093

Radiofrequency Radiation Exposure Evaluation: Portable Devices

IC RSS-102 Issue 5

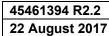
Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

Approved By:

Ben Hewson, President

Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8 Canada

Industry Canada



FCC Registration: 714830

Test Lab Certificate: 2470.01

IC Registration 3874A-1

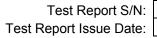
This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc.

Table of Contents

1.0 DOCUMENT CONTROL	4
2.0 CLIENT AND DEVICE INFORMATION	5
3.0 SCOPE OF EVALUATION	6
3.1 Previous Test Data	6
4.0 NORMATIVE REFERENCES	7
5.0 STATEMENT OF COMPLIANCE	8
6.0 RF CONDUCTED POWER MEASUREMENT	9
TABLE 6.0 CONDUCTED POWER MEASUREMENTS (SYSTEM)	9
TABLE 6.1 CONDUCTED POWER MEASUREMENTS (SCAN)	10
7.0 NUMBER OF TEST CHANNELS (N _C)	10
8.0 ACCESSORIES EVALUATED	11
TABLE 8.0 MANUFACTURER'S ACCESSORY LIST	11
9.0 SAR MEASUREMENT SUMMARY	14
TABLE 9.0: MEASURED RESULTS - BODY	14
TABLE 9.1: MEASURED RESULTS - FACE	
10.0 ANALYSIS OF SIMULTANEOUS TRANSMISSION	16
TABLE 10.0 LIST OF POSSIBLE TRANSMITTERS	16
TABLE 10.1 LIST OF POSSIBLE TRANSMITTERS COMBINATIONS	16
Table 10.2 Analysis of Sum-of-the-Ratios	17
11.0 SCALING OF MAXIMUM MEASURE SAR	18
TABLE 11.0 SAR SCALING	
TABLE 11.1: FLUID SENSITIVITY CALCULATION	
12.0 SAR EXPOSURE LIMITS	20
TABLE 12.0 EXPOSURE LIMITS	20
13.0 DETAILS OF SAR EVALUATION	21
13.1 DAY LOG	21
13.2 DUT SETUP AND CONFIGURATION	22
13.3 DUT Positioning	23
13.4 GENERAL PROCEDURES AND REPORT	23
13.5 FLUID DIELECTRIC AND SYSTEMS PERFORMANCE CHECK	24
13.6 Scan Resolution 100MHz to 2GHz	
13.7 Scan Resolution 2GHz to 3GHz	25
13.8 Scan Resolution 5GHz to 6GHz	25

45461394 R2.2

22 August 2017


14.0 MEASUREMENT UNCERTAINTIES	26
Table 14.0 Measurement Uncertainty	26
Table 14.1 Calculation of Degrees of Freedom	27
15.0 FLUID DIELECTRIC PARAMETERS	28
TABLE 15.0 FLUID DIELECTRIC PARAMETERS 835MHz BODY TSL	28
TABLE 15.1 FLUID DIELECTRIC PARAMETERS 835MHz HEAD TSL	30
TABLE 15.2 FLUID DIELECTRIC PARAMETERS 2450MHz BODY TSL	32
TABLE 15.3 FLUID DIELECTRIC PARAMETERS 5200MHz BODY TSL	34
16.0 SYSTEM VERIFICATION TEST RESULTS	36
TABLE 16.0 SYSTEM VERIFICATION RESULTS 835MHz BODY TSL	36
Table 16.1 System Verification Results 835MHz HEAD TSL	37
Table 16.2 System Verification Results 2450MHz BODY TSL	38
Table 16.3 System Verification Results 5250MHz BODY TSL	39
17.0 MEASUREMENT SYSTEM SPECIFICATIONS	40
TABLE 17.0 MEASUREMENT SYSTEM SPECIFICATIONS	40
18.0 TEST EQUIPMENT LIST	42
Table 18.0 Equipment List and Calibration	42
19.0 FLUID COMPOSITION	43
TABLE 19.1 FLUID COMPOSITION 835MHz HEAD TSL	43
TABLE 19.2 FLUID COMPOSITION 835MHz BODY TSL	43
TABLE 19.3 FLUID COMPOSITION 2450MHz BODY TSL	43
TABLE 19.4 FLUID COMPOSITION 5250MHz BODY TSL	43
APPENDIX A – SYSTEM VERIFICATION PLOTS	44
APPENDIX B – MEASUREMENT PLOTS OF MAXIMUM MEASURED SAR	52
APPENDIX C - SETUP PHOTOS	79
APPENDIX D – DUT PHOTOS	91
APPENDIX E – PROBE CALIBRATION	97
APPENDIX F – DIPOLE CALIBRATION	98
APPENDIX G - PHANTOM	99

45461394 R2.2 22 August 2017

1.0 DOCUMENT CONTROL

Samples Tested By:	Trevor Whillock		
Report Prepared By:	Art Voss		
Report Reviewed By:	Ben Hewson		
Report Issue Number	Description	Ву	Report Issue Date
R1.0	Initial Release	Art Voss	30 June 2017
R1.1	Added Complete List of Variant Descriptions to Section 2.0	Art Voss	6 July 2017
R1.2	Corrected Variant HVIN Section 2.0	Art Voss	7 July 2017
	Added ISEDC Info, Cover, Sect. 2.0	er, Sect. 2.0	
R2.0	Corrected HVIN Section2.0	Art Voss	10 July 2017
	Corrected DUT Photos App. D	1	
R2.1	Revised Scope Sect. 3.0	Art Voss	15 August 2017
R2.2	Revised Antenna Description Sect. 8.0	Art Voss	22 August 2017

45461394 R2.2 22 August 2017

2.0 CLIENT AND DEVICE INFORMATION

Client Information				
Applicant Name	Harris Corporation			
	221 Jefferson Ridge Parkway			
Applicant Address	Lynchburg, VA, 24501			
	USA			
	DUT Information			
Device Identifier(s):	FCC ID: OWDTR-0148-E			
Device identifier(s).	IC: 3636B-0148			
	Licensed Non-Broadcast Transmitter Held to Face (TNF) FCC Part 90			
	Land Mobile Radio Transmitter/Receiver (27.41-960MHz) RSS-119			
Type of Equipment:	Digital Transmission System (DTS) FCC Part 15, RSS 247			
	Unlicensed National Information Infrastructure (NII) FCC Part 15			
	Spread Spectrum Transmitter (DSS) FCC Part 15			
	XS-PFS2M			
Device Model(s) / HVIN:	XS-PFS2Y			
Device Model(3)/11viiv.	XS-PPS2M			
	XS-PPS2Y			
Device Marketing Name / PMN:	XL-185P			
Test Sample Serial No.:	T/A Sample - Identical Prototype			
	700 Band: 768-776MHz, 798-806MHz			
Transmit Frequency Range:	800 Band: 806-824MHz, 851-869MHz			
Transmit requency range.	WLAN: 2412-2462MHz, 5180-5825MHz			
	BT: 2402-2480MHz			
Number of Channels:	Programmable			
Manuf. Max. Rated Output Power:	7/800MHz Band: 3W, BT: 18.6mW, BLE: 7mW			
Manui. Max. Nated Output Fower.	WLAN 2.4G: 230mW / WLAN 5G: 15 mW			
Modulation:	LMR: FM			
Duty Cycle:	50% PTT Duty Cycle			
DUT Power Source:	7.2 VDC Li-lon 22Wh Rechargeable Battery			
Deviation(s) from standard/procedure:	None			
Modification of DUT:	None			

45461394 R2.2

22 August 2017

3.0 SCOPE OF EVALUATION

The XL-185P, FCC ID: OWDTR-0148-E, ISEDC ID: 3636B-0148 is a single-band, Push-To-Talk (PTT) Licensed Mobile Radio (LMR) transceiver intended for Occupational Use. It incorporates WiFi and BlueTooth transmitters. The XL-185P is identical in RF circuitry to the XL-200P Non-Rebanded, FCC ID: OWDTR-0145-E, ISEDC ID: 3636B-0145 and XL-200P Rebanded, FCC ID OWDTR-0133-E, ISEDC ID: 3636B-0133 multi-band radios with the exception that it has been modified by removing components to make it a single band radio.

In this document, the following DUT references are made:

The XL-185P, FCC ID: OWDTR-0148-E, ISEDC ID: 3636B-0148 is referenced in this report as XL-185P.

The XL-200P Rebanded, FCC ID: OWDTR-0133-E, ISEDC ID: 3636B-0133 is referenced in this report as 0133-E.

The XL-200P Non-Rebanded, FCC ID: OWDTR-0145-E, ISEDC ID: 3636B-0145 is referenced in this report as 0145-E

The Test Plan developed for this evaluation leverages SAR test data from previous evaluations of the 0145-E and 0133-E and is based on test channels, configurations and accessories which produced the highest (*worst case*) SAR. The previous *worst case* configurations of the 0145-E and/or 0133-E were re-evaluated during the course of this investigation to establish a base-line for comparison of test data from the XL-185P. The basis for the *worst case* configurations of the 0145-E and 0133-E are as follows:

3.1 Previous Test Data

Worst Case Test Data from XL-200P (Rebanded)							
Model:	XL-200P						
FCC ID:	OWDTR-0133-E						
Variant:	System Radio						
Date Evaluated:	March 2015						
Reference Report:	031315OWD-1302-S						
Frequency	Configuration	Antenna	Accessory 1	Accessory 1	SAR (50% PTT)	Band	Spot Check
136	Head	14035-4000-01	n/a	n/a	0.690		
156.8	Body	14035-4000-01	B1	A1	1.350		
406	Head	14035-4420-01	n/a	n/a	1.850	LMR	
406	Body	14035-4420-01	B1	A1	4.630	LMR	
824	Head	14035-4420-01	n/a	n/a	1.060		Y
806	Body	14035-4420-01	B1	A1	3.860		Y
Frequency	Configuration	Antenna**	Accessory 1	Accessory 1	SAR (100%)	Band	Spot Check
2412	Head	14035-4000-01	n/a	n/a	0.004		
2437	Body	14035-4000-01	B1	A1	0.005	WiFi	Y
5240	Head	14035-4000-01	n/a	n/a	0.020	VVII 1	
5260*	Body	14035-4000-01	B1	A1	0.019		Y
2480	Head	14035-4000-01	n/a	n/a	0.003	ВТ	
2480	Body	14035-4000-01	B1	A1	0.006	ы	Y
	Worst C	ase Test Data	from XL-20	0P (Non-Re	banded)		
Model:	XL-200P						
FCC ID:	OWDTR-0145-E						
Variant:	System Radio						
Date Evaluated:	January 2016						
Reference Report:	121815OWD-1341-S						
Frequency	Configuration	Antenna	Accessory 1	Accessory 1	SAR (50% PTT)	Band	Spot Check
					1 000		
806	Head	14035-4440-02	n/a	n/a	1.300	LMR	Y

^{*}The highest <u>reported</u> SAR from this evaluation in the WiFi and BT bands was on the Scan Variant of the XL-200P in the Body Configuration. The highest SAR values in the WiFi and BlueTooth bands on the System and Scan Variants were in the Body configurations. Spot checks in these bands will be in the Body configuration.

^{**} It has been demostrated on evaluations of similar variants that the LMR antennas have no impact on the WiFi or BT SAR.

45461394 R2.2 22 August 2017

4.0 NORMATIVE REFERENCES

Normative References*						
ANSI / ISO 17025:2005	General Requirements for competence of testing and calibration laboratories					
FCC CFR Title 47 Part 2 Code of Federal Regulations						
Title 47:	Telecommunication					
Part 2.1093:	Radiofrequency Radiation Exposure Evaluation: Portable Devices					
Health Canada						
Safety Code 6 (2015)	Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range					
	from 3kHz to 300GHz					
Industry Canada Spectrum	Management & Telecommunications Policy					
RSS-102 Issue 5:	Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)					
IEEE International Committe	IEEE International Committee on Electromagnetic Safety					
IEEE 1528-2013:	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR)					
	in the Human Head from Wireless Communications Devices: Measurement Techniques					
IEC International Standard						
IEC 62209-2 2010	Human exposure to radio frequency fields from hand-held and body-mounted wireless communication					
	devices - Part 2					
FCC KDB						
KDB 865664 D01v01r04	SAR Measurement Requirements for 100MHz to 6GHz					
FCC KDB						
KDB 447498 D01v06	Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies					
FCC KDB						
KDB 643646 D01v01r03	SAR Test Reduction Considerations for Occupational PTT Radios					
* When the issue number	or issue date is omitted, the latest version is assumed.					

45461394 R2.2 22 August 2017

5.0 STATEMENT OF COMPLIANCE

This measurement report demonstrates that samples of the product model(s) were evaluated for Specific Absorption Rate (SAR) on the date(s) shown, in accordance with the Measurement Procedures cited and were found to comply with the Standard(s) Applied based on the Exposure Limits of the Use Group indicated for which the product is intended to be used.

Applicant:	Product / PMN:					
Harris Corporation	XL-185P					
Standard(s) Applied:	Measurement Procedure(s):					
FCC 47 CFR §2.1093	FCC KDB 865664, FCC KDB 447498, FCC KDB 643646					
Health Canada's Safety Code 6	Industry Canada RSS-102 Issue 5					
-	IEEE Standard 1528-2013, IEC 62209-2					
Reason For Issue:	Use Group:	Limits Applied:				
X New Certification	General Population / Uncontrolled	1.6W/kg - 1g Volume				
Class I Permissive Change		X 8.0W/kg - 1g Volume				
Class II Permissive Change	X Occupational / Controlled	4.0W/kg - 10g Volume				
Reason for Change:	•	Date(s) Evaluated:				
Original Filing		01 Jun 2017 to 28 June 2017				

The results of this investigation are based solely on the test sample(s) provided by the applicant which was not adjusted, modified or altered in any manner whatsoever except as required to carry out specific tests or measurements. A description of the device, operating configuration, detailed summary of the test results, methodologies and procedures used during this evaluation, the equipment used and the various provisions of the rules are included in this test report.

attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.

when Yours Art Voss, P.Eng. **Technical Manager**

Celltech Labs Inc. 30 June 2017

Date

45461394 R2.2

22 August 2017

6.0 RF CONDUCTED POWER MEASUREMENT

Table 6.0 Conducted Power Measurements (System)

	Conducted Power Measurements						
		Measured	Rated	Rated		SAR Test	
Channel	Frequency	Power	Power	Power	Delta	Channel	
	(MHz)	(dBm)	(dBm)	(W)	(dBm)	(Y/N)	
n/a	768.0000	34.38	34.70	3.00	-0.32	Υ	
n/a	769.0000	34.41	34.70	3.00	-0.29	N	
n/a	771.0000	34.41	34.70	3.00	-0.29	N	
n/a	775.0000	34.41	34.70	3.00	-0.29	N	
n/a	776.0000	34.41	34.70	3.00	-0.29	Υ	
n/a	798.0000	34.41	34.70	3.00	-0.29	N	
n/a	801.0000	34.41	34.70	3.00	-0.29	N	
n/a	805.0000	34.50	34.70	3.00	-0.20	N	
n/a	806.0000	35.14	34.70	3.00	0.44	Υ	
n/a	815.0000	35.15	34.70	3.00	0.45	N	
n/a	824.0000	35.15	34.70	3.00	0.45	Υ	
n/a	851.0000	35.13	34.70	3.00	0.43	Υ	
n/a	861.0000	35.15	34.70	3.00	0.45	N	
n/a	869.0000	35.19	34.70	3.00	0.49	Υ	
NI-4							

Notes:

The Conducted Power of the DUT was measured at the antenna port, with a fully charged battery and transmitting at 100% duty cycle.

45461394 R2.2 22 August 2017

Table 6.1 Conducted Power Measurements (Scan)

	Conducted Power Measurements						
		Measured	Rated	Rated		SAR Test	
Channel	Frequency	Power	Power	Power	Delta	Channel	
	(MHz)	(dBm)	(dBm)	(W)	(dBm)	(Y/N)	
n/a	768.0000	34.41	34.70	3.00	-0.29	Υ	
n/a	769.0000	34.41	34.70	3.00	-0.29	N	
n/a	771.0000	34.41	34.70	3.00	-0.29	N	
n/a	775.0000	34.41	34.70	3.00	-0.29	N	
n/a	776.0000	34.40	34.70	3.00	-0.30	Υ	
n/a	798.0000	34.41	34.70	3.00	-0.29	N	
n/a	801.0000	34.41	34.70	3.00	-0.29	N	
n/a	805.0000	34.50	34.70	3.00	-0.20	N	
n/a	806.0000	35.12	34.70	3.00	0.42	Υ	
n/a	815.0000	35.15	34.70	3.00	0.45	N	
n/a	824.0000	35.12	34.70	3.00	0.42	Υ	
n/a	851.0000	35.14	34.70	3.00	0.44	Υ	
n/a	861.0000	35.15	34.70	3.00	0.45	N	
n/a	869.0000	35.18	34.70	3.00	0.48	Υ	
Notes:							

The Conducted Power of the DUT was measured at the antenna port, with a fully charged battery and transmitting at 100% duty cycle.

7.0 NUMBER OF TEST CHANNELS (Nc)

This device is identical to the XL-200P Non-Rebanded, FCC ID: OWDTR-0145-E, ISEDC ID: 3636B-0145 and the XL-200P Rebanded, FCC ID: OWDTR-0133-E, ISEDC ID: 3636B-0133. The number of channels and channel frequencies tested are based on *worst case* configurations from previous test data from the original filing of these devices. Reference **Section 3.0 Scope of Evaluation.**

45461394 R2.2 22 August 2017

8.0 ACCESSORIES EVALUATED

Table 8.0 Manufacturer's Accessory List

	Change History						
Change ID	Date	Change Type	Description of Change				
1	30 Mar 2012	Initial	Initial Filing				
2	13 Feb 2013	C2PC	Added BlueTooth and WiFi Features				
3	29 Jun 2015	C2PC	Added 14035-4440-01 Antenna and Other Accessories				
4	4 09 Oct 2015	C1PC	Added 14035-4440-02 Antenna (Identical to KRE1011506/2 Antenna)				
-			Added Modified 14035-4440-01 Antenna (Identical to KRE1011506/1 Antenna)				
5 31-Dec-15 C1PC Added 14035-4420-01 Antenna		Added 14035-4420-01 Antenna					
6	4-Jun-16	C1PC	Added 12082-0600-03 Antenna/Spr/MIC				
7	19-Aug-16	C1PC	Added 14035-4010-04 Li-lon Battery				

	Man	ufacturer's Accessory List					
Test Report	Manufacturer's	Description	Change	UDC	Type II	SAR ⁽⁴⁾	SAR ⁽⁵⁾
ID Number	Part Number	Везеприон	ID ⁽¹⁾	Group ⁽²⁾	Group ⁽³⁾	Evaluated	Tested
		Antenna					
T4	14035-4000-01	Full Spectrum Flex Antenna, Helical, 136-870MHz	1			Y	Υ
T5	14035-4420-01	Wideband Whip, UHF, 7/800 MHz	5			Y	Υ
T6	14035-4440-01	1/2 Wave Whip Antenna, 762-870 MHz	4			Υ	Υ
T7	14035-4440-02	1/4 Wave Whip Antenna, 762-870 MHz	4			Υ	Υ
Т8	14035-4450-01	1/2 Wave Whip Antenna, 762-944 MHz	4			Y	Υ
Т9	14035-4450-02	1/4 Wave Whip Antenna, 762-944 MHz	4			Y	Υ
		Battery					
P1	14034-4010-01	Li-Ion Battery 7.2VDC, 3300mAh	1			Υ	Y
P2	14034-4010-04	Li-Ion Battery 7.2VDC, 3100mAh, 22Wh	7			Υ	N
P5	14034-4010-05	Li-Ion Battery 7.2VDC, 3100mAh, 22Wh, UL	7			Υ	N

45461394 R2.2 22 August 2017

	Man	ufacturer's Accessory List					
Test Report ID Number	Manufacturer's Part Number	Description	Change ID ⁽¹⁾	UDC Group ⁽²⁾	Type II Group ⁽³⁾	SAR ⁽⁴⁾ Evaluated	SAR ⁽⁵⁾ Tested
		Audio Accessory					
A 1	12082-0600-01	Standard Speaker Microphone	1	7A	PB	Y	Υ
A2	12082-0600-02	Storm Speaker Microphone	1	7A	PB	Y	Υ
A28	12082-0600-03	Storm Speaker Microphone	6	7A	PB	Y	Υ
A3	12150-1000-01	Premium Speaker MIC, Fire, NC	1	9	PB	Y	Υ
A29	12150-1000-05	Premium Speaker MIC, Fire, NC, Hi-Vis Yellow	1	9	PB	Y	Υ
A4	12082-0650-01	Microphone, Palm, 2-Wire Black	1	7A	IL	Y	Υ
A5	12082-0650-02	Microphone, Palm, 2-Wire Beige	3	7A	IL	Y	-
A6	12082-0650-03	Microphone, Mini Lapel, 3-Wire Black	1	7A	IL	Y	Υ
A7	12082-0650-04	Microphone, Mini Lapel, 3-Wire Beige	3	7A	IL	Y	-
A8	12082-0650-05	Earphone Kit, Black, XG-100P	**			Υ	-
A9	12082-0650-06	Earphone Kit, Beige, XG-100P	**			Υ	-
A10	12082-0650-07	Headset, In-Ear, Boom MIC, In-Line PTT	3	7A	IL	Υ	-
A11	12082-0650-08	Headset, LTWT, OTH, Single Ear, IN-Line PTT	3	7A	IL	Y	-
A12	12082-0650-09	Headset, LTWT, BTH, Dual Ear, In_Line PTT	3	7A	IL	Y	-
A13	12082-0650-10	Headset, LTWT, BTH, Dual Ear, Pig Tail PTT	3	7A	PT	Y	Υ
A14	12082-0650-11	Headset, LTWT, BTH, Dual In-Ear, In_Line PTT	3	7A	IL	Y	-
A15	12082-0650-12	Headset, LTWT, BTH, Dual In-Ear, Pig Tail PTT	3	7A	PT	Y	Υ
A16	12082-0650-13	Headset, Heavy Duty, BTH, w/PTT, XG-100P	3	7A	IL	Y	Υ
A17	12082-0650-14	Headset, Heavy Duty, OTH, w/PTT, XG-100P	3	7A	IL	Y	-
A18	12082-0650-15	Headset, BTH, Boom MIC, Earpiece, w/PTT	**			Y	-
A19	12082-0650-16	Headset, Tactical, Boom MIC, Earpiece, w/PTT	3	7A	PT	Y	-
A20	12082-0650-17	Skull MIC, w/Body PTT, Earcup, XG-100P	3	9	ВВ	Y	Υ
A21	12082-0650-18	Throat MIC, w/Acoustic Tube, Body PTT	3	9	ВВ	Y	-
A22	12082-0650-19	Throat MIC, w/Acoustic Tube, Body & Ring PTT	3	9	RB	Y	-
A23	12082-0681-01	Speaker MIC, Wireless Bluetooth	3	ВТ	РВ	Y	-
A24	12082-0684-01	BlueTooth, Covert, Earpiece, MIC, PTT	3	ВТ	n/a	Υ	-
A25	14002-0197-01	Hirose to Unity Adapter	1	7B	n/a	Y	Υ
A26	LS103239V1	Earphone, Lapel MIC, 2.5mm	3	n/a	n/a	Y	Υ
A27	LS103239V2	Earphone, Lapel MIC, 2.5mm, Right Angle	4	n/a	n/a	Y	

45461394 R2.2 22 August 2017

	Man	ufacturer's Accessory List					
Test Report ID Number	Manufacturer's Part Number	Description	Change ID ⁽¹⁾	UDC Group ⁽²⁾	Type II Group ⁽³⁾	SAR ⁽⁴⁾ Evaluated	SAR ⁽⁵⁾ Tested
		Body-Worn Accessory					
B1	12082-1290-01	Metal Belt Clip	1			Υ	Υ
B18	12082-1398-01	Side Connector Cover	1			Υ	Υ
B2	12082-3230-01	D-Swivel (Used w/ 14002-0218-01 and KRY 1011609/1)	1			Υ	Υ
B16	14002-0197-01	Adapter, 6-Pin Hirose	1			Υ	Υ
В3	14002-0218-01	Premium Belt Loop	1			Υ	Υ
B4	14035-4200-01	Holster, Leather, Radio, Premium	3			Υ	Υ
B5	14035-4200-02	Holster, Leather w/Rings for Shoulder Strap, Radio, Premium	3			Υ	Υ
B6	14035-4200-03	Holster, Nylon, Black, Radio, Premium	**			Υ	-
B7	14035-4200-04	Holster, Ring, Leather, Radio, Premium	**			Υ	-
B8	14035-4201-01	Kit, 14035-4200-01 Holster Assy w/ 14002-0218-01 Belt Loop	**			Υ	-
B17	14035-4201-02	Case, Leather, Premium, Shoulder Strap	**			Υ	-
B9	14035-4202-02	Kit, 14035-4200-02 Holster Assy w/ 14002-0218-01 Belt Loop	**			Υ	-
B10	14035-4202-01	Holster, Leather, Radio, Standard	**			Υ	-
B11	14035-4202-02	Holster, Leather w/Rings for Shoulder Strap, Radio, Standard	**			Υ	
B12	14035-4202-03	Holster, Nylon, Black, Radio, Standard	**			Υ	-
B13	14035-4202-04	Holster, Ring, Leather, Radio, Standard	**			Υ	-
B19	14036-4000-01	Holster, Leather, Premium	**			Υ	-
B20	14036-4000-02	Holster, Leather, Rings, Premium	**			Υ	-
B14	CC103333V1	Shoulder Strap	1			Υ	Υ
B15	KRY 1011609/1	Leather Belt Loop	1			Y	Υ

⁽¹⁾ From Table 6.0 - Indicates which change the item was introduced or tested. A "**" in this column indicates these accessories were evaluated on similar product and are deemed compliant.

⁽²⁾ UDC Group: 9 = 9 Pin, 7A = 7 Pin, 7B = 7 Pin Modified

⁽³⁾ Type II Group: PB = Palm Button, IL = In-Line Pushbutton, PT = Pigtail Pushbutton, RB = Ring Pushbutton, BB = Body Button, BT = BlueTooth

⁽⁴⁾ Accessories are categorized into groups of similar design and construction. Samples of individual groups are SAR Tested and the SAR results apply to ALL members of the Accessory Group. A "Y" in this column indicates the accessory is deemed acceptable.

⁽⁵⁾ Accessories and/or Accessory Group members SAR Tested.

Test Report S/N:

45461394 R2.2

Test Report Issue Date: 22 August 2017

9.0 SAR MEASUREMENT SUMMARY

Table 9.0: Measured Results - BODY

			Me	easured SA	R Results ((1g) - BO	DY Con	figurat	ion (FC	C/ISE	DC)				
		DUT		Test			Access	ories		DUT	Spacing	Conducted	Measured	SAR (10g)	SAR
Date	Plot	וטע		Frequency	Modulation	Antenna	Battery	Body	Audio	DUT	Antenna	Power	100% DC	50% DC	Drift
	ID	M/N	Type	(MHz)		ID	ID	ID	ID	(mm)	(mm)	(dBm)	(W/kg)	(W/kg)	(dB)
						7/800 Bar	nd LMR								
31 May 2017	SC1*	XL-200P	0133-E	806	CW	4420-01	4010-01	B1	A1	0	30	34.8	6.730	3.365	-0.222
31 May 2017	SC2*	XL-200P C1D1	sys/RB	806	CW	4420-01	4010-01	B1	A1	0	30	34.9	6.580	3.290	-0.131
01 Jun 2017	SC1*	XL-200P	0145-E	824	CW	4420-01	4010-01	B1	A1	0	30	34.8	7.370	3.685	-0.188
01 Jun 2017	SC2*	XL-200P C1D1	sys2/NRB	824	CW	4420-01	4010-01	B1	A1	0	30	34.97	6.970	3.485	-0.306
01 Jun 2017	B1	XL-185P	System	824	CW	4420-01	4010-01	B1	A1	0	30	35.15	7.340	3.670	-0.200
01 Jun 2017	B2	XL-185P	System	776	CW	4000-01	4010-01	B1	A1	0	30	34.1	2.800	1.400	-1.730
01 Jun 2017	В3	XL-185P	System	824	CW	4440-01	4010-01	B1	A1	0	30	34.15	7.070	3.535	-0.090
01 Jun 2017	B4	XL-185P	System	806	CW	4440-02	4010-01	B1	A1	0	30	34.14	4.840	2.420	0.103
02 Jun 2017	B5	XL-185P	System	861	CW	4450-01	4010-01	B1	A1	0	30	35.15	6.760	3.380	-0.167
02 Jun 2017	B6	XL-185P	System	861**	CW	4450-02	4010-01	B1	A1	0	30	35.15	9.300	4.650	-0.064
02 Jun 2017	B7	XL-185P	System	851**	CW	4450-02	4010-01	B1	A1	0	30	35.13	7.050	3.525	-0.109
02 Jun 2017	B8	XL-185P	System	869**	CW	4450-02	4010-01	B1	A1	0	25	35.19	9.430	4.715	-0.182
02 Jun 2017	B9	XL-185P	SCAN	869	CW	4450-02	4010-01	B1	A1	0	25	35.18	8.960	4.480	-0.139
						5GHZ	WiFi								
16Jun 2017	B10	XL-185P	System	5260	CW	4440-02	4010-01	n/a	n/a	0	30	11.8	<0.1	-	(a)
16 Jun 2017	B11	XL-185P	SCAN	5260	CW	4440-02	4010-01	n/a	n/a	0	30	11.8	<0.1	-	(a)
16 Jun 2017	B12	XL-185P	System	5260	CW	4440-02	4010-01	n/a	n/a	0	30	11.8	<0.1	-	(a)
						2.4GHZ	WiFi								
27 Jun 2017	B13	XL-185P	System	2437	CW	4440-02	4010-01	B1	A1	0	30	23.7	<0.1	-	(a)
27 Jun 2017	B14	XL-185P	SCAN	2437	CW	4440-02	4010-01	B1	A1	0	30	23.7	<0.1	-	(a)
27 Jun 2017	B15	XL-185P	System	2437	CW	4440-02	4010-01	B1	A1	0	30	23.7	<0.1	-	(a)
						BlueT	ooth								
27 Jun 2017	B16	XL-185P	System	2480	CW	4440-02	4010-01	B1	A1	0	30	12.7	<0.1	-	(a)
27 Jun 2017	B17	XL-185P	SCAN	2480	CW	4440-02	4010-01	B1	A1	0	30	12.7	<0.1	-	(a)
27 Jun 2017	B18	XL-185P	System	2480	CW	4440-02	4010-01	B1	A1	0	30	12.7	<0.1	-	(a)
	SAR Limit				Spatial Peak			Head/Body		RF Exposure Category					
	FCC 4	47 CFR 2.1093		Health Ca	anada Safety (Code 6	1 Gra	am Aver	rage	8.0	W/kg	Oc	cupational/	User Aware	

Test Report S/N:

45461394 R2.2

Test Report Issue Date: 22 August 2017

Table 9.1: Measured Results - FACE

			М	easured S	AR Results	(1g) - FA	CE Con	figurat	tion (FC	C/ISE	DC)				
		DUT		Test			Access	ories		DUT Spacing		Conducted	Measured	SAR (10g)	SAR
Date	Plot	DOT		Frequency	Modulation	Antenna	Battery	Body	Audio	DUT	Antenna	Power	100% DC	50% DC	Drift
	ID	M/N	Type	(MHz)		ID	ID	ID	ID	(mm)	(mm)	(dBm)	(W/kg)	(W/kg)	(dB)
						7/800 Ba	nd LMR								
05 Jun 2017	SC3*	XL-200P	0145-E	824	CW	4420-01	4010-01	n/a	n/a	25	55	34.8	1.860	0.930	-0.249
05 Jun 2017	SC4*	XL-200P C1D1	sys2/NRB	824	CW	4420-01	4010-01	n/a	n/a	25	55	34.97	2.090	1.045	-0.318
06 Jun 2017	F1	XL-185P	System	824	CW	4420-01	4010-01	n/a	n/a	25	55	35.15	2.150	1.075	-0.302
06 Jun 2017	F2	XL-185P	System	768	CW	4000-01	4010-01	n/a	n/a	25	55	34.38	2.310	1.155	0.039
6 Jun 2017	F3	XL-185P	System	851	CW	4440-01	4010-01	n/a	n/a	25	55	35.13	1.900	0.950	-0.140
6 Jun 2017	F4	XL-185P	System	806	CW	4440-02	4010-01	n/a	n/a	25	55	35.14	2.280	1.140	-0.045
6 Jun 2017	F5	XL-185P	System	861	CW	4450-01	4010-01	n/a	n/a	25	50	35.15	1.960	0.980	-0.313
6 Jun 2017	F6	XL-185P	System	806	CW	4450-02	4010-01	n/a	n/a	25	50	35.14	2.290	1.145	-0.036
6 Jun 2017	F7	XL-185P	SCAN	768	CW	4000-01	4010-01	n/a	n/a	25	55	34.41	2.260	1.130	-0.008
	SAR Limit					Spatial Peak		Head/Body		RF Exposure Category					
	FCC 47 CFR 2.1093			Health Ca	anada Safety	Safety Code 6 1 Gram Average			8.0 W/kg		Ос	Occupational/User Aware			

^{*} Baseline Measurements

(a) The BlueTooth and WiFi antennas are located on the side of the DUT. Due to the location of the BlueTooth and WiFi antennas, the minimum phantom separation distance in the BODY or FACE configurations that could be achieved is greater than 30mm. The measured SAR values approximated noise floor measurements resulting in inconsistent power drift measurements and are omitted in this table.

Note: The WiFi and BlueTooth channels evaluated on the XL-185P produced worst case SAR in the BODY Configurations.

^{**} As per FCC KDB 643664, When SAR for an antenna is > 4.0, testing of immediately adjacent channels is required.

45461394 R2.2 22 August 2017

10.0 ANALYSIS OF SIMULTANEOUS TRANSMISSION

Simultaneous Transmission Analysis

Introduction

The XL-185P incorporates integrated WiFi and BlueTooth transmitters capable of simultaneously transmitting, in any combination, with the LMR transmitter. As per FCC KDB 447498, simultaneous transmission analysis is required for devices capable of simultaneous transmission. The WiFi and BT 1g SAR are subject to General Population limits of 1.6W/kg. The LMR 1g SAR is subject to Occupational of 8.0W/kg. To determine compliance when different SAR limits are applied to the different transmit modes, the Sum-of-the-Ratios of the SAR to the respective SAR limit is applied. When the Sum-of-the-Ratios is ≤ 1.0, simultaneous SAR test exclusion may be applied.

SAR for each transmission band, transmission mode and/or equipment class was evaluated with Body-Worn and Audio Accessories in the BODY and HEAD configurations. Only the Maximum maximum <u>reported</u> SAR for each is used in the Sum-of-the-Ratios calculation and the worst case of all possible combinations is considered.

Table 10.0 List of Possible Transmitters

	List of Possible Transmitters										
		Frequen	Rated Output								
Type	Class	Lower	Upper	Power							
		(MHz)	(MHz)	(dBm)							
LMR 7/800	TNF	762.0	870.0	34.8							
BlueTooth	DSS	2402.0	2480.0	12.7							
BLE	DTS	2402.0	2480.0	8.4							
WiFi 2.4	DTS	2412.0	2462.0	23.7							
WiFi 5	NII	5150.0	5850.0	11.8							

Table 10.1 List of Possible Transmitters Combinations

Si	multane	ous Tran	smitter (Combina	tions							
	HEAD and BODY Configuration											
uo												
Configuration Number	Number LMR 7/800 BlueTooth BLE WiFi 2.4											
1	Х	Χ		Χ								
2	2 X X X X											
3 X X X												
4	4 X X X											

45461394 R2.2 22 August 2017

Table 10.2 Analysis of Sum-of-the-Ratios

Analysis of Sum-of-the-Ratios												
				For Al	l Transmit	ters an	d Configu	rations				
	Transmitter Type										C	C
	LMR 7/800) Band	BlueTo	oth	BLE		WiFi :	2.4	WiFi	5	Sum	Sum
	<u>reported</u>	Ratio	reported	Ratio	reported	Ratio	reported	Ratio	reported	Ratio	of	of
Config.	SAR	to	SAR	to	SAR	to	SAR	to	SAR	to	Datias	040-
oog.	(W/kg)	Limit	(W/kg)	Limit	(W/kg)	Limit	(W/kg)	Limit	(W/kg)	Limit	Ratios	SARs
	SAR Lin 8.0W/ (Occupat		SAR Limit = 1.6W/kg (General Population)								(W/kg)	
	1.243	0.155	0.006	0.004			0.040	0.025			0.184	1.289
HEAD	1.243	0.155	0.006	0.004					0.031	0.019	0.179	1.280
וובאם	1.243	0.155			0.048	0.030	0.040	0.025			0.210	1.331
	1.243	0.155			0.048	0.030			0.031	0.019	0.205	1.322
·	4.715	0.589	0.006	0.004			0.040	0.025			0.618	4.761
BODY	4.715	0.589	0.006	0.004					0.031	0.019	0.613	4.752
BODY	4.715	0.589			0.048	0.030	0.040	0.025			0.644	4.803
	4.715	0.589			0.048	0.030			0.031	0.019	0.639	4.794

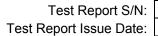
Indicates this combination is not possible.

Test Exclusion of the BlueTooth Low Energy (BLE) transmitter is evaluated using Max Power = 8.4dBm (7mW), Separation Distance = 30mm*, Transmit Frequency = 2.480GHz.

Per KDB 447498 D01v06 [4.3.1(a)], SAR Test Exclusion is given by:

[(Max Power, mW) / (Separation Distance, mm)] * [$^{\pm}$ f, GHz] \leq 3.0 for 1g SAR [(7)/(30)] * [($^{\pm}$ 2.480)] = 0.362 \leq 3.0

Therefore the BlueTooth transmitter meets the SAR Test Exclusion criteria.


For reference only, per KDB 447498 D01v06 [4.3.2(b)], the estimated BlueTooth SAR is given by:

[(Max Power, mW) / (Separation Distance, mm)] * [($\stackrel{?}{=}$ f, GHz) / (x)], where x = 7.5 for 1g SAR [(7)/(30)] * [($\stackrel{?}{=}$ 2.480) / (7.5)] = 0.048W/kg

From Table 10.2, the Sum-of-the-Ratios for any given simultaneous transmission combination, when applied to their respective SAR limit, does not exceed 1.0. No further analysis is required.

Note: The WiFi and BlueTooth SAR values shown in this table are the highest <u>worst case</u> SAR values from all configurations and transmission modes from all variants of the XL-185P series of radios. They are applied in this table to illustrate the most conservative ratio.

* Due to the location of the BlueTooth and WiFi antennas, the minimum phantom separation distance in the BODY or FACE configurations that could be achieved is greater than 30mm.

45461394 R2.2

22 August 2017

11.0 SCALING OF MAXIMUM MEASURE SAR

Table 11.0 SAR Scaling

			Scali	ng of Ma	ximum M	easured	SAR (1)			
			Meas	sured			Measured	Mea	sured	Measured
		Freq	Fluid D	eviation		С	onducted Pov	ver D	rift	SAR (1g)
Plot ID	Configuration	(MHz)	Permittivity	Cond	uctivity		(dBm)	(0	dB)	(W/kg)
F2	Face	768	2.10%	-6.	27%		34.4	0.	039	1.155
В8	Body	869	-2.85%	-1.	.38%		35.2	-0	.182	4.715
					Step 1					
				Fluid	Sensitivity Adj	ustment				
		Scale	Э				Measured			Step 1 Adjusted
		Facto	or			SAR				SAR (1g)
Plot ID		(%)		х			(W/kg)		=	(W/kg)
F2		1.000	%	Х			1.155		=	1.155
B8		1.000	%	Х			4.715		=	4.715
					Step 2					
				Manufac	cturer's Tune-U	p Tolerance				
	Measu Conducted				Delta		Step 1 Adjusted SAR		Step 2 Adjusted SAR (1g)	
Plot ID	(dBn	1)	(dBm)			(dB)	+	(W/kg)	=	(W/kg)
F2	34.4		34	1.7		-0.32	+	1.155	=	1.243
B8	35.2	2	34	1.7		0.49	+	4.715	=	4.715
					Step 3					
			Sim	ultaneous Tra	ansmission - B	luetooth and/o	or WiFi			
	Rated Output		Separation		Estin	nated		Step 2 Adjusted SAR		Step 3 Adjusted
	Power (Pmax)	Freq	Distance		S	AR		Step 2 Aujusteu SAK		SAR (1g)
Plot ID	(mW)	(MHz)	(mm)		(W.	/kg)	+	(W/kg)	=	(W/kg)
F2					0.	09	+	1.243	=	1.331
B8					0.	09	+	4.715	=	4.803
					Step 4					
					Drift Adjustme	ent				
		Measu	red			Ste	p 3 Adjusted	SAR		Step 4 Adjusted
		Drift				010	p o Aujuotou	OPII (SAR (1g)
Plot ID		(dB)		+			(W/kg)		=	(W/kg)
F2		0.039	9	+			1.331		=	1.331
B8		-0.18	2	+			4.803		=	5.008
					Step 5					
					Reported SA	R				
			FCC					IC		
	From Steps 1 through 3					From Steps 1 through 4				
Plot ID	1g SAR (W/kg)					1g SAR (W/kg)				
F2	1.33					1.33				
B8	4.80					5.01				

45461394 R2.2

22 August 2017

NOTES to Table 10.0

(1) Scaling of the Maximum Measured SAR is based on the highest, 100% duty cycle, Face, Body and/or Head SAR measured of ALL test channels, configurations and accessories used during THIS evaluation. The Measured Fluid Deviation parameters apply only to deviation of the tissue equivalent fluids used at the frequencies which produced the highest measured SAR. The Measured Conducted Power applies to the Conducted Power measured at the frequencies producing the highest Face and Body SAR. The Measured Drift is the SAR drift associated with that specific SAR measurement. The Reported SAR is the accumulation of all SAR Adjustments from the applicable Steps 1 through 4. The Plot ID is for indentification of the SAR Measurement Plots in Annex A of this report.

NOTE: Some of the scaling factors in Steps 1 through 4 may not apply and are identified by light gray text.

Step 1

Per IEC-62209-1 and FCC KDB 865664. Scaling required only when Measured Fluid Deviation is greater than 5%. If the Measured Fluid Deviation is greater than 5%, Table 10.1 will be shown and will indicate the SAR scaling factor in percent (%). SAR is MULTIPLIED by this scaling factor only when the scaling factor is positive (+).

Step 2

Per KDB 447498. Scaling required only when the difference (Delta) between the Measured Conducted Power and the Manufacturer's Rated Conducted Power is (-) Negative. The absolute value of Delta is ADDED to the SAR.

Step 3

Per KDB 447498 4.3.2. The SAR, either measured or calculated, of ANY and ALL simultaneous transmitters must be added together and includes all contributors.

Step 4

Per IEC 62209-1. Scaling required only when Measured Drift is (-) Negative. The absolute value of Measured Drift is added to Reported or Simultaneous Reported SAR.

Step 5

The Reported SAR is the Maximum Final Adjusted Cumulative SAR from the applicable Steps 1 through 4 and are reported on Page 1 of this report.

Table 11.1: Fluid Sensitivity Calculation

	Fluid Sensitiv	vity Calculation	(1g)							
	Delta SAR =	= Ce * Δe + Cσ*Δ	σ							
Ce = $(-0.0007854*F^3)$ + $(0.009402*F^2)$ - $(0.02742*F)$ - 0.2026 C σ = $(0.009804*F^3)$ - $(0.08661*F^2)$ + $(0.02981*F)$ + 0.7829										
Attribute	Plot Freq. [F] Plot Freq. [F] Attribute ID (GHz) ID (GHz)									
	F2	0.768	B8	0.869						
Ce	-0.2	:185	-0.2	198						
Сσ	0.7	592	0.7	498						
Δe	2.1	0%	-2.8	35%						
Δσ	Δσ -6.27% -1.38%									
ΔSAR	-5.2	22%	-0.4	11%						
Scaling of SAR only required for Positive ΔSAR										

I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.

Trevor Whillock
Test Lab Engineer
Celltech Labs Inc.

30 June 2017

Date

45461394 R2.2

22 August 2017

12.0 SAR EXPOSURE LIMITS

Table 12.0 Exposure Limits

	SAR RF EXP	OSURE LIMITS	
FCC 47 CFR§2.1093	Health Canada Safety Code 6	General Population /	Occupational /
10047 011(32:1000	Theath Canada Calety Code C	Uncontrolled Exposure ⁽⁴⁾	Controlled Exposure ⁽⁵⁾
Spa	tial Average ⁽¹⁾	0.08 W/kg	0.4 W/kg
(averaged	over the whole body)	0.00 W/Kg	O.+ Wing
Sp	oatial Peak ⁽²⁾	1.6 W/kg	8.0 W/kg
(Head and Trunk av	eraged over any 1 g of tissue)	1.0 W/kg	o.o www
Sp	oatial Peak ⁽³⁾	4.0 W/kg	20.0 W/kg
(Hands/Wrists/Fee	t/Ankles averaged over 10 g)	4.0 W/kg	20.0 W /Ng

- (1) The Spatial Average value of the SAR averaged over the whole body.
- (2) The Spatial Peak value of the SAR averaged over any 1 gram of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.
- (3) The Spatial Peak value of the SAR averaged over any 10 grams of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.
- (4) Uncontrolled environments are defined as locations where there is potential exposure to individuals who have no knowledge or control of their potential exposure.
- (5) Controlled environments are defined as locations where there is potential exposure to individuals who have knowledge of their potential exposure and can exercise control over their exposure.

45461394 R2.2 22 August 2017

Test Report Issue Date:

13.0 DETAILS OF SAR EVALUATION

13.1 Day Log

					. Ë		
	DA	AY LOG	i		Fluid Dielectric		
Date	Ambient Temp °C	Fluid Temp °C	Humidity	TSL	Fluid	SPC	Test
29 May 2017	25	22.9	20%	835B	Х	Х	
01 Jun 2017	25	22.5	24%	835B			Х
02 Jun 2017	20	21.4	28%	835B			Х
02 Jun 2017	25	21.2	21%	835H	Х	Х	
06 Jun 2017	22	21.7	22%	835H			Х
13 Jun 2017	25	23.9	18%	2450B	Х	Х	
14 Jun 2017	25	20.9	14%	5250B	Х	Х	
16 Jun 2017	23	20.7	21%	5250B			Х
19 Jun 2017	22	20.9	22%	5250B			Х
19 Jun 2017	24	21.0	21%	5250B			Х
19 Jun 2017	25	22.4	21%	835B	Х	Х	
20 Jun 2017	23	21.9	26%	835B			Х
21 Jun 2017	23	23.3	21%	835B			Х
22 Jun 2017	21	22.4	22%	835B			Х
26 Jun 2017	25	23.4	21%	835H	Х	Х	Х
27 Jun 2017	25	24.3	12%	2450B	Х	Х	
27 Jun 2017	25	24.3	12%	2450B			Х
28 Jun 2017	25	23.8	15%	2450B			Х

45461394 R2.2 22 August 2017

13.2 DUT Setup and Configuration

DUT Setup and Configuration

Overview

The XL-185P, FCC ID OWDTR-0148-E, ISEDC ID: 3636B-0148 is a single-band, Push-To-Talk (PTT) Licensed Mobile Radio (LMR) transceiver intended for Occupational Use. It incorporates WiFi and BlueTooth transmitters. The XL-185P is identical in RF circuitry to the XL-200P Non-Rebanded, FCC ID OWDTR-0145-E, ISEDC ID: 3636B-0145 and XL-200P Rebanded, FCC ID OWDTR-0133-E, ISEDC ID:3636B-0133 multi-band radios with the exception that it has been modified by removing components to make it a single band radio.

The number of test channels and test configurations performed on this device were based on the antenna and accessory combinations which produced the highest, or worst case, SAR from previous SAR evaluations of the 0133-E and 0145-E Radios. Section 3.0 identifies those test channels and each channel was tested in the BODY and FACE configuration.

Sample measurements of the original 0133-E and 0145-E in the worst case configurations were made and compared to previous measurement data taken from the same 0133-E and 0145-E in the same configurations from the original filing and used to establish a base-line. Measurements from the XL-185P in the same configurations were compared to the base-line measurements and were found to be within 5% of the base-line. From this, justification is made for the determination of test channels, configurations and accessory combinations.

The XL-185P was evaluated at the maximum conducted output power level, preset by the manufacturer, with a fully charged battery in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty cycle) with the transmit key continuously depressed. For a Push-To-Talk (PTT) device with a manually operated transmit pushbutton, a 50% duty cycle compensation for the <u>reported SAR</u> was used, as per FCC KDB 447498 (6.1). This was applied only to the LMR bands.

The test procedures outlined in FCC KDB 643646 "SAR Test Reduction Considerations for Occupational PTT Radios" as well as FCC KDB 865664, ISEDC RSS-102 and IEEE 1528 were used throughout the evaluation of this device in the LMR bands.

45461394 R2.2

22 August 2017

13.3 DUT Positioning

DUT Positioning

Positioning

The DUT Positioner was securely fastened to the Phantom Platform. Registration marks were placed on the DUT and the Positioner to ensure consistent positioning of the DUT for each test evaluation.

FACE Configuration

The DUT was securely clamped into the device holder with the surface of the DUT normally held to the user's face facing the phantom. The device holder was adjusted to ensure that the horizontal axis of the DUT was parallel to the bottom of the phantom. A 25mm spacer block was used to set the separation distance between the DUT and the phantom to 25mm. When applicable and unless by design, the antenna of the DUT was prevented from sagging away from the phantom. The spacer block was removed before testing.

BODY Configuration

Body-Worn and Audio Accessories were affixed to the DUT in the manner in which they are intended to be used. The DUT, with its accessories, were securely clamped into the device holder with the surface of the DUT normally in contact with the body in direct contact with the bottom of the phantom, or 0mm separation from the DUT's accessory to the phantom. Body-Worn Accessory straps, linkages, etc. were positioned in a fashion resembling that for which they were intended to be used. Audio Accessory cables, etc., were positioned in a fashion resembling that for which they were intended to be used.

HEAD Configuration

This device is not intended to be held to the ear and was not tested in the HEAD configuration.

NEAR-BODY

Configuration

This device does not support wireless routing and was not tested in the NEAR-BODY configuration (≤ 5mm).

13.4 General Procedures and Report

General Procedures and Reporting

General Procedures

The fluid dielectric parameters of the Active Tissue Simulating Liquid (TSL) were measured as described in this Section, recorded and entered into the DASY Measurement Server. Active meaning the TSL used during the SAR evaluation of the DUT. The temperature of the Active TSL was measured and recorded prior to performing a System Performance Check (SPC). An SPC was performed with the Active TSL prior to the start of the test series. The temperature of the Active TSL was measured throughout the day and the Active TSL temperature was maintained to $\pm 0.5^{\circ}$ C. The Active TSL temperature was maintained to within $\pm 1.0^{\circ}$ C throughout the test series. TSL analysis and SPC were repeated when the Active TSL use exceeded 84 hours.

An Area Scan exceeding the length and width of the DUT projection was performed and the locations of all maximas within 2dB of the Peak SAR recorded. A Zoom Scan centered over the Peak SAR location(s) was performed and the 1g and 10g SAR values recorded. The resolutions of the Area Scan and Zoom Scan are described in the Scan Resolution table(s) in this Section. A Power Reference Measurement was taken at the phantom reference point immediately prior to the Area Scan. A Power Drift measurement was taken at the phantom reference point immediately following the Zoom Scan to determine the power drift. A Z-Scan from the <u>Maximum Distance</u> to Phantom Surface to the fluid surface was performed following the power drift measurement.

Reporting

The 1g SAR, 10g SAR and power drift measurements are recorded in the SAR Measurement Summary tables in the SAR Measurement Summary Section of this report. The SAR values shown in the 100% DC (Duty Cycle) column are the SAR values reported by the SAR Measurement Server with the DUT operating at 100% transmit duty cycle. The SAR values in the 50% DC column have been scaled by 50% for 50% Push-To-Talk duty cycle compensation. These tables also include other information such as transmit channel and frequency, modulation, accessories tested and DUT-phantom separation distance.

In the Scaling of Maximum Measured SAR Section of this report, the highest measured SAR in the BODY and FACE configurations, within the entire scope of this assessment, are, when applicable, scaled for Fluid Sensitivity, Manufacturer's Tune-Up Tolerance, Simultaneous Transmission and Drift. With the exception of Duty Cycle correction/compensation, SAR values are ONLY scaled up, not down. The final results of this scaling is the <u>reported SAR</u> which appears on the Cover Page of this report.

45461394 R2.2 22 August 2017

13.5 Fluid Dielectric and Systems Performance Check

Fluid Dielectric and Systems Performance Check

Fluid Dielectric Measurement Procedure

The fluid dielectric parameters of the Tissue Simulating Liquid (TSL) are measured using the Open-Ended Coax Method connected to an Agilent 8753ET Network Analyzer connected to a measurement server running Aprel Dielectric Property Measurement System. A frequency range of \pm 100MHz for frequencies > 300MHz and \pm 50MHz for frequencies \leq 300MHz with frequency step size of 10MHz is used. The center frequency is centered around the SAR measurement probe's calibration point for that TSL frequency range. A calibration of the setup is performed using a short-open-deionized water (at 23°C in a 300ml beaker) method. A sample of the TSL is placed in a 300ml beaker and the open-ended coax is submerged approximately 8mm below the fluid surface in the approximate center of the beaker. A check of the setup is made to ensure no air is trapped under the open-ended coax. The sample of TSL is measured and compared to the FCC OET Bulletin 65 Supplement C targets for HEAD or BODY for the entire fluid measurement range. Fluid adjustment are made if the dielectric parameters are > 5% in range that the DUT is to be tested. If the adjustments fail to bring the parameters to \leq 5% but are < 10%, the SAR Fluid Sensitivity as per IEC 62201-1 and FCC KDB 865664 are applied to the highest measured SAR. A TSL with dielectric parameters > 10% in the DUT test frequency range are not used.

Systems Performance Check

The fluid dielectric parameters of the Active TSL are entered into the DASY Measurement Server at each of the 10MHz step size intervals. Active meaning the TSL used during the SAR evaluation of the DUT. The DASY Measurement System will automatically interpolate the dielectric parameters for DUT test frequencies that fall between the 10MHz step intervals.

A Systems Performance Check (SPC) is performed in accordance with IEEE 1528 "System Check" and FCC KDB 865664 "System Verification". A validation source, dipole or Confined Loop Antenna (CLA), is placed under the geometric center of the phantom and separated from the phantom in accordance to the validation source's Calibration Certificate data. A CW signal set to the frequency of the validate source's and SAR measurement probe's calibration frequency with a forward power set to the validation source's Calibration Certificate data power setting is applied to the validation source. An Area Scan is centered over the projection of the validation source's feed point and an Area Scan is taken. A Zoom Scan centered over the Peak SAR measurement of the Area Scan and the 1g and 10g SAR is measured. The measured 1g and 10g SAR is compared to the 1g and 10g SAR measurements from the validation source's Calibration Certificate. When required, the measured SAR is normalized to 1.0W and compared to the normalized SAR indicated on the validation source's Calibration Certificate. The SPC is considered valid when the measured and normalized SAR is 10% of the measured and normalize SAR of the validation source's Calibration Certificate.

The fluid dielectric parameters of the Active TSL and SPC are repeated when the Active TSL has been in use for greater than 84 hours or if the Active TSL temperature has exceed ± 1°C of the initial fluid analysis.

13.6 Scan Resolution 100MHz to 2GHz

Scan Resolution 100MHz to 2GHz						
Maximum distance from the closest measurement point to phantom surface:	4 + 4					
(Geometric Center of Probe Center)	4 ± 1 mm					
Maximum probe angle normal to phantom surface.	5° ± 1°					
(Flat Section ELI Phantom)	5° ± 1°					
Area Scan Spatial Resolution ΔX, ΔΥ	15 mm					
Zoom Scan Spatial Resolution ΔX , ΔY	7.5 mm					
Zoom Scan Spatial Resolution ∆Z	5 mm					
(Uniform Grid)	5 111111					
Zoom Scan Volume X, Y, Z	30 mm					
Phantom	ELI					
Fluid Depth	150 ± 5 mm					
An Area Scan with an area extending beyond the device was used to locate the candi	date maximas					

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

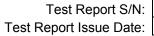
A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

45461394 R2.2 22 August 2017

13.7 Scan Resolution 2GHz to 3GHz

Scan Resolution 2GHz to 3GHz							
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm						
(Geometric Center of Probe Center)	4 = 1 111111						
Maximum probe angle normal to phantom surface.	5° ± 1°						
(Flat Section ELI Phantom)	5° ± 1°						
Area Scan Spatial Resolution ΔX, ΔY	12 mm						
Zoom Scan Spatial Resolution ΔX , ΔY	5 mm						
Zoom Scan Spatial Resolution ∆Z	5 mm						
(Uniform Grid)	5 111111						
Zoom Scan Volume X, Y, Z	30 mm						
Phantom	ELI						
Fluid Depth	150 ± 5 mm						

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.


A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

13.8 Scan Resolution 5GHz to 6GHz

Scan Resolution 5GHz to 6GHz						
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm					
(Geometric Center of Probe Center)	4 = 1 mm					
Maximum probe angle normal to phantom surface.	5° ± 1°					
(Flat Section ELI Phantom)	5° ± 1°					
Area Scan Spatial Resolution ΔX, ΔY	10 mm					
Zoom Scan Spatial Resolution ΔX , ΔY	4 mm					
Zoom Scan Spatial Resolution ∆Z	2 mm					
(Uniform Grid)	2					
Zoom Scan Volume X, Y, Z	22 mm					
Phantom	ELI					
Fluid Depth	100 ± 5 mm					

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

45461394 R2.2 22 August 2017

14.0 MEASUREMENT UNCERTAINTIES

Table 14.0 Measurement Uncertainty

UNCERTA	INTY BUD	GET FOR D	EVICE EVA	LUATION (IE	EE 15	28-20	13 Table 9)		
Uncertainty Component	IEEE 1528 Section	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Uncertainty Value ±% (1g)	Uncertainty Value ±% (10g)	V _i or V _{eff}
Measurement System									
Probe Calibration*	E.2.1	6.6	Normal	1	1	1	6.60	6.60	8
Axial Isotropy*	E.2.2	4.7	Rectangular	1.732050808	0.7	0.7	1.9	1.9	×
Hemispherical Isotropy*	E.2.2	9.6	Rectangular	1.732050808	0.7	0.7	3.9	3.9	oc
Boundary Effect*	E.2.3	8.3	Rectangular	1.732050808	1	1	4.8	4.8	× ×
Linearity*	E.2.4	4.7	Rectangular	1.732050808	1	1	2.7	2.7	×
System Detection Limits*	E.2.4	1.0	Rectangular	1.732050808	1	1	0.6	0.6	× ×
Modulation Response	E.2.5	4.0	Rectangular	1.732050808	1	1	2.3	2.3	∞
Readout Electronics*	E.2.6	1.0	Normal	1	1	1	1.0	1.0	∞
Response Time*	E.2.7	0.8	Rectangular	1.732050808	1	1	0.5	0.5	8
Integration Time*	E.2.8	1.4	Rectangular	1.732050808	1	1	0.8	0.8	oc
RF Ambient Conditions - Noise	E.6.1	0.0	Rectangular	1.732050808	1	1	0.0	0.0	8
RF Ambient Conditions - Reflection	E.6.1	0.0	Rectangular	1.732050808	1	1	0.0	0.0	oc
Probe Positioner Mechanical Tolerance*	E.6.2	0.4	Rectangular	1.732050808	1	1	0.2	0.2	∞
Probe Positioning wrt Phantom Shell* Extrapolation, interpolation &	E.6.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	∞
integration algorithms for max. SAR evaluation*	E.5	3.9	Rectangular	1.732050808	1	1	2.3	2.3	8
Test Sample Related									
Test Sample Positioning	E.4.2	0.3	Normal	1	1	1	0.3	0.3	5
Device Holder Uncertainty*	E.4.1	3.6	Normal	1	1	1	3.6	3.6	∞
SAR Drift Measurement**	E.2.9	0.0	Rectangular	1.732050808	1	1	0.0	0.0	oc
SAR Scaling***	E.6.5	2.0	Rectangular	1.732050808	1	1	1.2	1.2	×
Phantom and Tissue Parameters									
Phantom Uncertainty*	E.3.1	4.0	Rectangular	1.732050808	1	1	2.3	2.3	oc
SAR Correction Uncertainty	E.3.2	1.2	Normal	1	1	0.84	1.2	1.0	×
Liquid Conductivity (measurement)	E.3.3	6.8	Normal	1	0.78	0.71	5.3	4.8	10
Liquid Permittivity (measurement)	E.3.3	5.3	Normal	1	0.23	0.26	1.2	1.4	10
Liquid Conductivity (Temperature)	E.3.2	0.1	Rectangular	1.732050808	0.78	0.71	0.1	0.0	∞
Liquid Permittivity Temperature)	E.3.2	0.0	Rectangular	1.732050808	0.23	0.26	0.0	0.0	∞
Effective Degrees of Freedor	n ⁽¹⁾							V _{eff} =	873.2
Combined Standard Uncertainty			RSS				12.59	12.40	
Expanded Uncertainty (95% Confid	ence Interva	ıl)	k=2				25.18	24.80	

⁽¹⁾ The Effective Degrees of Freedom is > 30 therefore a coverage factor of k=2 represents an approximate confidence level of 95%.

^{*} Provided by SPEAG

45461394 R2.2

22 August 2017

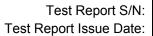
Table 14.1 Calculation of Degrees of Freedom

Table 13.1								
Calculation of the Degrees and Effective Degrees of Freedom								
v _i = <i>n</i> - 1	v _{eff} =	$\sum_{i=1}^{m} \frac{c_i^4 u_i^4}{v_i}$						

45461394 R2.2 22 August 2017

15.0 FLUID DIELECTRIC PARAMETERS

Table 15.0 Fluid Dielectric Parameters 835MHz BODY TSL



Aprel Laboratory
Test Result for UIM Dielectric Parameter
Thu 29/May/2017 04:50:55
Freg Frequency(GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eBFCC Limits for Body Epsilon FCC_sBFCC Limits for Body Sigma Test_e Epsilon of UIM Test s Sigma of UIM

FCC eBFCC sBTest e Test s Freq 55.59 0.96 59.08 0.94 0.7350 59.17 0.7450 55.55 0.96 0.95 0.7550 55.51 0.96 59.16 0.97 55.47 0.7650 0.96 58.65 0.98 55.43 0.97 58.61 0.98 0.7750 0.7850 55.39 0.97 58.40 0.99 1.00 0.7950 55.36 0.97 58.53 0.8050 58.31 1.01 55.32 0.97 0.8150 55.28 0.97 58.91 1.01 0.8250 55.24 0.97 57.87 1.00 0.8350 55.20 0.97 57.86 1.04 0.8450 55.17 0.98 58.25 1.06 0.8550 55.14 0.99 57.77 1.08 0.8650 55.11 1.01 57.56 1.06 0.8750 55.08 1.02 57.81 1.08 0.8850 55.05 1.03 57.39 1.10 55.02 0.8950 1.04 57.63 1.09 57.55 0.9050 55.00 1.05 1.10 0.9150 55.00 1.06 57.40 1.12 0.9250 54.98 1.06 57.46 1.12 0.9350 54.96 1.07 57.15 1.13

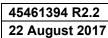
45461394 R2.2 22 August 2017

	FLUID DIELECTRIC PARAMETERS									
Date: 29 May	y 20	17 Fluid Te	emp: 22.9	Frequency:	835MHz	Tissue:	Body			
Freq (MHz)		Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity			
735.0000		59.0800	0.9400	55.5900	0.96	6.28%	-2.08%			
745.0000		59.1700	0.9500	55.5500	0.96	6.52%	-1.04%			
755.0000		59.1600	0.9700	55.5100	0.96	6.58%	1.04%			
765.0000		58.6500	0.9800	55.4700	0.96	5.73%	2.08%			
768.0000		58.6380	0.9800	55.4580	0.96	5.73%	1.77%			
775.0000		58.6100	0.9800	55.4300	0.97	5.74%	1.03%			
776.0000	*	58.5890	0.9810	55.4260	0.97	5.71%	1.13%			
785.0000		58.4000	0.9900	55.3900	0.97	5.43%	2.06%			
795.0000		58.5300	1.0000	55.3600	0.97	5.73%	3.09%			
805.0000		58.3100	1.0100	55.3200	0.97	5.40%	4.12%			
806.0000	*	58.3700	1.0100	55.3160	0.97	5.52%	4.12%			
811.0000		58.6700	1.0100	55.2960	0.97	6.10%	4.12%			
815.0000		58.9100	1.0100	55.2800	0.97	6.57%	4.12%			
824.0000	*	57.9740	1.0010	55.2440	0.97	4.94%	3.20%			
825.0000		57.8700	1.0000	55.2400	0.97	4.76%	3.09%			
835.0000		57.8600	1.0400	55.2000	0.97	4.82%	7.22%			
845.0000		58.2500	1.0600	55.1700	0.98	5.58%	8.16%			
851.0000	*	57.9620	1.0720	55.1520	0.99	5.10%	8.72%			
855.0000		57.7700	1.0800	55.1400	0.99	4.77%	9.09%			
865.0000		57.5600	1.0600	55.1100	1.01	4.45%	4.95%			
875.0000		57.8100	1.0800	55.0800	1.02	4.96%	5.88%			
885.0000		57.3900	1.1000	55.0500	1.03	4.25%	6.80%			
895.0000		57.6300	1.0900	55.0200	1.04	4.74%	4.81%			
905.0000		57.5500	1.1000	55.0000	1.05	4.64%	4.76%			
915.0000		57.4000	1.1200	55.0000	1.06	4.36%	5.66%			
925.0000		57.4600	1.1200	54.9800	1.06	4.51%	5.66%			
935.0000		57.1500	1.1300	54.9600	1.07	3.98%	5.61%			

*Channel Frequency Tested

45461394 R2.2 22 August 2017

Table 15.1 Fluid Dielectric Parameters 835MHz HEAD TSL



Aprel Laboratory
Test Result for UIM Dielectric Parameter
Mon 02/Jun/2017 09:15:16
Freq Frequency(GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

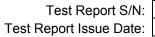
******	*******	*****	******	******
Freq	FCC_eH	IFCC_sh	HTest_e	Test_s
0.7350	42.02	0.89	43.35	0.82
0.7450	41.97	0.89	43.06	0.83
0.7550	41.92	0.89	42.86	0.84
0.7650	41.86	0.89	42.85	0.84
0.7750	41.81	0.90	42.43	0.83
0.7850	41.76	0.90	42.30	0.88
0.7950	41.71	0.90	42.41	0.88
0.8050	41.66	0.90	42.20	0.88
0.8150	41.60	0.90	41.59	0.90
0.8250	41.55	0.90	41.74	0.90
0.8350	41.50	0.90	41.69	0.90
0.8450	41.50	0.91	41.79	0.92
0.8550	41.50	0.92	41.41	0.93
0.8650	41.50	0.93	41.50	0.94
0.8750	41.50	0.94	41.23	0.94
0.8850	41.50	0.95	41.30	0.96
0.8950	41.50	0.96	41.10	0.97
0.9050	41.50	0.97	40.98	0.97
0.9150	41.50	0.98	41.07	0.99
0.9250	41.48	0.98	40.70	1.00
0.9350	41.46	0.99	40.82	1.01

	FLUID DIELECTRIC PARAMETERS									
Date: 2 Jun	201	7 Fluid Te	emp: 21.2	Frequency:	835MHz	Tissue:	Head			
Freq (MHz)		Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity			
735.0000		43.3500	0.8200	42.0200	0.89	3.17%	-7.87%			
745.0000		43.0600	0.8300	41.9700	0.89	2.60%	-6.74%			
755.0000		42.8600	0.8400	41.9200	0.89	2.24%	-5.62%			
765.0000		42.8500	0.8400	41.8600	0.89	2.37%	-5.62%			
768.0000	*	42.7240	0.8370	41.8450	0.89	2.10%	-6.27%			
775.0000		42.4300	0.8300	41.8100	0.90	1.48%	-7.78%			
776.0000		42.4170	0.8350	41.8050	0.90	1.46%	-7.22%			
785.0000		42.3000	0.8800	41.7600	0.90	1.29%	-2.22%			
795.0000		42.4100	0.8800	41.7100	0.90	1.68%	-2.22%			
805.0000		42.2000	0.8800	41.6600	0.90	1.30%	-2.22%			
806.0000	*	42.1390	0.8820	41.6540	0.90	1.16%	-2.00%			
811.0000		41.8340	0.8920	41.6240	0.90	0.50%	-0.89%			
815.0000		41.5900	0.9000	41.6000	0.90	-0.02%	0.00%			
824.0000	*	41.7250	0.9000	41.5550	0.90	0.41%	0.00%			
825.0000		41.7400	0.9000	41.5500	0.90	0.46%	0.00%			
835.0000		41.6900	0.9000	41.5000	0.90	0.46%	0.00%			
845.0000		41.7900	0.9200	41.5000	0.91	0.70%	1.10%			
851.0000	*	41.5620	0.9260	41.5000	0.92	0.15%	1.09%			
855.0000		41.4100	0.9300	41.5000	0.92	-0.22%	1.09%			
865.0000		41.5000	0.9400	41.5000	0.93	0.00%	1.08%			
875.0000		41.2300	0.9400	41.5000	0.94	-0.65%	0.00%			
885.0000		41.3000	0.9600	41.5000	0.95	-0.48%	1.05%			
895.0000		41.1000	0.9700	41.5000	0.96	-0.96%	1.04%			
905.0000		40.9800	0.9700	41.5000	0.97	-1.25%	0.00%			
915.0000		41.0700	0.9900	41.5000	0.98	-1.04%	1.02%			
925.0000		40.7000	1.0000	41.4800	0.98	-1.88%	2.04%			
935.0000		40.8200	1.0100	41.4600	0.99	-1.54%	2.02%			

*Channel Frequency Tested

45461394 R2.2 22 August 2017

Table 15.2 Fluid Dielectric Parameters 2450MHz BODY TSL


Aprel Laboratory
Test Result for UIM Dielectric Parameter
Tue 27/Jun/2017 10:34:18
Freq Frequency(GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM

Test_s Sigma of UIM

******	******	*****	******	*******
Freq	FCC_eE	FCC_sE	3 Test_e	Test_s
2.3500	52.83	1.85	49.65	1.79
2.3600	52.82	1.86	49.65	1.81
2.3700	52.81	1.87	49.50	1.82
2.3800	52.79	1.88	49.56	1.82
2.3900	52.78	1.89	49.45	1.82
2.4000	52.77	1.90	49.52	1.87
2.4100	52.75	1.91	49.39	1.87
2.4200	52.74	1.92	49.45	1.87
2.4300	52.73	1.93	49.32	1.92
2.4400	52.71	1.94	49.26	1.93
2.4500	52.70	1.95	49.31	1.92
2.4600	52.69	1.96	49.26	1.91
2.4700	52.67	1.98	49.44	1.96
2.4800	52.66	1.99	49.30	1.96
2.4900	52.65	2.01	49.29	1.94
2.5000	52.64	2.02	49.06	1.99
2.5100	52.62	2.04	49.08	2.00
2.5200	52.61	2.05	49.04	2.01
2.5300	52.60	2.06	49.11	2.02
2.5400	52.59	2.08	49.09	2.05
2.5500	52.57	2.09	49.02	2.06

45461394 R2.2 22 August 2017

	FLUID DIELECTRIC PARAMETERS										
Date: 27 Jun	20	17 Fluid Te	emp: 24.3	Frequency:	2450MHz	Tissue:	Body				
Freq (MHz)		Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity				
2350.0000		49.6500	1.7900	52.8300	1.85	-6.02%	-3.24%				
2360.0000		49.6500	1.8100	52.8200	1.86	-6.00%	-2.69%				
2370.0000		49.5000	1.8200	52.8100	1.87	-6.27%	-2.67%				
2380.0000		49.5600	1.8200	52.7900	1.88	-6.12%	-3.19%				
2390.0000		49.4500	1.8200	52.7800	1.89	-6.31%	-3.70%				
2400.0000		49.5200	1.8700	52.7700	1.90	-6.16%	-1.58%				
2410.0000		49.3900	1.8700	52.7500	1.91	-6.37%	-2.09%				
2420.0000		49.4500	1.8700	52.7400	1.92	-6.24%	-2.60%				
2430.0000		49.3200	1.9200	52.7300	1.93	-6.47%	-0.52%				
2440.0000		49.2600	1.9300	52.7100	1.94	-6.55%	-0.52%				
2450.0000		49.3100	1.9200	52.7000	1.95	-6.43%	-1.54%				
2460.0000		49.2600	1.9100	52.6900	1.96	-6.51%	-2.55%				
2470.0000		49.4400	1.9600	52.6700	1.98	-6.13%	-1.01%				
2480.0000		49.3000	1.9600	52.6600	1.99	-6.38%	-1.51%				
2490.0000		49.2900	1.9400	52.6500	2.01	-6.38%	-3.48%				
2500.0000		49.0600	1.9900	52.6400	2.02	-6.80%	-1.49%				
2510.0000		49.0800	2.0000	52.6200	2.04	-6.73%	-1.96%				
2520.0000		49.0400	2.0100	52.6100	2.05	-6.79%	-1.95%				
2530.0000		49.1100	2.0200	52.6000	2.06	-6.63%	-1.94%				
2540.0000		49.0900	2.0500	52.5900	2.08	-6.66%	-1.44%				
2550.0000		49.0200	2.0600	52.5700	2.09	-6.75%	-1.44%				

*Channel Frequency Tested

45461394 R2.2 22 August 2017

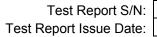
Table 15.3 Fluid Dielectric Parameters 5200MHz BODY TSL

Aprel Laboratory
Test Result for UIM Dielectric Parameter
Wed 14/Jun/2017 17:47:59
Freq Frequency(GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM

Test_s Sigma of UIM Freq FCC_eBFCC_sBTest_e Test_s 5.1500 49.08 47.19 5.24 5.47 5.1600 49.07 5.25 46.85 5.63 5.1700 49.06 5.26 47.02 5.67 5.1800 49.04 5.28 46.97 5.69 5.1900 49.03 5.29 47.02 5.75 5.2000 49.01 5.30 46.78 5.71 49.00 47.04 5.2100 5.31 5.59 5.2200 48.99 46.72 5.56 5.32 5.2300 48.97 46.66 5.33 5.69 5.2400 48.96 46.62 5.64 5.35 5.2500 48.95 46.38 5.36 5.65 5.2600 48.93 5.37 46.45 5.73 5.2700 48.92 5.38 46.23 5.75 5.2800 48.91 5.39 46.21 5.82 5.2900 48.89 46.34 5.40 5.78 5.3000 48.88 5.42 46.33 5.87 5.3100 48.87 5.43 46.11 5.82 5.3200 48.85 5.44 46.11 5.69 46.03 5.3300 48.84 5.45 5.77 48.82 5.46 45.83 5.76 5.3400


48.81

5.47

45.88

5.72

5.3500

45461394 R2.2 22 August 2017

FLUID DIELECTRIC PARAMETERS									
Date: 14 Jun	20	17 Fluid Te	emp: 20.9	Frequency:	5250MHz	Tissue:	Body		
Freq (MHz)		Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity		
5150.0000		47.1900	5.4700	49.0800	5.24	-3.85%	4.39%		
5160.0000		46.8500	5.6300	49.0700	5.25	-4.52%	7.24%		
5170.0000		47.0200	5.6700	49.0600	5.26	-4.16%	7.79%		
5180.0000		46.9700	5.6900	49.0400	5.28	-4.22%	7.77%		
5190.0000		47.0200	5.7500	49.0300	5.29	-4.10%	8.70%		
5200.0000		46.7800	5.7100	49.0100	5.30	-4.55%	7.74%		
5210.0000		47.0400	5.5900	49.0000	5.31	-4.00%	5.27%		
5220.0000		46.7200	5.5600	48.9900	5.32	-4.63%	4.51%		
5230.0000		46.6600	5.6900	48.9700	5.33	-4.72%	6.75%		
5240.0000		46.6200	5.6400	48.9600	5.35	-4.78%	5.42%		
5250.0000		46.3800	5.6500	48.9500	5.36	-5.25%	5.41%		
5260.0000		46.4500	5.7300	48.9300	5.37	-5.07%	6.70%		
5270.0000		46.2300	5.7500	48.9200	5.38	-5.50%	6.88%		
5280.0000		46.2100	5.8200	48.9100	5.39	-5.52%	7.98%		
5290.0000		46.3400	5.7800	48.8900	5.40	-5.22%	7.04%		
5300.0000		46.3300	5.8700	48.8800	5.42	-5.22%	8.30%		
5310.0000		46.1100	5.8200	48.8700	5.43	-5.65%	7.18%		
5320.0000		46.1100	5.6900	48.8500	5.44	-5.61%	4.60%		
5330.0000		46.0300	5.7700	48.8400	5.45	-5.75%	5.87%		
5340.0000		45.8300	5.7600	48.8200	5.46	-6.12%	5.49%		
5350.0000		45.8800	5.7200	48.8100	5.47	-6.00%	4.57%		

*Channel Frequency Tested

45461394 R2.2

22 August 2017

16.0 SYSTEM VERIFICATION TEST RESULTS

Table 16.0 System Verification Results 835MHz BODY TSL

System Verification Test Results									
Б.	.4.	Frequency	Va	alidation Sour	се				
Da	ate	(MHz)	P	/N	S/N				
29 Ma	y 2017	835	D83	5V2	4d075				
	Fluid	Ambient	Ambient	Forward	Source				
Fluid Type	Temp	Temp	Humidity	Power	Spacing				
	°C	°C	(%)	(mW)	(mm)				
Body	22.9	25	20%	250	15				
	Fluid Parameters								
	Permittivity		Conductivity						
Measured	Target	Deviation	Measured	Target	Deviation				
57.86	55.20	4.82%	1.04	0.97	7.22%				
		Measur	ed SAR						
	1 gram		10 gram						
Measured	Target	Deviation	Measured	Target	Deviation				
2.43	2.42	0.41%	1.59	1.59	0.00%				
	Me	asured SAR No	ormalized to 1.	.0W					
	1 gram			10 gram					
Normalized	Target	Deviation	Normalized	Target	Deviation				
9.72	9.40	3.40%	6.36	6.21	2.42%				

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.

45461394 R2.2 22 August 2017

Table 16.1 System Verification Results 835MHz HEAD TSL

System Verification Test Results						
Date		Frequency	V	alidation Sour	се	
Da	ate	(MHz)	P/N		S/N	
02 Jui	n 2017	835	D835V2		4d075	
	Fluid	Ambient	Ambient	Forward	Source	
Fluid Type	Temp	Temp	Humidity	Power	Spacing	
	°C	°C	(%)	(mW)	(mm)	
Head	21.2	25	21%	250	15	
Fluid Parameters						
	Permittivity		Conductivity			
Measured	Target	Deviation	Measured Target Deviati			
41.69	41.50	0.46%	0.90 0.90		0.00%	
Measured SAR						
	1 gram			10 gram		
Measured	Target	Deviation	Measured	Target	Deviation	
2.24	2.41	-7.05%	1.44	1.56	-7.69%	
Measured SAR Normalized to 1.0W						
	1 gram			10 gram		
Normalized	Target	Deviation	Normalized	Target	Deviation	
8.96	9.30	-3.66%	5.76	6.07	-5.11%	

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.

45461394 R2.2 22 August 2017

Table 16.2 System Verification Results 2450MHz BODY TSL

System Verification Test Results						
D	4.	Frequency	Va	alidation Sour	се	
Date		(MHz)	P/N		S/N	
27 Jui	ո 2017	2450	D2450V2		825	
Fluid Type	Fluid Temp °C	Ambient Temp °C	Ambient Forward Humidity Power (%) (mW)		Source Spacing (mm)	
Body	24.3	25	12%	250	10	
Fluid Parameters						
	Permittivity		Conductivity			
Measured	Target	Deviation	Measured Target Devia			
49.31	52.70	-6.43%	1.92 1.95		-1.54%	
		Measur	ed SAR			
	1 gram			10 gram		
Measured	Target	Deviation	Measured Target Devia			
13.10	13.00	0.77%	6.07	6.05	0.33%	
Measured SAR Normalized to 1.0W						
	1 gram 10 gram					
Normalized	Target	Deviation	Normalized	Target	Deviation	
52.40	50.70	3.35%	24.28	23.80	2.02%	

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

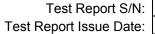
The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.

45461394 R2.2 22 August 2017

Table 16.3 System Verification Results 5250MHz BODY TSL

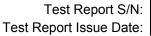

System Verification Test Results						
Date		Frequency	Va	Validation Source		
Da	ate	(MHz)	P/N		S/N	
14 Jun 2017		5250	D5GHzV2		1031	
	Fluid	Ambient	Ambient	Forward	Source	
Fluid Type	Temp	Temp	Humidity	Power	Spacing	
	°C	°C	(%)	(mW)	(mm)	
Body	20.9	25	14%	50	10	
Fluid Parameters						
Permittivity			Conductivity			
Measured	Target	Deviation	Measured	Deviation		
46.38	48.95	-5.25%	5.65 5.36		5.41%	
		Measur	ed SAR			
	1 gram			10 gram		
Measured	Target	Deviation	Measured	Target	Deviation	
3.57	3.63	-1.70%	0.99	1.02	-3.00%	
Measured SAR Normalized to 1.0W						
	1 gram			10 gram		
Normalized	Target	Deviation	ation Normalized Target Deviati			
71.40	72.20	-1.10%	19.78 20.30 -2.6			

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

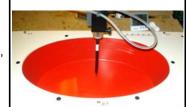
The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.



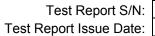
17.0 MEASUREMENT SYSTEM SPECIFICATIONS

Table 17.0 Measurement System Specifications


Measurement System Specification					
Specifications					
Positioner	Stäubli Unimation Corp. Robot Model: RX60L				
Repeatability	0.02 mm				
No. of axis	6				
Data Acquisition Electronic (DAE) System				
Cell Controller					
Processor	AMD Athlon XP 2400+				
Clock Speed	2.0 GHz				
Operating System	Windows XP Professional				
Data Converter					
Features	Signal Amplifier, multiplexer, A/D converter, and control logic				
Coffware	Measurement Software: DASY				
Software	Postprocessing Software: SEMCAD, V1.8 Build 186				
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock				
DASY Measurement Server					
Function	Real-time data evaluation for field measurements and surface detection				
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM				
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface				
E-Field Probe					
Model	EX3DV4				
Serial No.	3600				
Construction	Triangular core fiber optic detection system				
Frequency	10 MHz to 6 GHz				
Linearity	±0.2 dB (30 MHz to 3 GHz)				
Phantom					
Туре	ELI Elliptical Planar Phantom				
Shell Material	Fiberglass				
Thickness	2mm +/2mm				
Volume	> 30 Liter				

Measurement System Specification					
Probe Specification					
	Symmetrical design with triangular core;				
Construction:	Built-in shielding against static charges				
	PEEK enclosure material (resistant to organic solvents, glycol)				
	In air from 10 MHz to 2.5 GHz				
Calibration:	In head simulating tissue at frequencies of 900 MHz				
	and 1.8 GHz (accuracy \pm 8%)				
Frequency:	10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz)				
Directivity:	± 0.2 dB in head tissue (rotation around probe axis)				
Directivity.	± 0.4 dB in head tissue (rotation normal to probe axis)				
Dynamic Range:	5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB	The state of the s			
Surface Detect:	± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces				
	Overall length: 330 mm; Tip length: 16 mm;				
Dimensions:	Body diameter: 12 mm; Tip diameter: 6.8 mm				
	Distance from probe tip to dipole centers: 2.7 mm				
Application:	General dosimetry up to 3 GHz; Compliance tests of mobile phone	EX3DV4 E-Field Probe			
Phantom Specification					

The SAM V5.0 phantom is an elliptical planar fiberglass shell phantom with a shell thickness of 2.0mm +/- .2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEEE 1528-2013, IEC 62209-1 and IEC 62209-2.


ELI Phantom

Device Positioner Specification

The DASY device positioner has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Positioner

18.0 TEST EQUIPMENT LIST

Table 18.0 Equipment List and Calibration

Test Equipment List						
DESCRIPTION	ASSET NO.	SERIAL NO.	DATE CALIBRATED	CALIBRATION INTERVAL		
Schmid & Partner DASY System	-	-	-	-		
-DASY Measurement Server	158	1078	CNR	CNR		
-Robot	46	599396-01	CNR	CNR		
-DAE4	19	353	24-Apr-17	Annual		
-EX3DV4 E-Field Probe	213	3600	27-Apr-17	Annual		
-CLA150 Validation Source	251	4007	27-Apr-17	Triennial		
-D835V2 Validation Dipole	217	4D075	23-Apr-15	Triennial		
-D450V3 Validation Dipole	221	1068	21-Apr-15	Triennial		
-D2450V2 Validation Dipole	219	825	23-Apr-15	Triennial		
-D5GHzV2 Validation Dipole	126	1031	20-Apr-15	Triennial		
ELI Phantom	247	-	CNR	CNR		
HP 85070C Dielectric Probe Kit	33	none	CNR	CNR		
Gigatronics 8652A Power Meter	110	1835801	29-Feb-16	Triennial		
Gigatronics 80701A Power Sensor	248	1833687	29-Feb-16	Triennial		
HP 8753ET Network Analyzer	134	US39170292	22-Oct-14	Triennial		
Rohde & Schwarz SMR20 Signal Generator	6	100104	29-May-17	Triennial		
Amplifier Research 5S1G4 Power Amplifier	106	26235	CNR	CNR		

CNR = Calibration Not Required

19.0 FLUID COMPOSITION

Table 19.1 Fluid Composition 835MHz HEAD TSL

835		835MHz Head			
Tissue Simulating Liquid (TSL) Composition					
	Component by Percent Weight				
Water Sugar Salt ⁽¹⁾ HEC ⁽²⁾ Bacteriacide ⁽³⁾					
40.71	56.63	1.48	0.99	0.19	

- (1) Non-lodinized
- (2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g
- (3) Dow Chemical Dowicil 75 Antimicrobial Perservative

Table 19.2 Fluid Composition 835MHz BODY TSL

835			835MHz Body		
	Tissue Simula	L) Compositio	n		
	Compo	t Weight			
Water	Sugar	HEC ⁽²⁾	Bacteriacide ⁽³⁾		
53.79	45.13	0.98	0.0	0.1	

- (1) Non-lodinized
- (2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g
- (3) Dow Chemical Dowicil 75 Antimicrobial Perservative

Table 19.3 Fluid Composition 2450MHz BODY TSL

2450			2450MHz Body			
Tissue Simulating Liquid (TSL) Composition						
	Component by Percent Weight					
Water Glycol Salt ⁽¹⁾ HEC ⁽²⁾ Bacteriacide ⁽³⁾						
69.98	30.0	0.02	0.0	0.0		

- (1) Non-lodinized
- (2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g
- (3) Dow Chemical Dowicil 75 Antimicrobial Perservative

Table 19.4 Fluid Composition 5250MHz BODY TSL

This is a proprietary composition by SPEAG.

45461394 R2.2 Test Report S/N:

22 August 2017

APPENDIX A - SYSTEM VERIFICATION PLOTS

Date/Time: 29/05/2017 11:56:41 AM

Test Laboratory: Celltech Labs

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d075; Calibrated: 04/20/2015

Program Name: SPC 835B

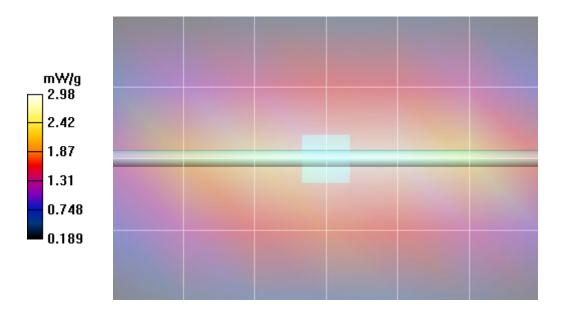
Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

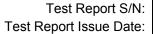
Medium parameters used: f = 835 MHz; $\sigma = 1.04$ mho/m; $\varepsilon_r = 57.9$; $\rho = 1000$ kg/m³

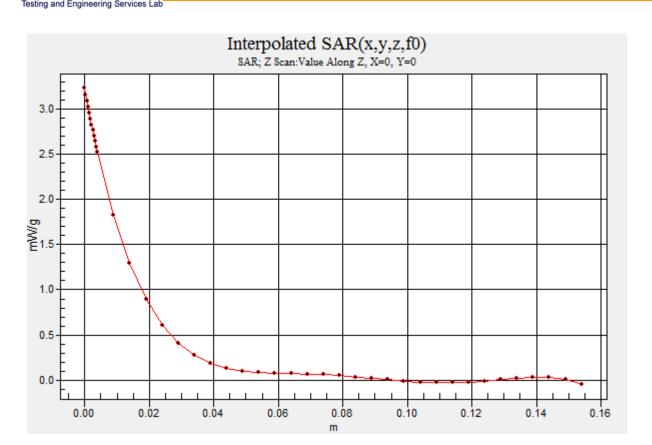
Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN3600; ConvF(8.22, 8.22, 8.22); Calibrated: 27/04/2017
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 24/04/2017
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145


Body d=15mm Pin=250mW. TS=[2.178][2.42][2.662]W/kg/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.98 mW/g


Body d=15mm Pin=250mW. TS=[2.178][2.42][2.662]W/kg/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 53.8 V/m; Power Drift = 0.041 dB

Peak SAR (extrapolated) = 3.64 W/kg

SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.59 mW/gMaximum value of SAR (measured) = 2.61 mW/g

45461394 R2.2 22 August 2017

Date/Time: 02/06/2016 10:50:40 AM

Test Laboratory: Celltech Labs

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d075; Calibrated: 04/20/2015

Program Name: SPC 835H

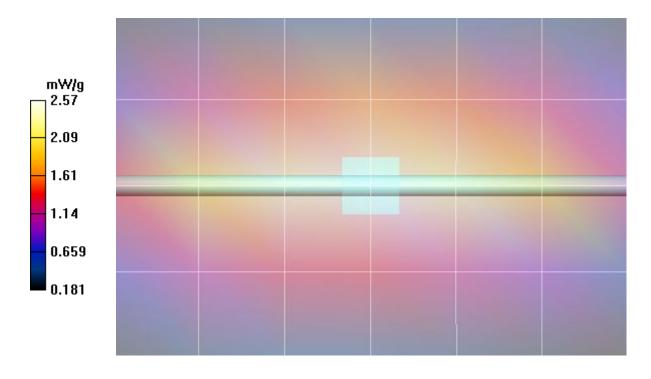
Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

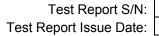
Medium parameters used: f = 835 MHz; σ = 0.94 mho/m; ϵ_r = 42.9; ρ = 1000 kg/m³

Phantom section: Flat Section

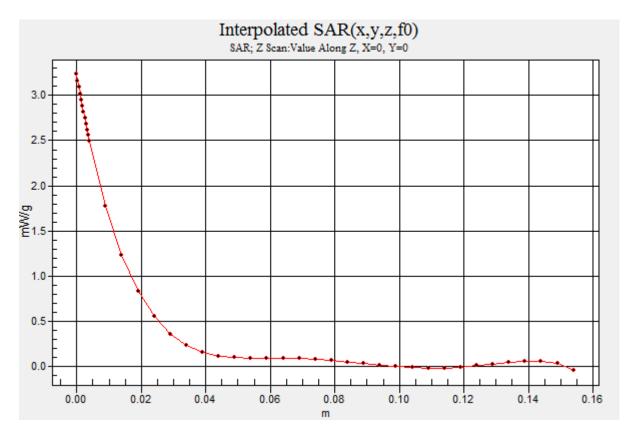
DASY Configuration:

- Probe: EX3DV4 SN3600 2016; ConvF(8.12, 8.12, 8.12); Calibrated: 27/04/2016
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353 2016; Calibrated: 20/04/2016
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 145


Head d=15mm Pin=250mW. TS=[2.169][2.41][2.651]W/kg/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.57 mW/g


Head d=15mm Pin=250mW. TS=[2.169][2.41][2.651]W/kg/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 51.8 V/m; Power Drift = 0.058 dB


Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 2.37 mW/g; SAR(10 g) = 1.52 mW/g Maximum value of SAR (measured) = 2.56 mW/g

45461394 R2.2

Issue Date: 22 August 2017

Date/Time: 27/06/2017 10:46:14 AM

Test Laboratory: Celltech Labs

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 825; Calibrated: 15/04/2015

Program Name: 2450MHz Body SPC

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

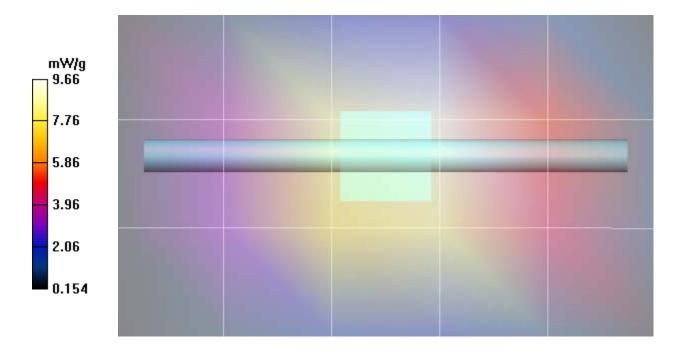
Medium parameters used: f = 2450 MHz; $\sigma = 1.92 \text{ mho/m}$; $\varepsilon_r = 49.3$; $\rho = 1000 \text{ kg/m}^3$

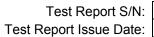
Phantom section: Flat Section

DASY Configuration:

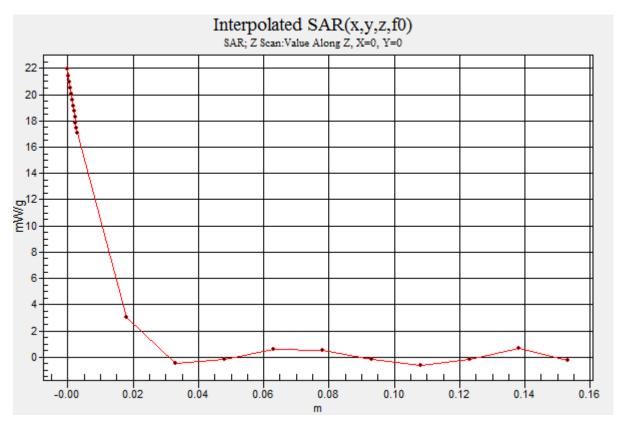
- Probe: EX3DV4 SN3600; ConvF(6.56, 6.56, 6.56); Calibrated: 27/04/2017
- Sensor-Surface: 5mm (Mechanical Surface Detection)Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 24/04/2017
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

2450MHz Body Dipole d=10mm P=250mW TS=[11.7][13.0][14.3]/Area Scan (4x6x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 9.66 mW/g


2450MHz Body Dipole d=10mm P=250mW TS=[11.7][13.0][14.3]/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 95.0 V/m; Power Drift = -0.015 dB


Peak SAR (extrapolated) = 27.6 W/kg

SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.07 mW/g Maximum value of SAR (measured) = 17.2 mW/g

45461394 R2.2

Report Issue Date: 22 August 2017

Date/Time: 14/06/2017 7:00:38 PM

Test Laboratory: Celltech Labs

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: 1031; Calibrated: 04/15/2015

Program Name: 5250 MHz SPC

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1

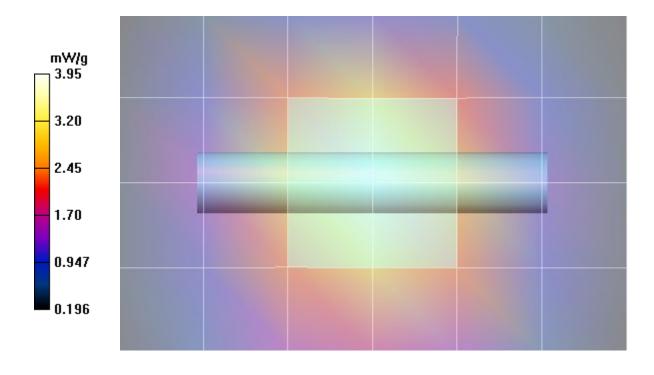
Medium parameters used: f = 5250 MHz; $\sigma = 5.65 \text{ mho/m}$; $\varepsilon_r = 46.4$; $\rho = 1000 \text{ kg/m}^3$

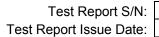
Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN3600; ConvF(4.18, 4.18, 4.18); Calibrated: 27/04/2017
- Sensor-Surface: 4mm (Mechanical Surface Detection)Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 24/04/2017
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

5200-5800 MHz Dipole d=10mm P=50mW, TS=3.63/Area Scan (5x7x1): Measurement grid: dx=5mm, dy=5mm Maximum value of SAR (measured) = 3.95 mW/g

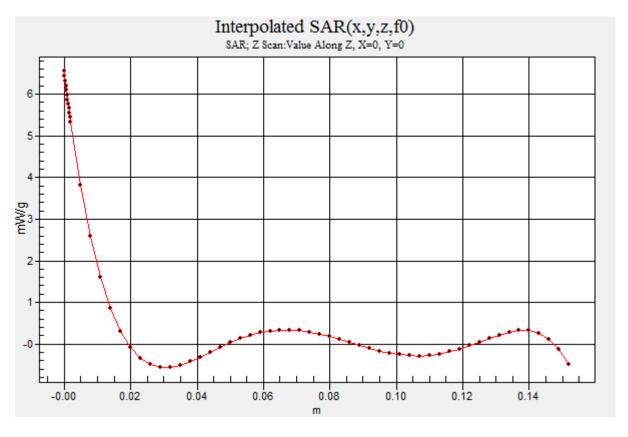

5200-5800 MHz Dipole d=10mm P=50mW, TS=3.63/Zoom Scan (7x7x5)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm


Reference Value = 39.0 V/m; Power Drift = 0.030 dB

Peak SAR (extrapolated) = 15.8 W/kg

SAR(1 g) = 3.57 mW/g; SAR(10 g) = 0.989 mW/g

Maximum value of SAR (measured) = 7.69 mW/g



45461394 R2.2

22 August 2017

45461394 R2.2 22 August 2017

APPENDIX B - MEASUREMENT PLOTS OF MAXIMUM MEASURED SAR

Plot B1

Date/Time: 01/06/2017 11:40:36 AM

Test Laboratory: Celltech Labs

DUT: Harris; Type: PTT Radio Transceiver;

Program Name: 835B

Communication System: Harris; Frequency: 824 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 824 MHz; σ = 1 mho/m; ε_r = 58; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN3600; ConvF(8.22, 8.22, 8.22); Calibrated: 27/04/2017

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 24/04/2017

- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx

- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

B1 Body, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 824MHz, bc, spk-mic, ant 4420-01, bat 4010-01/Area Scan (8x23x1):

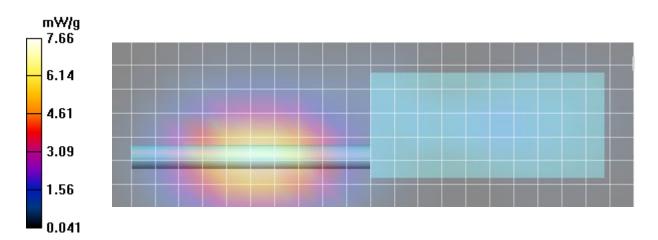
Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 7.66 mW/g

B1 Body, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 824MHz, bc, spk-mic, ant 4420-01, bat 4010-01/Zoom Scan

(5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 32.8 V/m; Power Drift = -0.200 dB

Peak SAR (extrapolated) = 9.93 W/kg

SAR(1 g) = 7.34 mW/g; SAR(10 g) = 5.24 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 7.79 mW/g

45461394 R2.2 22 August 2017

Plot B2

Date/Time: 01/06/2017 12:17:14 PM

Test Laboratory: Celltech Labs

DUT: Harris; Type: PTT Radio Transceiver;

Program Name: 835B

Communication System: Harris; Frequency: 776 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 776 MHz; σ = 0.981 mho/m; ε_r = 58.6; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN3600; ConvF(8.22, 8.22, 8.22); Calibrated: 27/04/2017

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 24/04/2017

- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx

- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

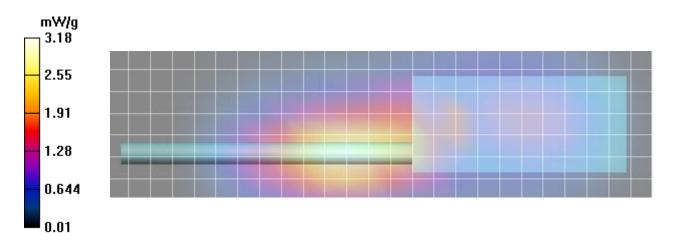
B2 Body, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 776MHz, bc, spk-mic, ant 4000-01, bat 4010-01/Area Scan (8x26x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 3.18 mW/g

B2 Body, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 776MHz, bc, spk-mic, ant 4000-01, bat 4010-01/Zoom Scan

(5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 47.2 V/m; Power Drift = -1.73 dB

Peak SAR (extrapolated) = 3.75 W/kg

SAR(1 g) = 2.8 mW/g; SAR(10 g) = 2.02 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 2.97 mW/g

45461394 R2.2 22 August 2017

Plot B3

Date/Time: 01/06/2017 1:35:46 PM

Test Laboratory: Celltech Labs

DUT: Harris; Type: PTT Radio Transceiver;

Program Name: 835B

Communication System: Harris; Frequency: 824 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 824 MHz; $\sigma = 1$ mho/m; $\varepsilon_r = 58$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN3600; ConvF(8.22, 8.22, 8.22); Calibrated: 27/04/2017
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 24/04/2017
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

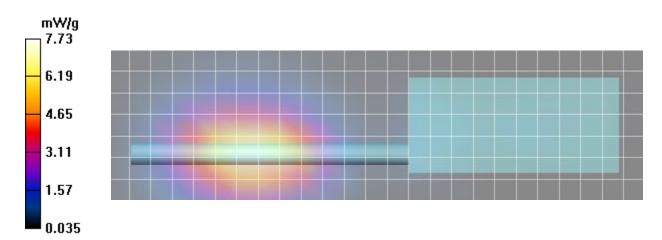
B3 Body, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 824MHz, bc, spk-mic, ant 4440-01, bat 4010-01/Area Scan (8x26x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 7.73 mW/g

B3 Body, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 824MHz, bc, spk-mic, ant 4440-01, bat 4010-01/Zoom Scan

(5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 23.1 V/m; Power Drift = -0.090 dB

Peak SAR (extrapolated) = 9.54 W/kg

SAR(1 g) = 7.07 mW/g; SAR(10 g) = 5.06 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 7.50 mW/g

45461394 R2.2 22 August 2017

Plot B4

Date/Time: 01/06/2017 3:12:43 PM

Test Laboratory: Celltech Labs

DUT: Harris; Type: PTT Radio Transceiver;

Program Name: 835B

Communication System: Harris; Frequency: 806 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 806 MHz; σ = 1.01 mho/m; ε_r = 58.4; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN3600; ConvF(8.22, 8.22, 8.22); Calibrated: 27/04/2017

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 24/04/2017

- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx

- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

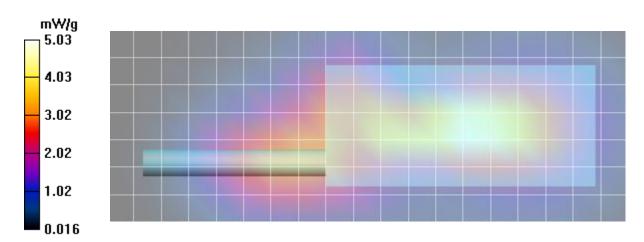
B4 Body, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 806MHz, bc, spk-mic, ant 4440-02, bat 4010-01/Area Scan (8x20x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 5.03 mW/g

B4 Body, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 806MHz, bc, spk-mic, ant 4440-02, bat 4010-01/Zoom Scan

(5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 54.6 V/m; Power Drift = 0.103 dB

Peak SAR (extrapolated) = 6.57 W/kg

SAR(1 g) = 4.84 mW/g; SAR(10 g) = 3.4 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 5.14 mW/g

45461394 R2.2 22 August 2017

Plot B5

Date/Time: 02/06/2017 10:47:22 AM

Test Laboratory: Celltech Labs

DUT:Harris;Type: PTT Radio Transceiver;

Program Name: 835B

Communication System: Harris; Frequency: 861 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 861 MHz; σ = 1.07 mho/m; ε_r = 57.6; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN3600; ConvF(8.13, 8.13, 8.13); Calibrated: 27/04/2017
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 24/04/2017
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

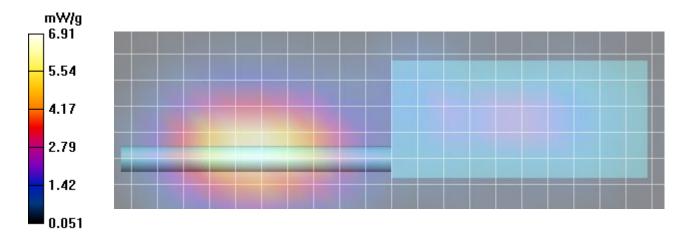
B5 Body, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 861MHz, bc, spk-mic, ant 4450-01, bat 4010-01/Area Scan (8x23x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 6.91 mW/g

B5 Body, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 861MHz, bc, spk-mic, ant 4450-01, bat 4010-01/Zoom Scan

(5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 35.3 V/m; Power Drift = -0.167 dB

Peak SAR (extrapolated) = 9.20 W/kg

SAR(1 g) = 6.76 mW/g; SAR(10 g) = 4.8 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 7.19 mW/g

45461394 R2.2 22 August 2017

Plot B6

Date/Time: 02/06/2017 11:20:35 AM

Test Laboratory: Celltech Labs

DUT: Harris; Type: PTT Radio Transceiver;

Program Name: 835B

Communication System: Harris; Frequency: 861 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 861 MHz; σ = 1.07 mho/m; ε_r = 57.6; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN3600; ConvF(8.13, 8.13, 8.13); Calibrated: 27/04/2017
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 24/04/2017
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

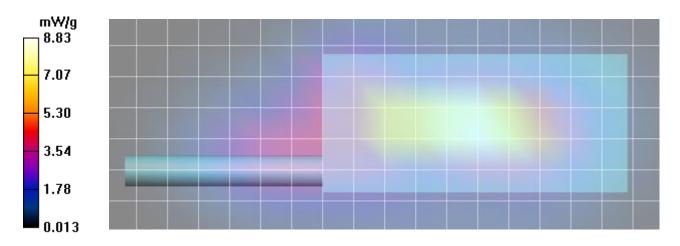
B6 Body, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 861MHz, bc, spk-mic, ant 4450-02, bat 4010-01/Area Scan (8x19x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 8.83 mW/g

B6 Body, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 861MHz, bc, spk-mic, ant 4450-02, bat 4010-01/Zoom Scan

(5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 57.6 V/m; Power Drift = -0.064 dB

Peak SAR (extrapolated) = 12.8 W/kg

SAR(1 g) = 9.3 mW/g; SAR(10 g) = 6.36 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 9.86 mW/g

45461394 R2.2 22 August 2017

Plot B7

Date/Time: 02/06/2017 12:02:46 PM

Test Laboratory: Celltech Labs

DUT: Harris; Type: PTT Radio Transceiver;

Program Name: 835B

Communication System: Harris; Frequency: 851 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 851 MHz; $\sigma = 1.07 \text{ mho/m}$; $\varepsilon_r = 58$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN3600; ConvF(8.22, 8.22, 8.22); Calibrated: 27/04/2017

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 24/04/2017

- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx

- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

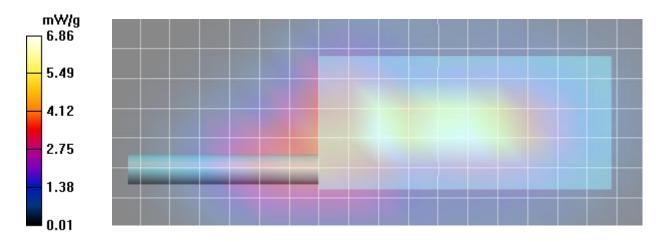
B7 Body, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 851MHz, bc, spk-mic, ant 4450-02, bat 4010-01/Area Scan (8x19x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 6.86 mW/g

B7 Body, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 851MHz, bc, spk-mic, ant 4450-02, bat 4010-01/Zoom Scan

(5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 59.4 V/m; Power Drift = -0.109 dB

Peak SAR (extrapolated) = 9.65 W/kg

SAR(1 g) = 7.05 mW/g; SAR(10 g) = 4.85 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 7.50 mW/g

45461394 R2.2 22 August 2017

Plot B8

Date/Time: 02/06/2017 12:27:29 PM

Test Laboratory: Celltech Labs

DUT: Harris; Type: PTT Radio Transceiver;

Program Name: 835B

Communication System: Harris; Frequency: 869 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 869 MHz; σ = 1.07 mho/m; ε_r = 57.7; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN3600; ConvF(8.13, 8.13, 8.13); Calibrated: 27/04/2017

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 24/04/2017

- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx

- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

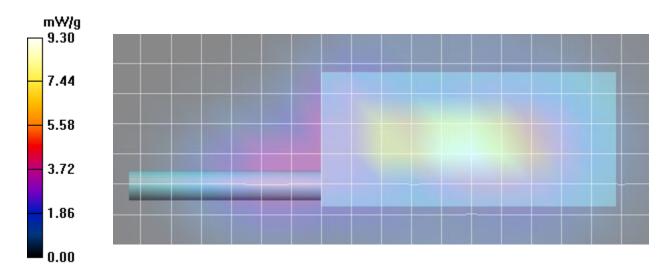
B8 Body, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 869MHz, bc, spk-mic, ant 4450-02, bat 4010-01/Area Scan (8x19x1): Measurement grid: dx=15mm, dy=15mm

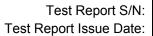
Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 9.30 mW/g

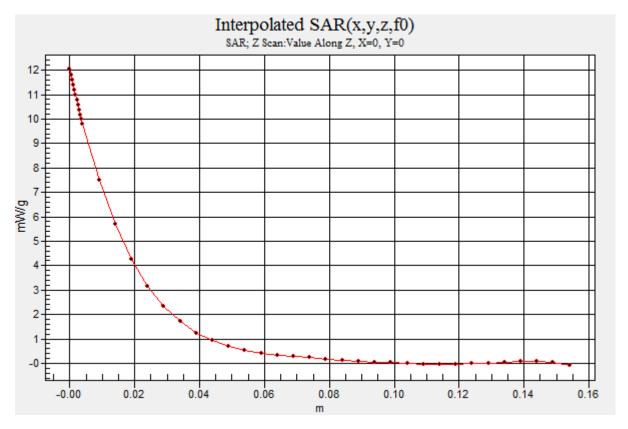
B8 Body, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 869MHz, bc, spk-mic, ant 4450-02, bat 4010-01/Zoom Scan

(5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 54.7 V/m; Power Drift = -0.182 dB


Peak SAR (extrapolated) = 13.0 W/kg

SAR(1 g) = 9.43 mW/g; SAR(10 g) = 6.39 mW/g


Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 10.0 mW/g

45461394 R2.2 22 August 2017

Plot B9

Date/Time: 02/06/2017 12:47:08 PM

Test Laboratory: Celltech Labs

DUT: Harris; Type: PTT Radio Transceiver;

Program Name: 835B

Communication System: Harris; Frequency: 869 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 869 MHz; σ = 1.07 mho/m; ε_r = 57.7; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN3600; ConvF(8.13, 8.13, 8.13); Calibrated: 27/04/2017

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 24/04/2017

- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx

- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

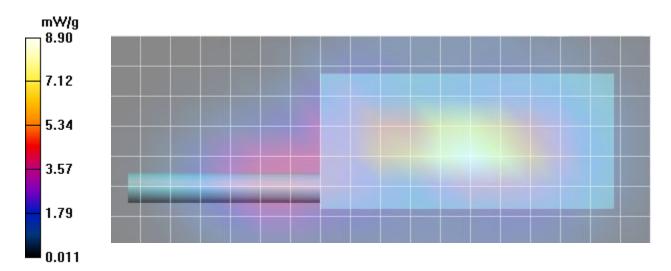
B9 Body, SCAN, Eclipse XL-185P 7/800 Extended w/ LTE, 869MHz, bc, spk-mic, ant 4450-02, bat 4010-01/Area Scan (8x19x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 8.90 mW/g

B9 Body, SCAN, Eclipse XL-185P 7/800 Extended w/ LTE, 869MHz, bc, spk-mic, ant 4450-02, bat 4010-01/Zoom Scan

(5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 54.2 V/m; Power Drift = -0.139 dB

Peak SAR (extrapolated) = 12.4 W/kg

SAR(1 g) = 8.96 mW/g; SAR(10 g) = 6.03 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 9.54 mW/g

45461394 R2.2 22 August 2017

Plot B10

Date/Time: 16/06/2017 1:42:06 PM

Test Laboratory: Celltech Labs

DUT: Harris; Type: PTT Radio Transceiver;

Program Name: 5250B

Communication System: Wifi; Frequency: 5260 MHz; Duty Cycle: 1:1.2

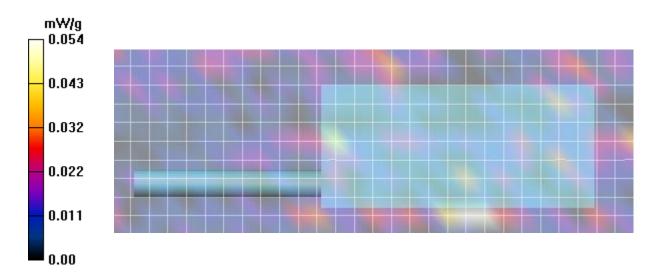
Medium parameters used: f = 5260 MHz; $\sigma = 5.73 \text{ mho/m}$; $\varepsilon_r = 46.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN3600; ConvF(4.18, 4.18, 4.18); Calibrated: 27/04/2017
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 24/04/2017
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

B10 Body, SYS, Eclipse XL-185P 7/800 Extended w/LTE,Wifi 5260 MHz, bc, spk-mic, ant 4440-02, bat 4010-01/Area Scan (11x29x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.054 mW/g


B10 Body, SYS, Eclipse XL-185P 7/800 Extended w/LTE,Wifi 5260 MHz, bc, spk-mic, ant 4440-02, bat 4010-01/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 0.853 V/m; Power Drift = 6.94 dB

Peak SAR (extrapolated) = 0.052 W/kg

SAR(1 g) = 0.00185 mW/g; SAR(10 g) = 0.000426 mW/g

Maximum value of SAR (measured) = 0.031 mW/g

45461394 R2.2 22 August 2017

Plot B11

Date/Time: 16/06/2017 2:07:20 PM

Test Laboratory: Celltech Labs

DUT: Harris; Type: PTT Radio Transceiver;

Program Name: 5250B

Communication System: Wifi; Frequency: 5260 MHz; Duty Cycle: 1:1.2

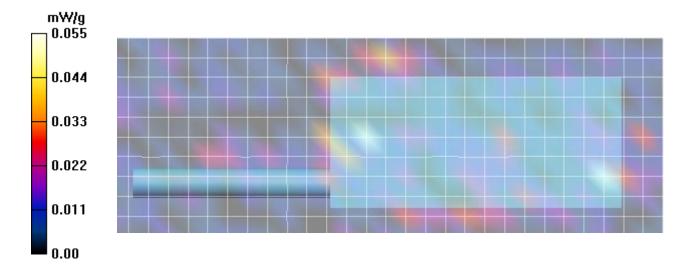
Medium parameters used: f = 5260 MHz; $\sigma = 5.73 \text{ mho/m}$; $\varepsilon_r = 46.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN3600; ConvF(4.18, 4.18, 4.18); Calibrated: 27/04/2017
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 24/04/2017
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

B11 Body, SCAN, Eclipse XL-185P 7/800 Extended w/LTE,Wifi 5260 MHz, bc, spk-mic, ant 4440-02, bat 4010-01 2/Area Scan (11x29x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.055 mW/g


B11 Body, SCAN, Eclipse XL-185P 7/800 Extended w/LTE,Wifi 5260 MHz, bc, spk-mic, ant 4440-02, bat 4010-01 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 0.706 V/m; Power Drift = 6.85 dB

Peak SAR (extrapolated) = 0.125 W/kg

SAR(1 g) = 0.014 mW/g; SAR(10 g) = 0.00328 mW/g

Maximum value of SAR (measured) = 0.039 mW/g

45461394 R2.2 22 August 2017

Plot B12

Date/Time: 19/06/2017 10:55:47 AM

Test Laboratory: Celltech Labs

DUT: Harris; Type: PTT Radio Transceiver;

Program Name: 5250B

Communication System: Wifi; Frequency: 5260 MHz; Duty Cycle: 1:1.2

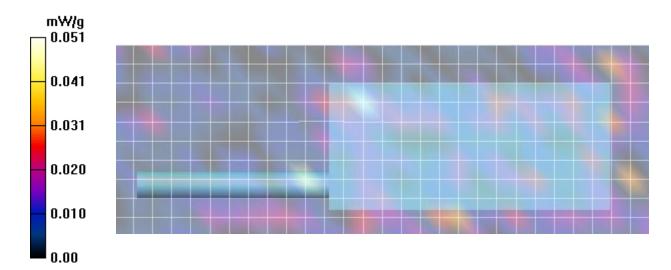
Medium parameters used: f = 5260 MHz; σ = 5.73 mho/m; ε_r = 46.5; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN3600; ConvF(4.18, 4.18, 4.18); Calibrated: 27/04/2017
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 24/04/2017
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

B12 Body/Side, SYS, Eclipse XL-185P 7/800 Extended w/LTE,Wifi 5260 MHz, bc, spk-mic, ant 4440-02, bat 4010-01/Area Scan (11x29x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.051 mW/g


B12 Body/Side, SYS, Eclipse XL-185P 7/800 Extended w/LTE,Wifi 5260 MHz, bc, spk-mic, ant 4440-02, bat 4010-01/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 0.00 V/m; Power Drift = 999.0 dB

Peak SAR (extrapolated) = 0.040 W/kg

SAR(1 g) = 0.00117 mW/g; SAR(10 g) = 0.00022 mW/g

Maximum value of SAR (measured) = 0.030 mW/g

45461394 R2.2 22 August 2017

Plot B13

Date/Time: 27/06/2017 11:35:24 AM

Test Laboratory: Celltech Labs

DUT: Harris; Type: PTT Radio Transceiver;

Program Name: 2450B

Communication System: WiFi; Frequency: 2437 MHz; Duty Cycle: 1:1.2

Medium parameters used (interpolated): f = 2437 MHz; σ = 1.93 mho/m; ϵ_r = 49.3; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN3600; ConvF(6.56, 6.56, 6.56); Calibrated: 27/04/2017

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 24/04/2017

- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx

- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

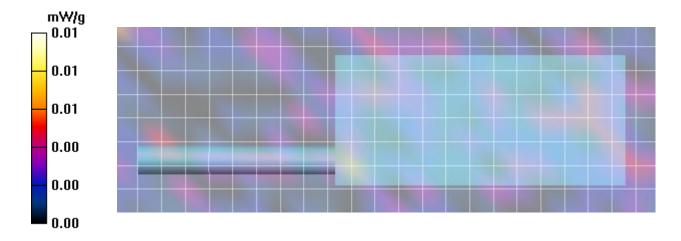
B13 Body, SYS_7/800 Extended Eclipse XL-185P Wifi, 2437MHz, bc, spk-mic, ant 4440-02, bat 4010-01/Area Scan (9x24x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.01 mW/g

B13 Body, SYS 7/800 Extended Eclipse XL-185P Wifi, 2437MHz, bc, spk-mic, ant 4440-02, bat 4010-01/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 0.276 V/m; Power Drift = 11.6 dB

Peak SAR (extrapolated) = 0.172 W/kg

SAR(1 g) = 0.000163 mW/g; SAR(10 g) = 2.33e-005 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

. Maximum value of SAR (measured) = 0.172 mW/g

45461394 R2.2

22 August 2017

Plot B14

Date/Time: 27/06/2017 11:58:22 AM

Test Laboratory: Celltech Labs

DUT: Harris; Type: PTT Radio Transceiver;

Program Name: 2450B

Communication System: WiFi; Frequency: 2437 MHz; Duty Cycle: 1:1.2

Medium parameters used (interpolated): f = 2437 MHz; σ = 1.93 mho/m; ϵ_r = 49.3; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN3600; ConvF(6.56, 6.56, 6.56); Calibrated: 27/04/2017

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 24/04/2017

- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx

- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

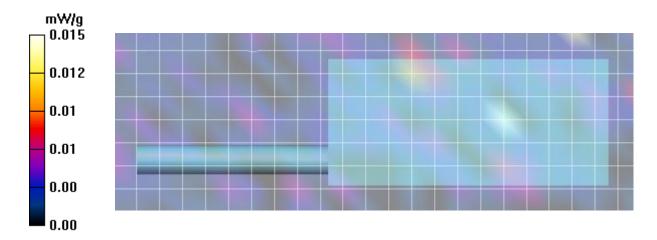
B14 Body,SCAN_7/800 Extended Eclipse XL-185P Wifi, 2437MHz, bc, spk-mic, ant 4440-02, bat 4010-01/Area Scan (9x24x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.015 mW/g

B14 Body, SCAN 7/800 Extended Eclipse XL-185P Wifi, 2437MHz, bc, spk-mic, ant 4440-02, bat 4010-01/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 0.00 V/m; Power Drift = 999.0 dB

Peak SAR (extrapolated) = 0.018 W/kg

SAR(1 g) = 0.000504 mW/g; SAR(10 g) = 5.81e-005 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.018 mW/g

45461394 R2.2 22 August 2017

Plot B15

Date/Time: 27/06/2017 12:31:13 PM

Test Laboratory: Celltech Labs

DUT: Harris; Type: PTT Radio Transceiver;

Program Name: 2450B

Communication System: WiFi; Frequency: 2437 MHz; Duty Cycle: 1:1.2

Medium parameters used (interpolated): f = 2437 MHz; σ = 1.93 mho/m; ε_r = 49.3; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN3600; ConvF(6.56, 6.56, 6.56); Calibrated: 27/04/2017

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 24/04/2017

- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx

- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

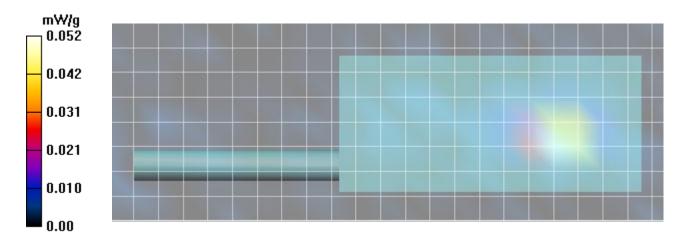
B15 Body/Side, SYS_7/800 Extended Eclipse XL-185P Wifi, 2437MHz, bc, spk-mic, ant 4440-02, bat 4010-01/Area Scan (9x24x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.052 mW/g

B15 Body/Side, SYS_7/800 Extended Eclipse XL-185P Wifi, 2437MHz, bc, spk-mic, ant 4440-02, bat 4010-01/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 0.375 V/m; Power Drift = 8.36 dB

Peak SAR (extrapolated) = 0.081 W/kg

SAR(1 g) = 0.041 mW/g; SAR(10 g) = 0.016 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 0.051 mW/g

45461394 R2.2

22 August 2017

Plot B16

Date/Time: 27/06/2017 2:54:35 PM

Test Laboratory: Celltech Labs

DUT: Harris; Type: PTT Radio Transceiver;

Program Name: 2450B

Communication System: Bluetooth; Frequency: 2480 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2480 MHz; $\sigma = 1.96 \text{ mho/m}$; $\varepsilon_r = 49.3$; $\rho = 1000 \text{ kg/m}^3$

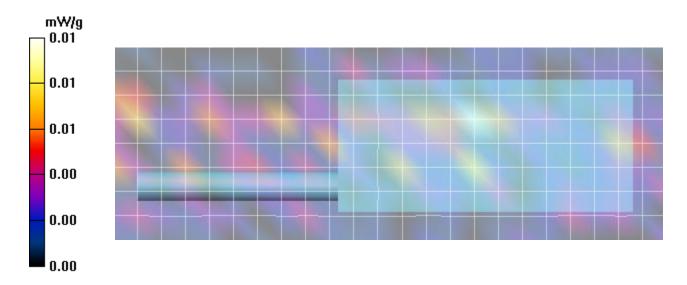
Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN3600; ConvF(6.56, 6.56, 6.56); Calibrated: 27/04/2017
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 24/04/2017
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

B16 Body, SYS_7/800 Extended Eclipse XL-185P BT, 2480MHz, bc, spk-mic, ant 4440-02, bat 4010-01/Area Scan (9x24x1):

Measurement grid: dx=12mm, dy=12mm


Maximum value of SAR (measured) = 0.01 mW/g

B16 Body, SYS_7/800 Extended Eclipse XL-185P BT, 2480MHz, bc, spk-mic, ant 4440-02, bat 4010-01/Zoom Scan (7x7x7)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.544 V/m: Power Drift = 2.23 dB

Peak SAR (extrapolated) = 0.01 W/kg

SAR(1 g) = 0.000154 mW/g; SAR(10 g) = 3.72e-005 mW/g

45461394 R2.2 22 August 2017

Plot B17

Date/Time: 27/06/2017 3:18:36 PM

Test Laboratory: Celltech Labs

DUT: Harris; Type: PTT Radio Transceiver;

Program Name: 2450B

Communication System: Bluetooth; Frequency: 2480 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2480 MHz; $\sigma = 1.96 \text{ mho/m}$; $\varepsilon_r = 49.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

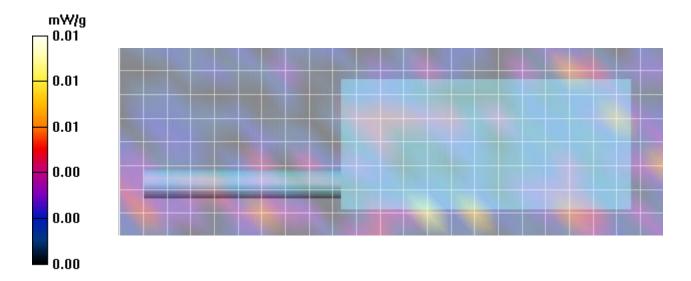
DASY Configuration:

- Probe: EX3DV4 SN3600; ConvF(6.56, 6.56, 6.56); Calibrated: 27/04/2017
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 24/04/2017
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

B17 Body, SCAN 7/800 Extended Eclipse XL-185P BT, 2480MHz, bc, spk-mic, ant 4440-02, bat 4010-01/Area Scan (9x24x1):

Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.01 mW/g


B17 Body, SCAN_7/800 Extended Eclipse XL-185P BT, 2480MHz, bc, spk-mic, ant 4440-02, bat 4010-01/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.447 V/m; Power Drift = 8.27 dB

Peak SAR (extrapolated) = 0.01 W/kg

SAR(1 g) = 0.000235 mW/g; SAR(10 g) = 2.93e-005 mW/g

45461394 R2.2 22 August 2017

Plot B18

Date/Time: 27/06/2017 3:43:00 PM

Test Laboratory: Celltech Labs

DUT: Harris; Type: PTT Radio Transceiver;

Program Name: 2450B

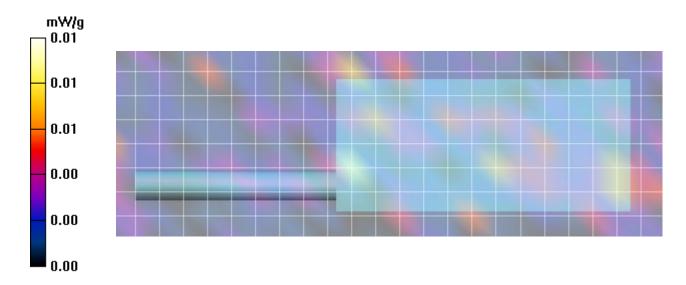
Communication System: Bluetooth; Frequency: 2480 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2480 MHz; $\sigma = 1.96 \text{ mho/m}$; $\varepsilon_r = 49.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN3600; ConvF(6.56, 6.56, 6.56); Calibrated: 27/04/2017
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 24/04/2017
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145


B18 Body/Side, SYS_7/800 Extended Eclipse XL-185P BT, 2480MHz, no bc, spk-mic, ant 4440-02, bat 4010-01/Area Scan (9x24x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.01 mW/g

B18 Body/Side, SYS_7/800 Extended Eclipse XL-185P BT, 2480MHz, no bc, spk-mic, ant 4440-02, bat 4010-01/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.173 V/m; Power Drift = 14.3 dB

Peak SAR (extrapolated) = 0.01 W/kg

SAR(1 g) = 0.000716 mW/g; SAR(10 g) = 0.00016 mW/g

45461394 R2.2 22 August 2017

Plot F1

Date/Time: 06/06/2017 9:08:07 AM

Test Laboratory: Celltech Labs

DUT: Harris; Type: PTT Radio Transceiver;

Program Name: 835H

Communication System: Harris; Frequency: 824 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 824 MHz; σ = 0.9 mho/m; ϵ_r = 41.7; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY Configuration:

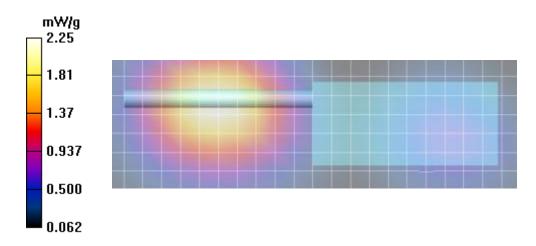
- Probe: EX3DV4 SN3600; ConvF(8.39, 8.39, 8.39); Calibrated: 27/04/2017
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 24/04/2017
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

F1 Face, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 824MHz, ant 4420-01, bat 4010-01/Area Scan (8x23x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 2.25 mW/g

F1 Face, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 824MHz, ant 4420-01, bat 4010-01/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 22.0 V/m; Power Drift = -0.302 dB

Peak SAR (extrapolated) = 2.83 W/kg

SAR(1 g) = 2.15 mW/g; SAR(10 g) = 1.58 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 2.27 mW/g

45461394 R2.2 22 August 2017

Plot F2

Date/Time: 06/06/2017 9:44:38 AM

Test Laboratory: Celltech Labs

DUT: Harris; Type: PTT Radio Transceiver;

Program Name: 835H

Communication System: Harris; Frequency: 776 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 776 MHz; σ = 0.835 mho/m; ϵ_r = 42.4; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN3600; ConvF(8.39, 8.39, 8.39); Calibrated: 27/04/2017

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 24/04/2017

- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx

- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

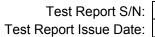
F2 Face, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 768MHz, ant 4000-01, bat 4010-01/Area Scan (8x26x1): Measurement grid: dx=15mm, dy=15mm

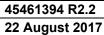
Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 2.40 mW/g

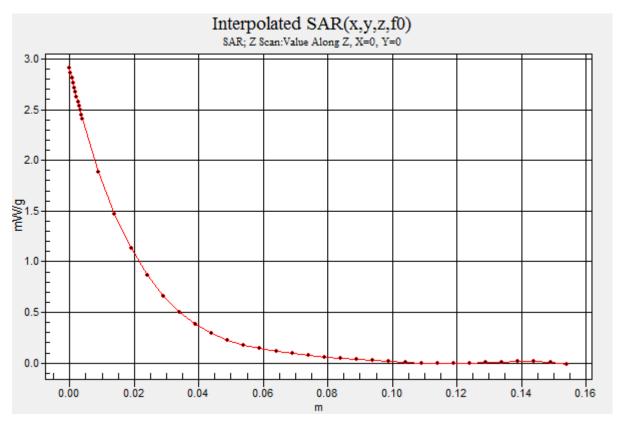
F2 Face, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 768MHz, ant 4000-01, bat 4010-01/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 22.8 V/m; Power Drift = 0.039 dB


Peak SAR (extrapolated) = 2.95 W/kg


SAR(1 g) = 2.31 mW/g; SAR(10 g) = 1.74 mW/g

Info: Interpolated medium parameters used for SAR evaluation!


Maximum value of SAR (measured) = 2.43 mW/g

45461394 R2.2 22 August 2017

Plot F3

Date/Time: 06/06/2017 10:24:20 AM

Test Laboratory: Celltech Labs

DUT: Harris; Type: PTT Radio Transceiver;

Program Name: 835H

Communication System: Harris; Frequency: 851 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 851 MHz; σ = 0.926 mho/m; ε_r = 41.6; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN3600; ConvF(8.39, 8.39, 8.39); Calibrated: 27/04/2017

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 24/04/2017

- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx

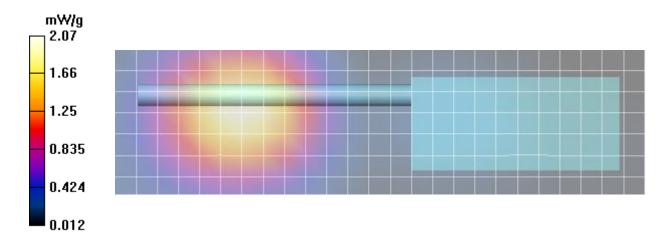
- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

F3 Face, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 851MHz, ant 4440-01, bat 4010-01/Area Scan (8x26x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 2.07 mW/g

F3 Face, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 851MHz, ant 4440-01, bat 4010-01/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 16.0 V/m; Power Drift = -0.140 dB

Peak SAR (extrapolated) = 2.51 W/kg

SAR(1 g) = 1.9 mW/g; SAR(10 g) = 1.39 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 2.00 mW/g

45461394 R2.2 22 August 2017

Plot F4

Date/Time: 06/06/2017 11:00:11 AM

Test Laboratory: Celltech Labs

DUT: Harris; Type: PTT Radio Transceiver;

Program Name: 835H

Communication System: Harris; Frequency: 806 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 806 MHz; σ = 0.882 mho/m; ε_r = 42.1; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN3600; ConvF(8.39, 8.39, 8.39); Calibrated: 27/04/2017

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 24/04/2017

- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx

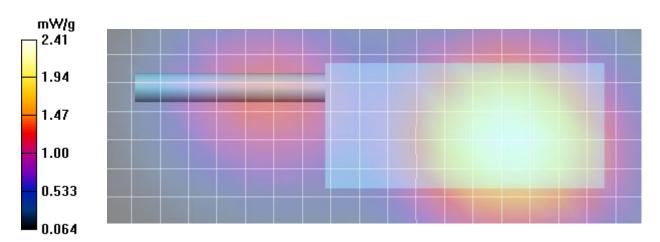
- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

F4 Face, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 806MHz, bc, ant 4440-02, bat 4010-01/Area Scan (8x20x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 2.41 mW/g

F4 Face, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 806MHz, bc, ant 4440-02, bat 4010-01/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 32.5 V/m; Power Drift = -0.045 dB

Peak SAR (extrapolated) = 2.95 W/kg

SAR(1 g) = 2.28 mW/g; SAR(10 g) = 1.71 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 2.39 mW/g

45461394 R2.2 22 August 2017

Plot F5

Date/Time: 06/06/2017 11:40:06 AM

Test Laboratory: Celltech Labs

DUT:Harris; Type: PTT Radio Transceiver;

Program Name: 835H

Communication System: Harris; Frequency: 861 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 861 MHz; σ = 0.936 mho/m; ϵ_r = 41.5; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN3600; ConvF(8.25, 8.25, 8.25); Calibrated: 27/04/2017

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 24/04/2017

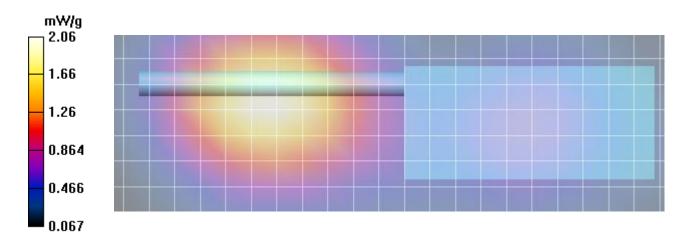
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx

- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

F5 Face, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 861MHz, ant 4450-01, bat 4010-01/Area Scan (8x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 2.06 mW/g


F5 Face, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 861MHz, ant 4450-01, bat 4010-01/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 25.7 V/m; Power Drift = -0.313 dB

Peak SAR (extrapolated) = 2.63 W/kg

SAR(1 g) = 1.96 mW/g; SAR(10 g) = 1.43 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

45461394 R2.2 22 August 2017

Plot F6

Date/Time: 06/06/2017 12:21:08 PM

Test Laboratory: Celltech Labs

DUT: Harris; Type: PTT Radio Transceiver;

Program Name: 835H

Communication System: Harris; Frequency: 806 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 806 MHz; σ = 0.882 mho/m; ϵ_r = 42.1; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN3600; ConvF(8.39, 8.39, 8.39); Calibrated: 27/04/2017

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 24/04/2017

- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx

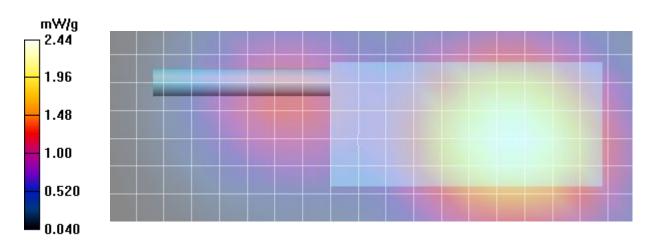
- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

F6 Face, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 806MHz, ant 4450-02, bat 4010-01/Area Scan (8x20x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 2.44 mW/g

F6 Face, SYS, Eclipse XL-185P 7/800 Extended w/ LTE, 806MHz, ant 4450-02, bat 4010-01/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 33.0 V/m; Power Drift = -0.036 dB

Peak SAR (extrapolated) = 2.95 W/kg

SAR(1 g) = 2.29 mW/g; SAR(10 g) = 1.71 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 2.40 mW/g

45461394 R2.2 22 August 2017

Plot F7

Date/Time: 06/06/2017 1:01:34 PM

Test Laboratory: Celltech Labs

DUT: Harris; Type: PTT Radio Transceiver;

Program Name: 835H

Communication System: Harris; Frequency: 776 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 776 MHz; σ = 0.835 mho/m; ϵ_r = 42.4; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 - SN3600; ConvF(8.39, 8.39, 8.39); Calibrated: 27/04/2017

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 24/04/2017

- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx

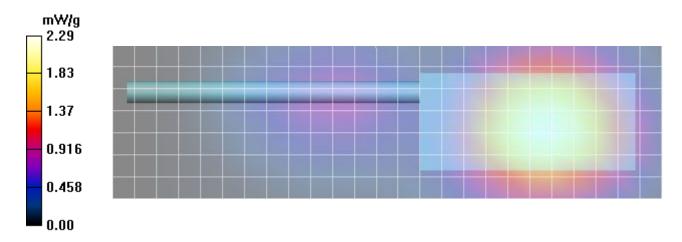
- Measurement SW: DASY, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 145

F7 Face,SCAN, Eclipse XL-185P 7/800 Extended w/ LTE, 768MHz, ant 4000-01, bat 4010-01/Area Scan (8x26x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 2.29 mW/g

F7 Face, SCAN, Eclipse XL-185P 7/800 Extended w/ LTE, 768MHz, ant 4000-01, bat 4010-01/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 22.4 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 2.88 W/kg

SAR(1 g) = 2.26 mW/g; SAR(10 g) = 1.71 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Maximum value of SAR (measured) = 2.37 mW/g

