

Engineering and Testing for EMC and Safety Compliance



Accredited under A2LA Testing Certificate # 2653.01

# RF Maximum Permissible Exposure (MPE) Report for Controlled and Uncontrolled Environments

M/A-COM, Inc. 221 Jefferson Ridge Parkway Lynchburg, VA 24501 Daryl Popowitch Phone: (434) 455-9527

## Models: M7300 700/800 MHz Mobile Radio

FCC ID: OWDTR-0051-E IC: 3636B-0051

March 27, 2009

Report Prepared by: Richard B. McMurray, P.E.

Document Number: 2009143 R1.0

This report may not be reproduced, except in full, without the written approval of Rhein Tech Laboratories, Inc. and M/A-COM, Inc. Test results relate only to the item tested.

## Table of Contents

| 1  | MPE Measurements and Applicable Regulations                 | 3  |
|----|-------------------------------------------------------------|----|
| 2  | Identification of the EUT                                   | 4  |
| 3  | Modifications                                               | 5  |
| 4  | Test Laboratory                                             | 5  |
| 5  | Turnaround Time                                             |    |
| 6  | Antenna Information                                         | 5  |
| 7  | Test Equipment, Accessories and Test Setup                  | 6  |
| 8  | Justification of the Chosen Transmitting Mode and Frequency | 8  |
| 9  | MPE Limits for the EUT                                      | 8  |
| 10 | Calculating the Safe Distance from the EUT's Antenna        | 9  |
| 11 | Standard Test Conditions and Engineering Practices          |    |
| 12 | Measurement Procedure                                       | 10 |
| 13 | Test Results                                                | 11 |
| 14 | Conclusion                                                  | 14 |

## 1 MPE Measurements and Applicable Regulations

This test report presents the results of Maximum Permissible Exposure (MPE)<sup>1</sup> measurements performed on the M/A-COM, Inc. M7300 mobile radio, which operates in the 700 and 800 MHz frequency bands (763-775, 793-805, 806-824, 851-869 MHz). The tests were performed in accordance with TCB training material and the following FCC Rules and Regulations and Industry Canada Radio Standard Specifications:

- IEEE Std C95.1: 2005: "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz 300 GHz",
- IEEE Std C95.3: 2002: "IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields with Respect to Human Exposure to Such Fields, 100 kHz – 300 GHz",
- FCC OET Bulletin 65, Edition 97-01: "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields",
- FCC Supplement C to OET Bulletin 65, Edition 01-01: "Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emission",
- Subpart I, Part 1 of 47 CFR FCC Rules and Regulations, Edition 10-1-06: "Procedures Implementing the National Environmental Policy Act of 1969." Specifically, Paragraph 1.1310: "Radiofrequency Radiation Exposure Limits",
- Subpart J, Part 2 of 47 CFR FCC Rules and Regulations, Edition 10-1-06: "Equipment Authorization Procedures." Specifically, Paragraph 2.1091: "Radiofrequency Radiation Exposure Evaluation: Mobile Devices",
- RSS-102, Issue 2, 2005: "Spectrum Management and Telecommunications Radio Standards Specification. Radiofrequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)".

<sup>&</sup>lt;sup>1</sup> By definition, maximum permissible exposure (MPE) is RMS or peak electric (or magnetic) field strength, or the plane-wave equivalent power densities associated with these fields to which a person may be exposed without harmful effect and with an acceptable safety factor.

## 2 Identification of the EUT

The EUT is a combination of a mobile radio and an antenna. The EUT was tested with two antennas which were placed on a metal plate during testing to simulate the vehicle mounting surface. The mounting plate acted as a determinable ground plane for the antenna. This MPE report covers the EUT with the antennas described below.

| Manufacturer's Name                                                                 | M/A-COM, Inc.                                               |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Manufacturer's Address                                                              | 221 Jefferson Ridge Parkway<br>Lynchburg, VA 24501, USA     |
| Device Type                                                                         | Mobile radio with listed antennas                           |
| Model of the EUT                                                                    | M7300                                                       |
| Serial Number of the Radio                                                          | A4011E005390                                                |
| FCC ID of the EUT                                                                   | OWDTR-0051-E                                                |
| IC ID of the EUT                                                                    | 3636B-0051                                                  |
| Operating Frequency<br>Ranges (for the specific<br>configuration in this<br>report) | 763-775, 793-805, 806-824, 851-869 MHz                      |
| RF Max Conducted<br>Power, Rated                                                    | 700 MHz band: 19 W, 800 MHz band: 35 W                      |
| TX Duty Cycle                                                                       | 50%                                                         |
| Antennas Tested                                                                     | M/A-COM, Inc. Part Numbers:<br>AN-225001-005, AN-225001-001 |
| Year of Manufacture                                                                 | 2009                                                        |

## 3 Modifications

No modifications were made to the EUT during testing.

## 4 Test Laboratory

Testing was performed at the RTL test facility located at 360 Herndon Parkway, Suite 1400, Herndon, VA, 20170, by RTL personnel. Various regulatory bodies, including the FCC and IC, approved this facility for conducting tests and measurements on a contractual basis.

## 5 Turnaround Time

Testing was performed March 20-23, 2009

## 6 Antenna Information

The following antennas were tested for the MPE investigation. These are the same dual-band antennas that were tested with the original certification, but the antenna cable has been replaced with a lower loss cable. Therefore, the overall gain of the "antenna system" has effectively increased. This change is being filed via the FCC Class 2 Permissive Change procedure.

Note that an additional mount is available for use: part # AN-125001-006 "standard roof mount low loss with GPS". From an intentional RF perspective, this mount was deemed electrically identical to the AN-125001-002. However, this mount was tested for digital unintentional emissions; this data is available under a separate report.

| Description              | Gain       | Mount Type | Antenna Element<br>Part # | Mount Part #  |
|--------------------------|------------|------------|---------------------------|---------------|
| Dual Band<br>700/800 MHz | 5 dBd Gain | Roof Mount | AN-225001-005             | AN-125001-002 |
| Dual Band<br>700/800 MHz | 3 dBd Gain | Roof Mount | AN-225001-001             | AN-125001-002 |

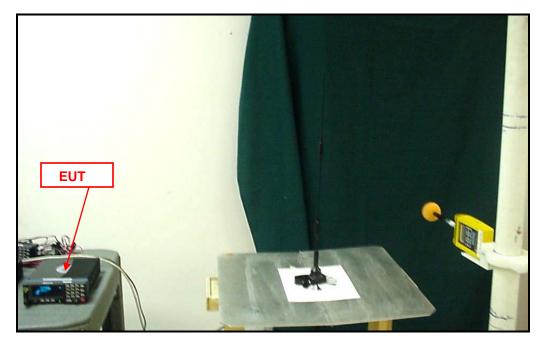
## 7 Test Equipment, Accessories and Test Setup

Test equipment used for the measurements is shown in Table 7-1.

| RTL<br>Barcode | Manufacturer            | Model    | Equipment Type                                  | Serial<br>Number | Calibration<br>Due Date |
|----------------|-------------------------|----------|-------------------------------------------------|------------------|-------------------------|
| 900566         | Amplifier Research      | FP 2000  | Field Probe<br>(10 kHz - 1GHz)                  | 20760            | 1/14/12                 |
| 900916         | Amplifier Research      | FM 2000  | Field Monitor                                   | 14420            | N/A                     |
| 901356         | Agilent<br>Technologies | E9323A   | Power Sensor                                    | 31764-264        | 11/5/09                 |
| 901184         | Agilent<br>Technologies | E4416A   | EPM-P Power Meter,<br>single channel            | GB41050573       | 11/5/09                 |
| 901138         | Weinschel Corp.         | 48-40-34 | Attenuator, 100 W 40dB,<br>DC-18GHz             | BK5883           | 12/3/09                 |
| 901382         | Aeroflex/Weinschel      | 2        | Attenuator, 1 dB, DC-18<br>GHz, 5 watts, 50 ohm | BT0965           | 12/9/09                 |
| 901358         | Aeroflex/Weinschel      | 47-3-34  | Attenuator, 3 dB<br>0.1 - 18 GHz                | BS0146           | 3/12/10                 |

| Table 7-1: | Test Equipment |
|------------|----------------|
|------------|----------------|

| Table 7-2: EUT and Accessories | Table 7-2: | EUT and Accessories |
|--------------------------------|------------|---------------------|
|--------------------------------|------------|---------------------|


| Part                                              | Manufacturer                                      | Model        | Serial Number | FCC ID       | IC ID      |
|---------------------------------------------------|---------------------------------------------------|--------------|---------------|--------------|------------|
| M7300 Radio                                       | M7300 Radio M/A-COM, Inc. M7300                   |              | A4011E005390  | OWDTR-0051-E | 3636B-0051 |
| Microphone                                        | M/A-COM, Inc                                      | MC101616-040 | NA            | NA           | NA         |
| Antenna                                           | Antenna M/A-COM, Inc. AN-225001-005<br>(7.15 dBi) |              | N/A           | N/A          | N/A        |
| Antenna M/A-COM, Inc. AN-225001-001<br>(5.15 dBi) |                                                   | N/A          | N/A           | N/A          |            |
| Power<br>Supply                                   | Alinco                                            | DM-33MVT 32A | 1638          | N/A          | N/A        |

Details of the test setup are as follows:

- The EUT was mounted on a wood table 80 cm tall.
- The antenna was mounted on a metal plate with azimuth indicators and placed in the middle of a separate table.
- The control unit and power supply were located at a distance of at least 1.5 meters from the EUT's antenna to minimize interference.
- The test probe was solidly connected to the radiation meter, and then attached to the plastic mast in front of the EUT's antenna.
- During the MPE measurements, the EUT was set to transmit at maximum RF power with a 50% duty cycle.

The typical test setup is shown in photograph 7-1.





## 8 Justification of the Chosen Transmitting Mode and Frequency

The EUT is able to transmit with a non-modulated carrier and with various types of modulations at a maximum rated power of 19 W for the 700 MHz band, and 35 W for the 800 MHz band. The EUT is capable of transmitting in both the 700 MHz and 800 MHz bands with "P25 Random" modulation. This type of modulation and the highest RF power were chosen for the MPE measurements. The MPE distance measurements were conducted at two carrier frequencies, 799 and 816 MHz, to cover each band of operation.

#### 9 MPE Limits for the EUT

The FCC and IC have the same MPE limits, which are shown below for uncontrolled and controlled environments in Tables 9-1 and 9-2 respectively. The limits are based on the recommended MPE Guidelines published by the National Council on Radiation Protection and Measurements in "Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields."

#### Table 9-1: FCC/IC MPE Limit and Averaging Time in an Uncontrolled Environment

| Frequency Range, MHz | Power Density (S), mW/cm <sup>2</sup>     | Averaging Time, min |
|----------------------|-------------------------------------------|---------------------|
| 300-1500             | f/1500, where "f" is the frequency in MHz | 30                  |

#### Table 9-2: FCC/IC MPE Limit and Averaging Time in a Controlled Environment

| Frequency Range, MHz | Power Density (S), mW/cm <sup>2</sup>    | Averaging Time, min |
|----------------------|------------------------------------------|---------------------|
| 300-1500             | f/300, where "f" is the frequency in MHz | 6                   |

The MPE limits for the EUT transmitting at 799 MHz and 816 MHz are shown in Table 9-3.

#### Table 9-3: MPE Limits for the Investigated Frequencies

| Frequency<br>(MHz) | MPE Limit (S)<br>Controlled Environment<br>(mW/cm²) | MPE Limit (S)<br>Uncontrolled Environment<br>(mW/cm <sup>2</sup> ) |
|--------------------|-----------------------------------------------------|--------------------------------------------------------------------|
| 799                | 2.6                                                 | 0.5                                                                |
| 816                | 2.7                                                 | 0.5                                                                |

Rhein Tech Laboratories, Inc. 360 Herndon Parkway, Suite 1400 Herndon, VA 20170 http://www.rheintech.com

## 10 Calculating the Safe Distance from the EUT's Antenna

Before starting MPE measurements, we calculated the safe distance, R<sub>safe</sub> using the following formula:

$$\text{Rsafe} = \sqrt{\frac{P \max \cdot Gn \cdot \eta}{4\pi \cdot S}}$$

*G<sub>n</sub>*: antenna gain (numeric)

 $P_{\text{max}}$ : maximum power input to the antenna (W)

S: power density limit (W/m<sup>2</sup>) respectively

 $\eta$ : duty cycle (decimal number), for these measurements  $\eta = 0.5$ 

The cable loss of the RF cable connecting the EUT and the antenna under test decreases the RF power delivered to the antenna and influences the value of the safe distance.

Based on the specification for the 17' HPF195-FR cable supplied with these antennas, the cable loss in the frequency range 799 - 816 MHz is approximately 1.7 dB; therefore, the highest power delivered to the antenna is 45.4 dBm (35 W) - 1.7 dB = 43.7 dBm (23.7 W).

Table 10-1 presents the results of  $R_{safe}$  calculations:

| Table 10-1: | Calculated R <sub>safe</sub> |
|-------------|------------------------------|
|-------------|------------------------------|

| Antenna Gain<br>(dBi) | (cm)    |         | R <sub>safe</sub> , Uncontrolled Environment<br>(cm) |         |
|-----------------------|---------|---------|------------------------------------------------------|---------|
| (UDI)                 | 799 MHz | 816 MHz | 799 MHz                                              | 816 MHz |
| 5.15                  | 34      | 34      | 76                                                   | 76      |
| 7.15                  | 43      | 43      | 96                                                   | 96      |

#### **11** Standard Test Conditions and Engineering Practices

Except as noted herein, the following conditions and procedures were fulfilled during the testing:

1. ANSI C63.4 requires the ambient temperature and relative humidity to be within the ranges of 10°C to 40°C and 10% to 90%, respectively. With respect to the narrower ranges recommended for the power meter used for the measurements, ambient conditions shall be in line with the power meter ranges. Actual values of ambient temperature and relative humidity are shown in Section 13 of this test report.

2. Measurement results presented in Section 13, Test Results, unless otherwise noted, show the highest measured level of MPE.

#### **12 Measurement Procedure**

- 1. The test setup was as described in Section 7 of this test report.
- 2. Polarization of the EUT's antenna was vertical, which is its polarization in actual use.
- 3. The EUT at the chosen modulation was set to transmit at the chosen frequency at maximum RF power and at 50% duty cycle. During preliminary measurements, we set the distance between the power density probe and the investigated EUT's antenna equal to the average calculated R<sub>safe</sub> (Table 10-1) applicable either for controlled or uncontrolled environments.
- 4. Power density measurements were taken at different heights of the probe from the ground (0.1 to 2 meters) while rotating versus azimuth (from 0° to 360°) the antenna.
- 5. The azimuth between the probe and the antenna position corresponding to the highest MPE level was chosen as the "worst case" position for the final measurements.
- 6. For the final measurements, we adjusted the distance between the test probe and the tested antenna to the real safe distance, R<sub>real</sub>, such that the measured highest power density in the "worst case" position was the same or slightly less than the test limit.
- 7. The measurement results of final measurements conducted at the chosen azimuth and different heights of the probe above the ground are shown in Section 13.
- 8. Average values of power density were calculated for the imaginary whole human body (0.1–2.0 m), for the lower part of the body (0.1–0.9 m) and for the upper part of the body (1.0–2.0 m). The results of calculations are shown in Section 13.

## 13 Test Results

The MPE measurements were conducted March 20–23, 2009 by Daniel Baltzell.

Ambient conditions during the MPE investigation were as follows:

- Temperature: 27.8°C
- Relative humidity: 23%
- Atmospheric pressure: 103.3 kPa

The MPE measurement procedure was in line with the description in Section 12. Tables 13-1 through 13-16 demonstrate the test results.

## Table 13-1: MPE for Controlled Environment with 5.15 dBi Antenna at 799.0 MHz

|      | Μ    | PE, mW | //cm², r | neasur | ed at th | e distai | nce of 3 | <b>31 cm</b> b | etweer | the pr | obe and | d the ar | ntenna | at the h | eight (o | cm) sho | wn bel | ow   |      |
|------|------|--------|----------|--------|----------|----------|----------|----------------|--------|--------|---------|----------|--------|----------|----------|---------|--------|------|------|
| 10   | 20   | 30     | 40       | 50     | 60       | 70       | 80       | 90             | 100    | 110    | 120     | 130      | 140    | 150      | 160      | 170     | 180    | 190  | 200  |
| 0.03 | 0.03 | 0.03   | 0.02     | 0.04   | 0.08     | 0.12     | 1.11     | 2.28           | 1.37   | 0.50   | 0.10    | 0.02     | 0.09   | 0.11     | 0.12     | 0.09    | 0.07   | 0.05 | 0.03 |

## Table 13-2: MPE for Body Parts in Controlled Environment with 5.15 dBi Antenna at 799.0 MHz

|   | Part of the body / averaging points | Averaged Power Density at $R_{real} = 31 \text{ cm}, \text{ mW/cm}^2$ |
|---|-------------------------------------|-----------------------------------------------------------------------|
| Î | Whole body (0.1 m to 2.0 m)         | 0.31                                                                  |
| I | Lower body (0.1 m to 0.9 m)         | 0.42                                                                  |
| I | Upper body (1.0 m to 2.0 m)         | 0.23                                                                  |

#### Table 13-3: MPE for Uncontrolled Environment with 5.15 dBi Antenna at 799.0 MHz

|      | M    | PE, mW | //cm², r | neasure | ed at th | e distai | nce of <b>6</b> | 6 <b>1 cm</b> b | etweer | n the pr | obe and | d the ar | ntenna | at the h | eight (o | cm) sho | wn bel | ow   |      |
|------|------|--------|----------|---------|----------|----------|-----------------|-----------------|--------|----------|---------|----------|--------|----------|----------|---------|--------|------|------|
| 10   | 20   | 30     | 40       | 50      | 60       | 70       | 80              | 90              | 100    | 110      | 120     | 130      | 140    | 150      | 160      | 170     | 180    | 190  | 200  |
| 0.01 | 0.01 | 0.03   | 0.05     | 0.07    | 0.07     | 0.06     | 0.15            | 0.40            | 0.52   | 0.34     | 0.20    | 0.11     | 0.07   | 0.03     | 0.05     | 0.04    | 0.05   | 0.07 | 0.05 |

#### Table 13-4: MPE for Body Parts in Uncontrolled Environment with 5.15 dBi Antenna at 799.0 MHz

| Part of the body / averaging points | Averaged Power Density at $R_{real} = 61 \text{ cm}, \text{ mW/cm}^2$ |
|-------------------------------------|-----------------------------------------------------------------------|
| Whole body (0.1 m to 2.0 m)         | 0.12                                                                  |
| Lower body (0.1 m to 0.9 m)         | 0.09                                                                  |
| Upper body (1.0 m to 2.0 m)         | 0.14                                                                  |

## Table 13-5: MPE for Controlled Environment with 5.15 dBi Antenna at 816.0 MHz

|      | M    | PE, mV | //cm², r | neasure | ed at th | e distar | nce of 3 | <b>6 cm</b> b | etweer | n the pr | obe and | d the ar | ntenna | at the h | eight (o | cm) sho | wn bel | ow   |      |
|------|------|--------|----------|---------|----------|----------|----------|---------------|--------|----------|---------|----------|--------|----------|----------|---------|--------|------|------|
| 10   | 20   | 30     | 40       | 50      | 60       | 70       | 80       | 90            | 100    | 110      | 120     | 130      | 140    | 150      | 160      | 170     | 180    | 190  | 200  |
| 0.08 | 0.08 | 0.07   | 0.03     | 0.13    | 0.17     | 0.21     | 0.97     | 2.38          | 2.52   | 1.14     | 0.32    | 0.10     | 0.14   | 0.18     | 0.22     | 0.18    | 0.13   | 0.05 | 0.02 |

## Table 13-6: MPE for Body Parts in Controlled Environment with 5.15 dBi Antenna at 816.0 MHz

| Part of the body / averaging points | Averaged Power Density at $R_{real} = 36 \text{ cm}, \text{ mW/cm}^2$ |
|-------------------------------------|-----------------------------------------------------------------------|
| Whole body (0.1 m to 2.0 m)         | 0.46                                                                  |
| Lower body (0.1 m to 0.9 m)         | 0.46                                                                  |
| Upper body (1.0 m to 2.0 m)         | 0.46                                                                  |

#### Table 13-7: MPE for Uncontrolled Environment with 5.15 dBi Antenna at 816.0 MHz

|      | M    | PE, mW | //cm², r | neasur | ed at th | e distaı | nce of 7 | <b>'6 cm</b> b | etweer | the pr | obe and | d the ar | ntenna | at the h | eight (o | cm) sho | wn bel | W    |      |
|------|------|--------|----------|--------|----------|----------|----------|----------------|--------|--------|---------|----------|--------|----------|----------|---------|--------|------|------|
| 10   | 20   | 30     | 40       | 50     | 60       | 70       | 80       | 90             | 100    | 110    | 120     | 130      | 140    | 150      | 160      | 170     | 180    | 190  | 200  |
| 0.02 | 0.01 | 0.05   | 0.06     | 0.03   | 0.07     | 0.14     | 0.32     | 0.52           | 0.32   | 0.27   | 0.28    | 0.18     | 0.11   | 0.12     | 0.09     | 0.05    | 0.03   | 0.07 | 0.04 |

#### Table 13-8: MPE for Body Parts in Uncontrolled Environment with 5.15 dBi Antenna at 816.0 MHz

| Part of the body / averaging points | Averaged Power Density at $R_{real} = 76 \text{ cm}, \text{mW/cm}^2$ |
|-------------------------------------|----------------------------------------------------------------------|
| Whole body (0.1 m to 2.0 m)         | 0.14                                                                 |
| Lower body (0.1 m to 0.9 m)         | 0.14                                                                 |
| Upper body (1.0 m to 2.0 m)         | 0.14                                                                 |

## Table 13-9:MPE for Controlled Environment with 7.15 dBi Antenna at 799.0 MHz

|      | MP   | E, mW | /cm², m | easure | d at the | e distan | ce of <b>2</b> | <b>7 cm</b> b | etweer | n the pr | obe an | d the a | ntenna | at the | height ( | cm) sh | own be | low  |      |
|------|------|-------|---------|--------|----------|----------|----------------|---------------|--------|----------|--------|---------|--------|--------|----------|--------|--------|------|------|
| 10   | 20   | 30    | 40      | 50     | 60       | 70       | 80             | 90            | 100    | 110      | 120    | 130     | 140    | 150    | 160      | 170    | 180    | 190  | 200  |
| 0.07 | 0.11 | 0.23  | 0.19    | 0.22   | 0.12     | 0.51     | 1.1            | 2.1           | 2.7    | 1.2      | 0.66   | 0.21    | 0.4    | 0.3    | 0.31     | 0.14   | 0.14   | 0.17 | 0.15 |

## Table 13-10: MPE for Body Parts in Uncontrolled Environment with 7.15 dBi Antenna at 799.0 MHz

| Part of the body / averaging points | Averaged Power Density at $R_{real} = 27 \text{ cm}, \text{mW/cm}^2$ |
|-------------------------------------|----------------------------------------------------------------------|
| Whole body (0.1 m to 2.0 m)         | 0.55                                                                 |
| Lower body (0.1 m to 0.9 m)         | 0.52                                                                 |
| Upper body (1.0 m to 2.0 m)         | 0.58                                                                 |

## Table 13-11: MPE for Uncontrolled Environment with 7.15 dBi Antenna at 799.0 MHz

|      | M    | PE, mW | //cm², r | neasure | ed at th | e distar | nce of <b>6</b> | 6 <b>9 cm</b> b | etweer | the pr | obe and | d the ar | ntenna | at the h | eight (o | cm) sho | wn bel | WC   |      |
|------|------|--------|----------|---------|----------|----------|-----------------|-----------------|--------|--------|---------|----------|--------|----------|----------|---------|--------|------|------|
| 10   | 20   | 30     | 40       | 50      | 60       | 70       | 80              | 90              | 100    | 110    | 120     | 130      | 140    | 150      | 160      | 170     | 180    | 190  | 200  |
| 0.01 | 0.00 | 0.01   | 0.01     | 0.02    | 0.06     | 0.10     | 0.18            | 0.43            | 0.53   | 0.50   | 0.20    | 0.04     | 0.05   | 0.10     | 0.14     | 0.09    | 0.02   | 0.01 | 0.02 |

#### Table 13-12: MPE for Body Parts in Uncontrolled Environment with 7.15 dBi Antenna at 799.0 MHz

| Part of the body / averaging points | Averaged Power Density at $R_{real} = 69 \text{ cm}, \text{ mW/cm}^2$ |
|-------------------------------------|-----------------------------------------------------------------------|
| Whole body (0.1 m to 2.0 m)         | 0.13                                                                  |
| Lower body (0.1 m to 0.9 m)         | 0.09                                                                  |
| Upper body (1.0 m to 2.0 m)         | 0.16                                                                  |

#### Table 13-13: MPE for Controlled Environment with 7.15 dBi Antenna at 816.0 MHz

|      | MPE, mW/cm <sup>2</sup> , measured at the distance of <b>35.5 cm</b> between the probe and the antenna at the height (cm) shown below |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|------|---------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 10   | 20                                                                                                                                    | 30   | 40   | 50   | 60   | 70   | 80   | 90   | 100  | 110  | 120  | 130  | 140  | 150  | 160  | 170  | 180  | 190  | 200  |
| 0.08 | 0.09                                                                                                                                  | 0.07 | 0.02 | 0.09 | 0.12 | 0.20 | 0.97 | 2.43 | 2.65 | 1.16 | 0.26 | 0.24 | 0.25 | 0.18 | 0.10 | 0.06 | 0.04 | 0.01 | 0.05 |

## Table 13-14: MPE for Body Parts in Controlled Environment with 7.15 dBi Antenna at 816.0 MHz

| Part of the body / averaging points | Averaged Power Density at $R_{real}$ = 35.5 cm, mW/cm <sup>2</sup> |
|-------------------------------------|--------------------------------------------------------------------|
| Whole body (0.1 m to 2.0 m)         | 0.45                                                               |
| Lower body (0.1 m to 0.9 m)         | 0.45                                                               |
| Upper body (1.0 m to 2.0 m)         | 0.46                                                               |

#### Table 13-15: MPE for Uncontrolled Environment with 7.15 dBi Antenna at 816.0 MHz

|      | MPE, mW/cm <sup>2</sup> , measured at the distance of <b>79 cm</b> between the probe and the antenna at the height (cm) shown below |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|------|-------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 10   | 20                                                                                                                                  | 30   | 40   | 50   | 60   | 70   | 80   | 90   | 100  | 110  | 120  | 130  | 140  | 150  | 160  | 170  | 180  | 190  | 200  |
| 0.03 | 0.04                                                                                                                                | 0.06 | 0.08 | 0.05 | 0.07 | 0.09 | 0.21 | 0.43 | 0.50 | 0.42 | 0.26 | 0.15 | 0.09 | 0.11 | 0.14 | 0.12 | 0.07 | 0.07 | 0.02 |

#### Table 13-16: MPE for Body Parts in Uncontrolled Environment with 7.15 dBi Antenna at 816.0 MHz

| Part of the body / averaging points | Averaged Power Density at $R_{real} = 79 \text{ cm}, \text{ mW/cm}^2$ |
|-------------------------------------|-----------------------------------------------------------------------|
| Whole body (0.1 m to 2.0 m)         | 0.15                                                                  |
| Lower body (0.1 m to 0.9 m)         | 0.12                                                                  |
| Upper body (1.0 m to 2.0 m)         | 0.18                                                                  |

#### 14 Conclusion

1. The MPE measurements for controlled and uncontrolled environments shown in this report were conducted per the applicable FCC/IC Rules, Regulations and Guidance, and determined the minimum safe distances between the EUT antennas with different gains and a user.

2. As is shown in Section 13, the measured MPE are below the maximum allowed limits.

3. The User Manual shall include RF radiation safety warnings and the following table:

| Safe Distance, R <sub>safe</sub> , (cm) |                        |                          |  |  |  |  |  |  |  |  |
|-----------------------------------------|------------------------|--------------------------|--|--|--|--|--|--|--|--|
| Antenna                                 | Controlled Environment | Uncontrolled Environment |  |  |  |  |  |  |  |  |
| AN-225001-005 (7.15 dBi)                | 36                     | 79                       |  |  |  |  |  |  |  |  |
| AN-225001-001 (5.15 dBi)                | 36                     | 76                       |  |  |  |  |  |  |  |  |