

<u>Date(s) of Evaluation</u> Jul 31, Aug 1-2, 8-10, 2007

Test Report Issue Date
August 29, 2007

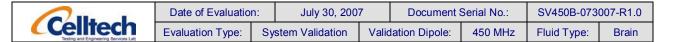
<u>Test Report Serial No.</u> 0731070WD-T845-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Revision 1.0

RF Exposure Category
Occupational (Controlled)

APPENDIX E - SYSTEM VALIDATION

	Company:	M/A-C	OM, Inc.	Model:	P5400	FCC ID:	OWD	TR-0046-E	IC ID:	3636B-0046	WYHOM
I	DUT Type:	DUT Type: Portable Analog/Digital UHF-H PTT Radio T						Frequency	y Range:	440 - 512 MHz	
	2007 Celltech La	007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 128 of 129		

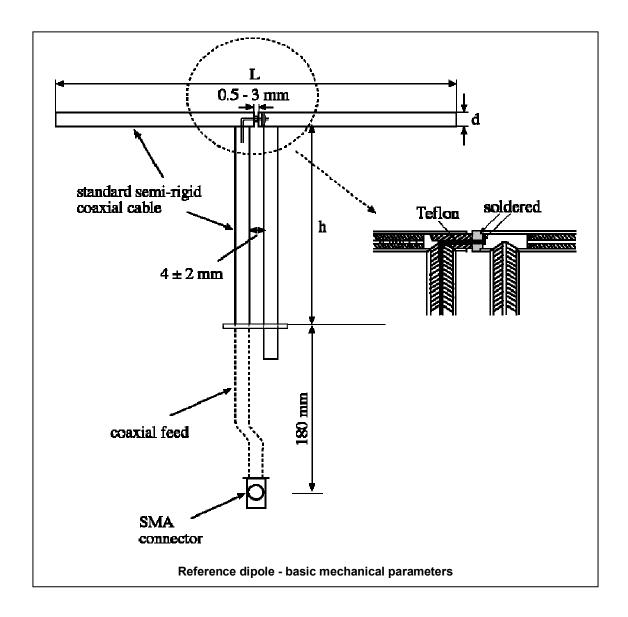

450 MHz SYSTEM VALIDATION

Type:	450 MHz Validation Dipole
Asset Number:	00024
Serial Number:	136
Place of Validation:	Celltech Labs Inc.
Date of Validation:	July 30, 2007

Celltech Labs Inc. certifies that the 450 MHz System Validation was performed on the date indicated above.

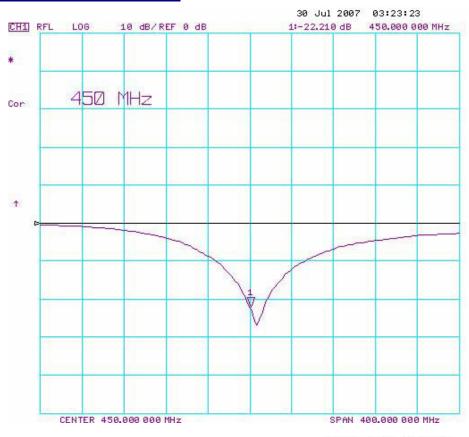
Validated by: Cheri Frangiadakis

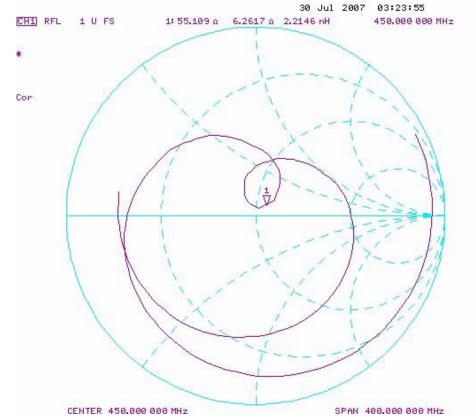
Approved by: Sean Johnston

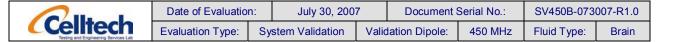

1. Dipole Construction & Electrical Characteristics


The validation dipole was constructed in accordance with the requirements specified in IEEE Standard 1528-2003 and International Standard IEC 62209-1:2005. The electrical properties were measured using an HP 8753ET Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 15.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 450 MHz $Re{Z} = 55.109\Omega$


 $Im{Z} = 6.2617\Omega$


Return Loss at 450 MHz -22.210dB



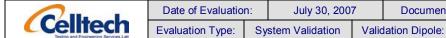
2. Validation Dipole VSWR Data

3. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	396.0	250.0	6.0
450	270.0	167.0	6.0
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.5	30.4	3.6
3000	41.5	25.0	3.6

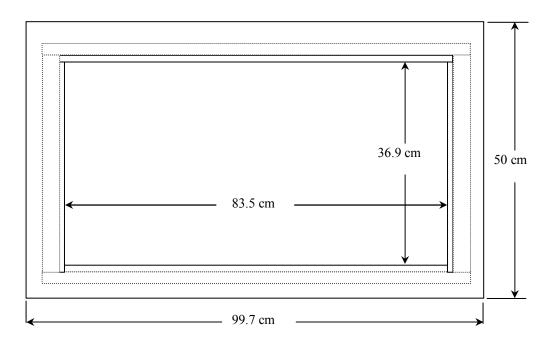
4. Validation Phantom

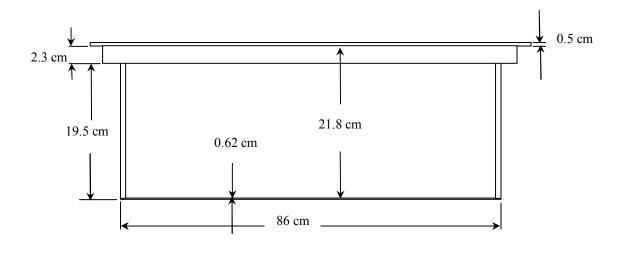
The validation phantom (planar) was constructed using relatively low-loss tangent Plexiglas material.

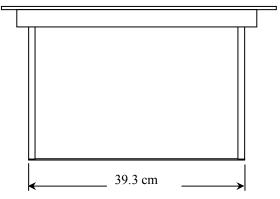

The inner dimensions of the validation phantom are as follows:

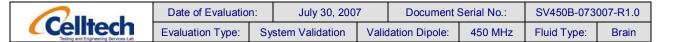
Length: 83.5 cm Width: 36.9 cm Height: 21.8 cm

The bottom section of the validation phantom is constructed of 6.2 ± 0.1 mm Plexiglas.

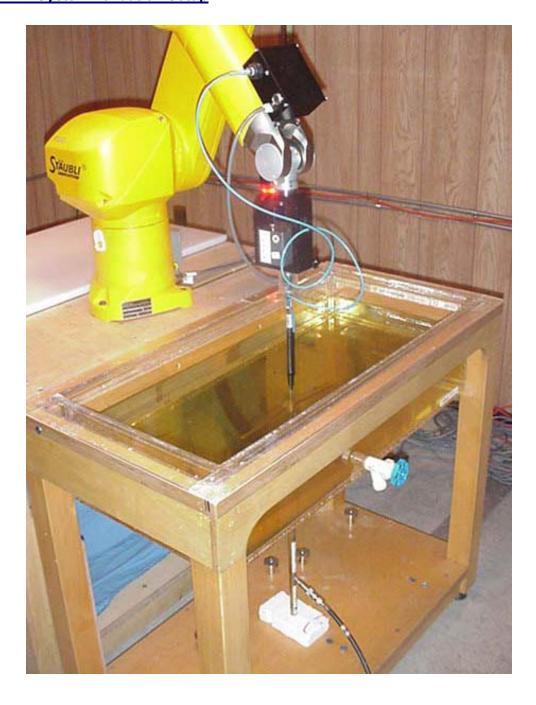

5. Test Equipment List


TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE OF CAL.	CAL. DUE DATE
SPEAG DASY4 Measurement Server	00158	1078	N/A	N/A
SPEAG Robot	00046	599396-01	N/A	N/A
SPEAG DAE4	00019	353	10Jul07	10Jul08
SPEAG ET3DV6 E-Field Probe	00016	1387	16Mar07	16Mar08
450 MHz Validation Dipole	00024	136	30Jul07	30Jul08
Plexiglas Validation Planar Phantom	00157	137	N/A	N/A
HP 85070C Dielectric Probe Kit	00033	US39240170	N/A	N/A
Gigatronics 8652A Power Meter	00007	1835272	26Mar07	26Mar08
Gigatronics 80701A Power Sensor	00014	1833699	22Jan07	22Jan08
Gigatronics 80701A Power Sensor	00109	1834366	26Mar07	26Mar08
HP 8753ET Network Analyzer	00134	US39170292	20Apr07	20Apr08
HP 8648D Signal Generator	00005	3847A00611	NCR	NCR
Amplifier Research 5S1G4 Power Amplifier	00106	26235	NCR	NCR



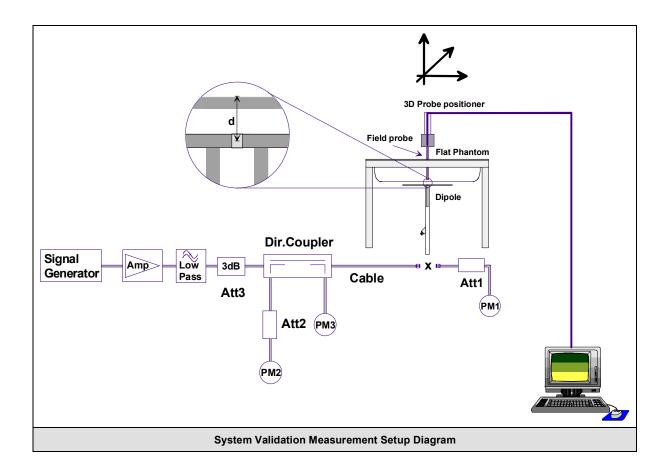

Document Serial No.: SV450B-073007-R1.0 on Dipole: 450 MHz Fluid Type: Brain

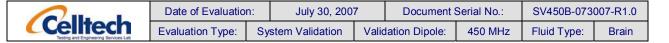
6. Dimensions of Plexiglas Planar Phantom



7. 450 MHz System Validation Setup

8. 450 MHz Validation Dipole Setup





9. SAR Measurement

Measurements were made using a dosimetric E-field probe ET3DV6 (S/N: 1387, Conversion Factor 7.0). The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the procedures described below.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

10. Measurement Conditions

The validation phantom was filled with 450 MHz Brain tissue simulant.

Relative Permittivity: 43.1 (-0.9% deviation from target)

0.85 mho/m (-2.3% deviation from target) Conductivity: 23.1°C (Start of Test) / 23.3°C (End of Test) Fluid Temperature:

Fluid Depth: \geq 15.0 cm

Environmental Conditions:

Ambient Temperature: 24.5°C Barometric Pressure: 101.1 kPa Humidity: 31%

The 450 MHz Brain tissue simulant consisted of the following ingredients:

Ingredient	Percentage by weight				
Water	38.56%				
Sugar	5	6.32%			
Salt	3.95%				
HEC	C).98%			
Dowicil 75	C).19%			
IEEE Target Dielectric Parameters:	$\varepsilon_{\rm r}$ = 43.5 (+/- 5%)	σ = 0.87 S/m (+/- 5%)			

11. System Validation SAR Results

SAR @ U	.25W Input a	vera	ageu over	19 (SAR @ 1W Input averaged over 1g (W/kg)					
IEEE/IEC Target		M	easured	Dev	viation	IEEE/IEC Target		Measured	Deviation	
1.23	+/- 10%		1.29	+4	4.9%	4.9)	+/- 10%	5.16	+5.3%
		veraged over 10g (W/kg)			SAR	@ 11	V Input av	eraged over 10	g (W/kg)	
		M	easured	Dev	viation	IEE	E/IEC	Target	Measured	Deviation
0.825	+/- 10%		0.832	+(0.8%	3.3	3	+/- 10%	3.33	+1.0%
	Frequency (MHz)	,	1 g SAI	t	10 g	SAR	surf	eal SAR at face (above ed-point)	Local SAR at surface (y = 2 cm offset from feed-point) ^a	
	300		3.0		2.	.0		4.4	2.1	
	450		4.9		3.	.3		7.2	3.2	
	835		9.5		6.	.2		4.1	4.9	
	900		10.8		6.	.9		16.4	5.4	
	1450		29.0		16	.0		50.2	6.5	
	1800		38.1		19	.8		69.5	6.8	
	1900		39.7		20	1.5		72.1	6.6	
	2000		41.1		21	.1		74.6	6.5	
	2450		52.4		24	.0		104.2	7.7	
	3000		63.8		25	.7		140.2	9.5	

System Validation - 450 MHz Dipole - July 30, 2007 - HSL

DUT: Dipole 450 MHz; Asset: 00024; Serial: 136; Validation: 07/30/2007

Ambient Temp: 24.5°C; Fluid Temp: 23.1°C; Barometric Pressure: 101.1 kPa; Humidity: 31%

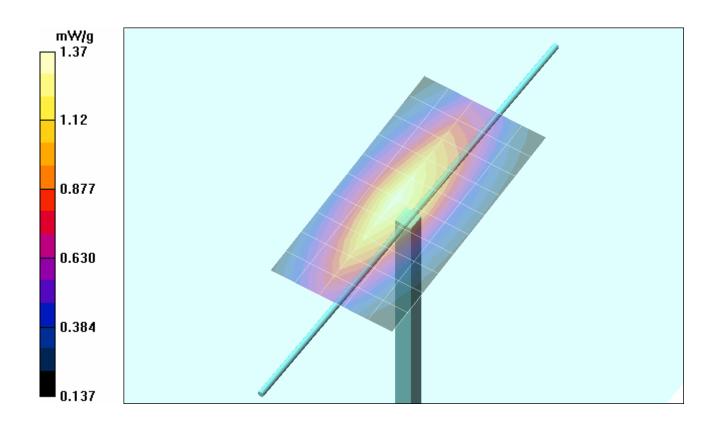
Communication System: CW Forward Conducted Power: 250 mW Frequency: 450 MHz; Duty Cycle: 1:1

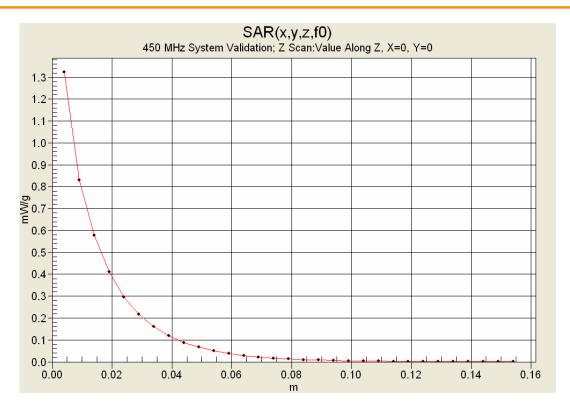
Medium: HSL450 Medium parameters used: f = 450 MHz; $\sigma = 0.85$ mho/m; $\varepsilon_r = 43.1$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1387; ConvF(7, 7, 7); Calibrated: 16/03/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 10/07/2007
- Phantom: Validation Planar; Type: Plexiglas; Serial: 137
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

450 MHz Dipole - System Validation/Area Scan (6x11x1):

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.35 mW/g


450 MHz Dipole - System Validation/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 39.3 V/m; Power Drift = 0.042 dB

Peak SAR (extrapolated) = 2.24 W/kg

SAR(1 g) = 1.29 mW/g; SAR(10 g) = 0.832 mW/g Maximum value of SAR (measured) = 1.37 mW/g

12. Measured Fluid Dielectric Parameters

System Validation - 450 MHz (Brain)

Celltech Labs Inc.

Test Result for UIM Dielectric Parameter

Mon 30/Jul/2007

Frequency (GHz)

FCC_eH FCC OET 65 Supplement C (June 2001) Limits for Head Epsilon

FCC sH FCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

Freq	_	HFCC_sh	_	Test_s
0.3500	44.70	0.87	45.67	0.76
0.3600	44.58	0.87	45.22	0.77
0.3700	44.46	0.87	45.13	0.78
0.3800	44.34	0.87	44.88	0.79
0.3900	44.22	0.87	44.58	0.80
0.4000	44.10	0.87	44.42	0.81
0.4100	43.98	0.87	44.21	0.82
0.4200	43.86	0.87	43.93	0.82
0.4300	43.74	0.87	43.66	0.83
0.4400	43.62	0.87	43.15	0.84
0.4500	43.50	0.87	43.09	0.85
0.4600	43.45	0.87	42.96	0.86
0.4700	43.40	0.87	42.63	0.87
0.4800	43.34	0.87	42.72	0.87
0.4900	43.29	0.87	42.45	0.89
0.5000	43.24	0.87	42.18	0.90
0.5100	43.19	0.87	42.03	0.90
0.5200	43.14	0.88	41.77	0.91
0.5300	43.08	0.88	41.78	0.92
0.5400	43.03	0.88	41.42	0.93
0.5500	42.98	0.88	41.19	0.93

Date of Evaluatio	n:	July 30, 200	7	Document S	Serial No.:	SV450B-073	007-R1.0
Evaluation Type:	Sy	stem Validation	Valid	lation Dipole:	450 MHz	Fluid Type:	Brain

13. Measurement Uncertainties

UNC	ERTAINTY	BUDGET FOR	R SYSTEM VA	LIDATIO	ON	
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (450 MHz)	8.0	Normal	1	1	8.0	∞
Axial isotropy of the probe	4.7	Rectangular	1.732050808	1	2.7	∞
Spherical isotropy of the probe	0	Rectangular	1.732050808	1	0.0	∞
Spatial resolution	0	Rectangular	1.732050808	1	0.0	∞
Boundary effects	1	Rectangular	1.732050808	1	0.6	∞
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	∞
Detection limit	1	Rectangular	1.732050808	1	0.6	∞
Readout electronics	0.3	Normal	1	1	0.3	∞
Response time	0	Rectangular	1.732050808	1	0.0	∞
Integration time	0	Rectangular	1.732050808	1	0.0	∞
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	∞
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	∞
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	∞
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	∞
Test Sample Related						
Dipole Positioning	2	Normal	1.732050808	1	1.2	∞
Power & Power Drift	4.7	Normal	1.732050808	1	2.7	∞
Phantom and Setup						
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	∞
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	∞
Liquid conductivity (measured)	5	Normal	1	0.64	3.2	∞
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	∞
Liquid permittivity (measured)	5	Normal	1	0.6	3.0	∞
Combined Standard Uncertaint			· ·		11.20	
Expanded Uncertainty (k=2)					22.39	
	ment Uncertain	ty Table in accords	ance with IEEE Star	ndard 1529		