

Certification Report for M/A-COM MASTRIII UHF Base Station

FCC Part 22, 74, 90, & RSS-119

Document Number: KP000952-CR-RAD-02-01

Release Date: December 22, 2004

Prepared for: M/A-COM, Inc.

221 Jefferson Ridge Parkway

Lynchburg, Virginia

U.S.A., 24501

Author: Denis Lalonde

Radio Compliance Discipline Leader

Solectron EMS Canada Inc.

21 Richardson Side Road, Kanata, Ontario, K2K 2C1

http://www.solectrontechnicalctr.com/

© Copyright Solectron EMS Canada Inc. December 22, 2004

The master of this document is stored on an electronic database and is "write-protected" and may be altered only by authorized persons at Solectron EMS Canada Inc. Viewing of the master document electronically ensures access to the current issue. Any hard copies must be regarded as uncontrolled copies.

Solectron EMS Canada Inc. accepts no liability for the content of this document except when it is reproduced in its entirety by a method acceptable to Solectron EMS Canada Inc.

Release Control Record

This document is based on CEI document template KG000347-TR-EMC-03.

Release no.		Reason for change	Date released	
	01	Original Release	December 22, 2004	

Approvals

Function	Name	Job title	Signature
Document Release Approval	Simon Richardson	Project Manager	S. S. JUAN DEC 22 2004
Author	Denis Lalonde	Radio Compliance Discipline Leader	ADD Dar. 21, 2004
Technical Reviewer	Jacques Rollin	EMC Advisor	Jugel / Dec 21, 2004

Accreditations

Solectron EMS Canada test facilities are accredited by the Standards Council of Canada (SCC) in accordance with the scope of accreditation outlined at the following web site http://www.scc.ca/scopes/reg126-eng-s.pdf. [1]. The SCC is a member of the APLAC [13] and ILAC [14] organizations which, through mutual recognition arrangements, provide accreditation of test facilities in the member countries.

The Solectron Design and Engineering 10-meter Ambient Free Chamber (AFC) complies with the Industry Canada (IC) requirements for Test Facilities and Test Methods [15] under reference file number 4180. Through IC MRAs, EMC measurements are accepted in the following countries: USA, Australia, Singapore, Chinese Taipei (Taiwan), and the Republic of Korea. Further information can be found at the IC Certification and Engineering Bureau web site http://strategis.ic.gc.ca/epic/internet/inceb-bhst.nsf/en/Home under the "conformity assessment bodies" link.

The VCCI [12] lab registration numbers associated with our test facilities are: R-1641, C-1749, C-1750, T-148, and T-149.

Solectron EMS Canada is ISO 9001:2000 and ISO-IEC 17025 certified and its processes are documented in the Solectron EMS Canada Quality Manual [2] and Lab Operations Manual [3].

Page 2 of 71 Release date: December 22, 2004

Table of Contents

KI	LLEA	SE CONTROL RECORD	. 2
AF	PRO	VALS	. 2
A (CCRE	EDITATIONS	. 2
TA	BLE	OF CONTENTS	.3
LI	ST O	F FIGURES	. 6
		F TABLES	
		CUTIVE SUMMARY	
		MPLIANCE SUMMARY	
3.	EQU	JIPMENT UNDER TEST (EUT)	12
	3.1	PRODUCT FUNCTIONAL DESCRIPTION	12
	3.2	MANUFACTURER INFORMATION.	12
	3.3	TRANSMITTER SPECIFICATIONS.	12
	3.4	SYSTEM COMPONENTS.	13
	3.5	SUPPORT EQUIPMENT	14
	3.6	SYSTEM SET-UP AND TEST CONFIGURATIONS	14
	3.7	EUT INTERFACES AND CABLES	15
	3.8	SYSTEM MODIFICATIONS	15
4.	GEN	VERAL TEST CONDITIONS	16
	4.1	TEST FACILITY	16
	4.2	MEASUREMENT INSTRUMENTATION.	16
5.	DET	AILED TEST RESULTS	17
	5.1	RF POWER	17
		5.1.1 Test Specification	17
		5.1.1.1 Limits	
		5.1.2 Test Facility Information	
		5.1.3 Test Procedure	
		5.1.4 Test Results	
		5.1.5 Test Conclusion	
		5.1.6 Test Equipment List	
	5.2	CONDUCTED SPURIOUS EMISSIONS	
		5.2.1 Test Specification	
		5.2.1.1 Limits	
		5.2.3 Test Procedure	
		5.2.4 Test Results.	

	5.2.5 Test Conclusion	. 19
	5.2.6 Test Equipment List	. 20
5.3	EMISSION MASK	. 20
	5.3.1 Test Specification	. 20
	5.3.1.1 Limits	
	5.3.2 Test Facility Information	. 21
	5.3.3 Test Procedure	. 21
	5.3.4 Test Results	. 22
	5.3.5 Test Conclusion	. 22
	5.3.6 Test Equipment List	. 22
5.4	FIELD STRENGTH OF SPURIOUS EMISSIONS	. 23
	5.4.1 Test Specification	. 23
	5.4.1.1 Limits	
	5.4.2 Test Facility Information	. 23
	5.4.3 Test Procedure	. 23
	5.4.4 Test Results	. 24
	5.4.5 Test Conclusion	. 25
	5.4.6 Test Equipment List	. 25
5.5	FREQUENCY STABILITY	. 26
	5.5.1 Test Specification	. 26
	5.5.1.1 Limits	. 26
	5.5.2 Test Facility Information	. 26
	5.5.3 Test Procedure	. 27
	5.5.4 Test Results	. 27
	5.5.5 Test Conclusion	. 27
	5.5.6 Test Equipment List	. 28
5.6	TRANSIENT FREQUENCY BEHAVIOR	. 28
	5.6.1 Test Specification	. 28
	5.6.1.1 Limits	. 28
	5.6.2 Test Facility Information	
	5.6.3 Test Procedure	. 29
	5.6.4 Test Results	. 29
	5.6.5 Test Conclusion	. 30
	5.6.6 Test Equipment List	. 30
5.7	AUDIO FREQUENCY RESPONSE	. 30
	5.7.1 Test Specification	. 30
	5.7.1.1 Limits	. 31
	5.7.2 Test Facility Information	
	5.7.3 Test Procedure	. 31
	5.7.4 Test Results	. 31
	5.7.5 Test Conclusion	. 32
	5.7.6 Test Equipment List.	. 32

	5.8	AUDIO LOW PASS FILTER RESPONSE	. 33
		5.8.1 Test Specification	. 33
		5.8.1.1 Limits	. 33
		5.8.2 Test Facility Information	. 33
		5.8.3 Test Procedure	. 33
		5.8.4 Test Results	34
		5.8.5 Test Conclusion	34
		5.8.6 Test Equipment List	34
	5.9	MODULATION LIMITING	35
		5.9.1 Test Specification	. 35
		5.9.1.1 Limits	. 35
		5.9.2 Test Facility Information	. 35
		5.9.3 Test Procedure	. 35
		5.9.4 Test Results	. 35
		5.9.5 Test Conclusion	. 38
		5.9.6 Test Equipment List	. 38
	5.10	OCCUPIED BANDWIDTH	. 38
		5.10.1 Test Specification	. 38
		5.10.2 Test Facility Information	. 38
		5.10.3 Test Procedure	. 38
		5.10.4 Test Results.	40
		5.10.5 Test Equipment List	40
	5.11	RECEIVE ANTENNA PORT CONDUCTED EMISSIONS	41
		5.11.1 Test Specification	41
		5.11.1.1 Limits	41
		5.11.2 Test Facility Information	41
		5.11.3 Test Configurations	
		5.11.4 Test Procedure	. 42
		5.11.5 Test Results:	. 42
		5.11.6 Test Conclusion	
		5.11.7 Test Equipment List	43
6.	REF	ERENCES	44
7	A DD	ENDICES	15
٠.	7.1	APPENDIX A: GLOSSARY	
	7.1	APPENDIX A. GLOSSAKI APPENDIX B: TEST SET-UP PHOTOGRAPHS	
	7.3	APPENDIX C: CONDUCTED SPURIOUS EMISSIONS PLOTS	
	7.4	APPENDIX D: EMISSION MASK PLOTS	
	7.5	APPENDIX E: FIELD STRENGTH OF SPURIOUS EMISSIONS PLOTS	
	7.6	APPENDIX F: TRANSIENT FREQUENCY BEHAVIOR PLOTS	
	7.7	APPENDIX G: OCCUPIED BANDWIDTH PLOTS	
	7.8	APPENDIX H: CONDUCTED RECEIVER EMISSIONS PLOTS	70

List of Figures

FIGURE 3-1 PRODUCT DESCRIPTION.	. 12
FIGURE 3-2: MODULE CONFIGURATION	. 14
FIGURE 3-3: SYSTEM CONFIGURATION	. 15
FIGURE 5-1: AUDIO FREQUENCY RESPONSE RESULTS	. 32
FIGURE 5-2 AUDIO LOW PASS FILTER RESPONSE.	. 34
FIGURE 5-3 MODULATION LIMITING, POSITIVE PEAK (25 KHZ CHANNEL)	. 36
FIGURE 5-4 MODULATION LIMITING, NEGATIVE PEAK (25 KHZ CHANNEL)	. 36
FIGURE 5-5 MODULATION LIMITING, POSITIVE PEAK (12.5 KHZ CHANNEL)	. 37
FIGURE 5-6 MODULATION LIMITING, NEGATIVE PEAK (12.5 KHZ CHANNEL)	. 37
FIGURE 5-7: RX ANTENNA PORT TEST METHOD	. 42
FIGURE 7-1: M/A-COM MASTRIII UHF BASE STATION RADIATED EMISSIONS SET-UP	. 46
FIGURE 7-2: TX AT 450.025 MHz, 100 W POWER, 30 MHz TO 800 MHz	. 47
FIGURE 7-3: TX AT 450.025 MHz, 100 W POWER, 800 MHz to 5.12 GHz	. 47
Figure 7-4: Tx at 450.025 MHz , $10~\mathrm{W}$ Power, $30~\mathrm{MHz}$ to $800~\mathrm{MHz}$. 48
Figure 7-5: Tx at 450.025 MHz , 10 W Power, 800 MHz to 5.12 GHz	. 48
FIGURE 7-6: TX AT 511.975 MHz, 100 W POWER, 30 MHz TO 800 MHz	. 49
FIGURE 7-7: TX AT 511.975 MHz, 100 W POWER, 800 MHz to 5.12 GHz	. 49
Figure 7-8: Tx at 511.975 MHz , 10 W Power, 30 MHz to 800 MHz	. 50
Figure 7-9: Tx at 511.975 MHz , 10 W Power, 800 MHz to 5.12 GHz	. 50
FIGURE 7-10: 2500 Hz Audio Signal Wideband, 470.025 MHz, FCC Part 90 Mask	. 51
FIGURE 7-11: 2500 Hz Audio Signal Narrowband, 470.025 MHz, FCC Part 90 Mask	. 51
FIGURE 7-12: 2 LEVEL 9600 BAUD SIGNAL WITH +/- 3 KHZ DEVIATION, 470.025 MHZ, FCC PAR 90 MASK	
FIGURE 7-13: 2 LEVEL 9600 BAUD SIGNAL WITH +/- 1.9 KHZ DEVIATION, 470.025 MHZ, FCC PART 90 MASK	. 52
FIGURE 7-14: C4FM /9600 BITS/SEC SIGNAL, 470.025 MHz, FCC PART 90 MASK	. 53
FIGURE 7-15: C4FM /4800 BITS/SEC SIGNAL, 470.025 MHz, FCC PART 90 MASK	. 53
FIGURE 7-16: 2500 Hz Audio Signal Wideband, 470.025 MHz, FCC Part 22 Mask	. 54
FIGURE 7-17: 2500 Hz Audio Signal Narrowband, 470.025 MHz, FCC Part 22 Mask	. 54
FIGURE 7-18: 2 LEVEL 9600 BAUD SIGNAL WITH +/- 3 KHZ DEVIATION, 470.025 MHZ, FCC PAR 22 MASK	
FIGURE 7-19: 2 LEVEL 9600 BAUD SIGNAL WITH +/- 1.9 KHZ DEVIATION, 470.025 MHZ, FCC PART 22 MASK	. 55

FIGURE 7-20: C4FM /9600 BITS/SEC SIGNAL, 470.025 MHz, FCC PART 22 MASK	56
FIGURE 7-21: C4FM /4800 BITS/SEC SIGNAL, 470.025 MHz, FCC PART 22 MASK	56
FIGURE 7-22: FIELD STRENGTH WITH 100 W TX, 30 MHz to 1 GHz (TX AT 450.025 MHz).	57
Figure 7-23: Field Strength with $100~\mathrm{W}$ Tx, $1~\mathrm{GHz}$ to $5.12~\mathrm{GHz}$ (Tx at $450.025~\mathrm{MHz}$	2) 58
Figure 7-24: Field Strength with 10 W Tx, 30 MHz to 1 GHz (Tx at 450.025 MHz)	59
Figure 7-25: Field Strength with $10~\mathrm{W}$ Tx, $1~\mathrm{GHz}$ to $5.12~\mathrm{GHz}$ (Tx at $450.025~\mathrm{MHz}$)	60
Figure 7-26: Field Strength with $100~\mathrm{W}$ Tx, $30~\mathrm{MHz}$ to $1~\mathrm{GHz}$ (Tx at $511.975~\mathrm{MHz}$).	61
Figure 7-27: Field Strength with $100~\mathrm{W}$ Tx, $1~\mathrm{GHz}$ to $5.12~\mathrm{GHz}$ (Tx at $511.975~\mathrm{MHz}$	2) 62
Figure 7-28: Field Strength with 10 W Tx, 30 MHz to 1 GHz (Tx at 511.975 MHz)	63
FIGURE 7-29: FIELD STRENGTH WITH 10 W TX, 1 GHz to 5.12 GHz, (TX AT 511.975 MHz)) 64
FIGURE 7-30 TRANSIENT FREQUENCY BEHAVIOR, TX AT 470.025 MHz, WIDEBAND, TRANSMON	
FIGURE 7-31 TRANSIENT FREQUENCY BEHAVIOR, TX AT 470.025 MHz, WIDEBAND, TRANSMOFF	ITTER
FIGURE 7-32 TRANSIENT FREQUENCY BEHAVIOR, TX AT 470.025 MHz, NARROWBAND, TRANSMITTER ON	66
FIGURE 7-33 TRANSIENT FREQUENCY BEHAVIOR, TX AT 470.025 MHz, NARROWBAND, TRANSMITTER OFF	66
FIGURE 7-34: 2500 Hz Audio Signal Wideband, 470.025 MHz	67
FIGURE 7-35: 2500 Hz Audio Signal Narrowband, 470.025 MHz	67
Figure 7-36: 2 Level 9600 baud Signal with +/- 3 kHz Deviation, 470.025 MHz	68
Figure 7-37: 2 Level 9600 baud Signal with +/- 1.9 kHz Deviation, 470.025 MHz	68
FIGURE 7-38: C4FM / 9600 BITS/SEC SIGNAL, 470.025 MHz	69
FIGURE 7-39: C4FM / 4800 BITS/SEC SIGNAL, 470.025 MHz	69
FIGURE 7-40: RX AT 481.525 MHz, 30 MHz TO 1GHz	70
FIGURE 7-41: RX AT 481.525 MHz, 1 GHz to 2.56 GHz	70
List of Tables	
TABLE 2-1: COMPLIANCE RESULTS SUMMARY	11
TABLE 3-1: TRANSMITTER SPECIFICATIONS	13
TABLE 3-2: MASTRIII UHF BTS COMPONENTS	13
TABLE 3-3: SUPPORT EQUIPMENT	14
TABLE 3-4: SYSTEM CABLES	15
TABLE 5-1: RF POWER REQUIREMENTS	17
TABLE 5-2: RF POWER LIMIT	17

TABLE 5-3: RF POWER LEVELS	18
TABLE 5-4: TEST EQUIPMENT USED FOR RF POWER	18
TABLE 5-5: CONDUCTED SPURIOUS EMISSIONS REQUIREMENT	18
TABLE 5-6: CONDUCTED SPURIOUS EMISSION LIMIT	19
TABLE 5-7: CONDUCTED SPURIOUS EMISSIONS	
TABLE 5-8: TEST EQUIPMENT USED FOR CONDUCTED SPURIOUS EMISSIONS	20
TABLE 5-9: EMISSION MASK REQUIREMENT	
TABLE 5-10: EMISSION MASK LIMITS	
TABLE 5-11: EMISSION MASK RESULTS	22
TABLE 5-12: TEST EQUIPMENT USED FOR EMISSION MASK	22
TABLE 5-13: FIELD STRENGTH OF SPURIOUS EMISSIONS REQUIREMENT	23
TABLE 5-14: FIELD STRENGTH OF SPURIOUS EMISSIONS LIMIT	23
TABLE 5-15: FIELD STRENGTH OF SPURIOUS EMISSIONS	25
TABLE 5-16: TEST EQUIPMENT USED FOR FIELD STRENGTH OF SPURIOUS EMISSIONS	25
TABLE 5-17: FREQUENCY STABILITY REQUIREMENT	
TABLE 5-18: FREQUENCY STABILITY LIMITS	26
TABLE 5-19: FREQUENCY STABILITY RESULTS (470.025 MHz)	27
TABLE 5-20: TEST EQUIPMENT USED FOR FREQUENCY STABILITY	28
TABLE 5-21: TRANSIENT FREQUENCY BEHAVIOR REQUIREMENT	
TABLE 5-22: TRANSIENT FREQUENCY BEHAVIOR LIMIT	29
TABLE 5-23: TRANSIENT FREQUENCY BEHAVIOR TEST RESULTS	30
TABLE 5-24: TEST EQUIPMENT USED FOR TRANSIENT FREQUENCY BEHAVIOR MEASUREMENT	
TABLE 5-25: FREQUENCY RESPONSE REQUIREMENT	31
TABLE 5-26: FREQUENCY RESPONSE LIMIT	
TABLE 5-27: TEST EQUIPMENT USED FOR FREQUENCY RESPONSE MEASUREMENT	32
TABLE 5-28: AUDIO LOW PASS FILTER RESPONSE REQUIREMENT	33
TABLE 5-29: AUDIO LOW PASS FILTER RESPONSE LIMIT	33
TABLE 5-30: TEST EQUIPMENT USED FOR AUDIO LOW PASS FILTER RESPONSE MEASUREMENT.	34
TABLE 5-31: MODULATION LIMITING REQUIREMENT	
TABLE 5-32: MODULATION LIMITING LIMIT	35
TABLE 5-33: TEST EQUIPMENT USED FOR AUDIO LOW PASS FILTER RESPONSE MEASUREMENT.	38
TABLE 5-34: OCCUPIED BANDWIDTH	
TABLE 5-35: OCCUPIED BANDWIDTH VALUES (470.025 MHz)	40
TABLE 5-36: TEST EQUIPMENT USED FOR OCCUPIED BANDWIDTH	40
TABLE 5-37: RECEIVE PORT CONDUCTED EMISSIONS REQUIREMENT	

TABLE 5-38: 1	RECEIVE ANTENNA 1	PORT CONDUCTED	Emissions l	LIMITS	41
TABLE 5-39: '	TEST EQUIPMENT US	SED FOR CONDUCTE	ED SPURIOUS	EMISSIONS	43

Release date: December 22, 2004 Page 9 of 71

1. Executive Summary

This test report documents the measurements performed on the M/A-COM MASTRIII UHF Base Station as part of an Original Equipment application for FCC Part 22, 74, 90, and Industry Canada RSS-119 certifications.

On the basis of measurements performed between November and December 2004, the M/A-COM MASTRIII UHF Base Station is verified to be compliant with FCC Part 22, 74, 90, and Industry Canada RSS-119 requirements. The test data included in this report apply to the product titled above manufactured by M/A-COM, Inc.

The frequency of the band of operation is 450 to 512 MHz.

The FCCID of the new equipment is OWDTR-0039-E.

The Industry Canada certification number is 3636B-0039.

A detailed summary of compliance results is found in Table 2-1: Compliance Results Summary on page 11.

Page 10 of 71 Release date: December 22, 2004

2. Compliance Summary

This section summarizes all the measurements performed on M/A-COM MASTRIII UHF Base Station and its compliance to FCC Part 22, 74, 90, and Industry Canada RSS-119.

Table 2-1: Compliance Results Summary								
Product Summary								
Product Name: M/A-COM MAS Base Station			TRIII UHF	Project Manager:		Simon Richardson		
Product Code: TR-0039				Measurements by :		Denis Lalonde		
Product Stat	us:			Date:			December 10, 2004	
			•	Test Cases				
Performed	Desc	ription	Specification		Test Results		Notes	
					Pass	Fail		
	RF Po	ower	FCC Part 2.10 74.461	046, 90.205, &				
			RSS-119 sec	t. 5.4				
	Cond Emis	ucted Spurious	FCC Part 2.10 74.462, & 90.					
	LIIIIS	510115	RSS-119 sec	t. 6.3				
	■ Emission Mask		FCC Part 2.1051, 22.359, 74.462, & 90.210					
			RSS-119 sect. 6.4					
		Strength of ous Emissions	FCC Part 2.10 74.462, & 90.		•			
	Frequ	ency Stability	FCC Part 2.10 74.464, & 90.	213				
			RSS-119 sec	t. 7				
	Audio Resp	Frequency onse	FCC 2.1047		•			
•	Audic Filter	Low Pass	FCC 2.1047 RSS-119 sec	t. 6.6	-			
	Modu	lation Limiting	FCC 2.1047					
	Occu	pied Bandwidth	FCC 2.202 RSP 100 sec	t. 7.2				
•	Trans Beha	sient Frequency vior	FCC 74.462, RSS-119 sec					
	RF Ex	xposure	FCC 1.1310 RSS-119 sec	t. 9.0			To be evaluated during licensing of equipment	
		ucted sions Rx port	RSS-119 sec FCC 15.111	t. 8				

Release date: December 22, 2004 Page 11 of 71

3. Equipment Under Test (EUT)

3.1 Product Functional Description

The product trade name of the unit tested is "M/A-COM MASTRIII UHF Base Station".

Figure 3-1 provides a brief description of the tested product.

Figure 3-1 Product Description

P25^{IP} Conventional

The MASTR III P25 digital Base Station, built on the tradition of the popular MASTR series of repeaters, is an industry leader in interoperability, performance, and reliability. The MASTR III P25 provides secure digital communications for mission critical applications. The station is capable of both conventional Project 25 digital communications and conventional analog communications for maximum flexibility. The addition of a SitePro Controller provides the capability of delivering Internet Protocol (IP) data and voice to a M/A-COM P25^{IP} network.

3.2 Manufacturer Information

Company Name M/A-COM, Inc.

Mailing Address 221 Jefferson Ridge Parkway, Lynchburg, Virginia, U.S.A., 24501

Product Name M/A-COM MASTRIII UHF Base Station

3.3 Transmitter Specifications

Table 3-1 lists the specifications of the transmitter under test. Operation over the full frequency band of operation is achieved through the use of 2 different sets of transmitter/receiver synthesizers and receive front end modules. The only differences between modules of different frequency bands are the values of passive tuning components.

Page 12 of 71 Release date: December 22, 2004

Table 3-1: Transmitter Specifications

	Fundamental Characteristics
Tx power	10 to 100 W
Tx frequency	Configuration 1: 450 to 470 MHz Configuration 2: 470 to 512 MHz
Channel spacing	6.25, 12.5 or 25 kHz

3.4 System Components

The system tested consists of the units shown in Table 3-2. The capability to operate over all the frequency bands identified in Table 3-1 was achieved by selecting a Tx Synthesizer, Rx Synthesizer, Rx Front End, and Power Amplifier modules which are dedicated for their respective frequency band.

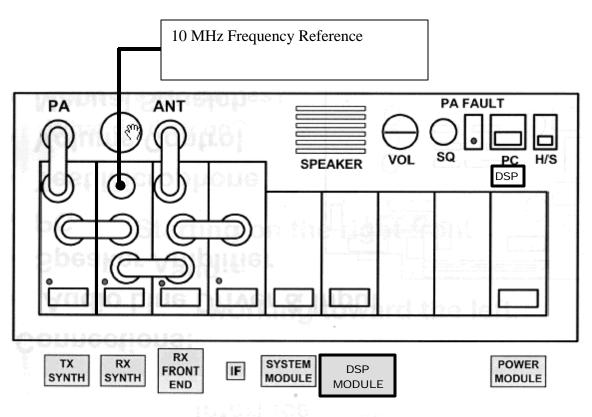
Table 3-2: MASTRIII UHF BTS Components

Component	Model	Serial Number
MASTRIII shelf	SXGPNX	9861756
Tx Synthesizer module	EA101685V12	SLR 0438 1501
	EA101685V13	SLR 0438 1515
Rx Synthesizer module	EA101684V12	SLR 0438 1507
	EA101684V13	SLR 0438 0985
Rx Front End module	19D902782G4 (450 – 470 MHz)	06AQ9L
	19D902782G9 (470 – 492 MHz)	063KQK
	19D902782G10 (492 – 512 MHz)	067QRT
IF module	EA101401V1	SLR 03150255
System module	19D902590G6	SLR 0251 2492
DSP module	EA101800V1	SLR 0446 2337
Power module	19D902589G2	CKA 01390368
Power supply	PS103010V120	QG12659
SitePro shelf	EA101209V1 R1B	SLR 02190892
SSI	CB101869V1/R1A	NR
Controller board Analog board	CB101069V2 P3A	
7 maiog board	CB10170V1 R6A	
RF Power Amplifier	EA101292V22	09430363
10 MHZ Frequency Ref.	Brandywine Com. QFS-102	7661

NR: not required, the SitePro has a serial number

3.5 Support Equipment

The support equipment used for operation and monitoring of the EUT is described in Table 3-3.

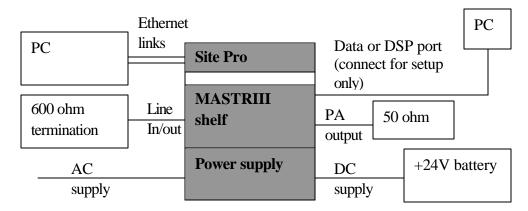

Table 3-3: Support Equipment

Description	Model Number
DELL Optiplex	GXpro
IBM Thinkpad PC	600E

3.6 System Set-up and Test Configurations

The system configuration used for all test cases is presented in Figure 3-2 and Figure 3-3.

Figure 3-2: Module Configuration



The 10 MHz frequency reference is only used to meet the 0.5 ppm frequency stability requirements for radios with 6.25 kHz bandwidth. Base stations with 12.5 kHz and 25 kHz bandwidths use the internal frequency reference of the Rx Synthesizer.

Page 14 of 71 Release date: December 22, 2004

Figure 3-3: System Configuration

A photograph of the test setup used in this test report is presented in Appendix B: Test Set-up Photographs, on page 46.

3.7 EUT Interfaces and Cables

The system contains the following interfaces, as shown in Table 3-4.

EUT Connection Length **Interface Type** Description Type Qty **AC Mains** AC power supply 3 wire AC cord unshielded 6 feet 1 DC Mains (only on the Battery connector of power 2 wire battery unshielded 6 feet new version of the cable supply supply) Ethernet link SitePro Ethernet 0 and 1 Category 5 unshielded 50 feet 2 twisted pairs ports Telephone line in/out MASTRIII shelf 2 twisted pair unshielded 6 feet

Table 3-4: System Cables

3.8 System Modifications

No modifications were required to pass the requirements.

4. General Test Conditions

4.1 Test Facility

Radiated emissions testing was performed in a 10-meter Ambient Free Chamber (AFC) located at 21 Richardson Side road, Kanata, Ontario, Canada. The AFC consists of a shielded room lined with ferrite tiles and anechoic material.

These test facilities are accredited by the Standards Council of Canada (SCC) [1]. Through a Mutual Recognition Agreement (MRA) between the National Voluntary Laboratory Accreditation Program (NVLAP) and SCC, the accreditation status of the AFC facility is valid for the U.S.

4.2 Measurement Instrumentation

The measurement instrumentation conforms to ANSI C63.2 [5] and CISPR 16 [6]. Calibration of the measurement instrumentation is maintained in accordance with the supplier's recommendations, or as necessary to ensure its accuracy.

Page 16 of 71 Release date: December 22, 2004

5. Detailed Test Results

5.1 RF Power

5.1.1 Test Specification

The system was tested to the requirements listed in Table 5-1:

Table 5-1: RF Power Requirements

Requirement	Part / Section
FCC	2.1046, 90.205, 74.461
RSS-119	5.4

5.1.1.1 Limits

The system was tested to the rated power of the EUT, listed in Table 5-2.

Table 5-2: RF Power limit

Configuration	Frequency	Rated Power
1	450 to 470 MHz	10 to 100 W (40 to 50 dBm)
2	470 to 512 MHz	10 to 100 W (40 to 50 dBm)

5.1.2 Test Facility Information

Location: Solectron Design and Engineering Lab 1

Date tested: November 17, 2004

Tested by: Denis Lalonde

5.1.3 Test Procedure

The output of the power amplifier was connected to a power meter using a calibrated RF attenuator and cable.

The unmodulated RF signal was set at the bottom, middle, and top of the frequency band. The lowest and highest possible power levels were evaluated. Each of the 2 Tx/Rx Synthesizers were tested.

5.1.4 Test Results

Test results are shown in Table 5-3.

Table 5-3: RF Power Levels

Channel (MHz)	Low Power (dBm)	Hi Power (dBm)
450.025 (low freq. split)	40.1	50.0
469.975 (low freq. split)	40.1	50.0
470.025 (high freq. split)	40.1	50.0
511.975 (high freq. split)	40.0	50.0

5.1.5 Test Conclusion

The test results met the requirement.

5.1.6 Test Equipment List

Table 5-4: Test Equipment Used for RF Power

Category	Manufacture	Model Number	Description	Serial Number	Cal. Due
Attenuator	Weinschel	53-20-33	20 dB, 500 W	KW975	22 April 2005
Attenuator	Weinschel	6070-10	10 dB, 25 W	BE0846	25 Oct. 2005
Power meter	Anritsu	M2438A	Power meter	SSG012588	27 April 2005
Power sensor	Anritsu	M2424A	Power sensor	SSG012587	27 April 2005

The measurement instrumentation conforms to ANSI C63.2[5] and CISPR 16 [6]. Calibration of the measurement instrumentation is maintained in accordance with the supplier's recommendations, or as necessary to ensure its accuracy.

5.2 Conducted Spurious Emissions

5.2.1 Test Specification

The system was tested to the limits of the requirements listed in Table 5-5:

Table 5-5: Conducted Spurious Emissions Requirement

Requirement	Part / Section
FCC	2.1051, 22.359, 74.462, 90.210,
RSS-119	6.3

5.2.1.1 Limits

The following specification levels are applicable to this test:

Page 18 of 71 Release date: December 22, 2004

Table 5-6: Conducted Spurious Emission Limit

Frequency Range (MHz)	Limit (dBm)
30 to 5120	-20 dBm

The limit is calculated in section 5.4.

The worst case limit from the specification list shown in Table 5-5 is used.

5.2.2 Test Facility Information

Location: Solectron Design and Engineering Lab 1

Date tested: December 9, 2004

Tested by: Denis Lalonde

5.2.3 Test Procedure

Conducted spurious emissions were measured at the bottom and top of the frequency band. Two sets of synthesizers were tested at their maximum (100 W) and minimum power levels (10 W). The transmitter was modulated with a C4FM digital signal with 4800 bits/sec bit rate.

The measurement was separated in 2 frequency bands;

- 1. 30 MHz to 800 MHz: the power amplifier output is connected to the spectrum analyzer through a 10 dB and a 20 dB attenuator.
- 2. 800 MHz to 5.12 GHz: the power amplifier output is connected to the spectrum analyzer through a 20 dB and a a 2 GHz to 800 MHz high-pass filter.

5.2.4 Test Results

The test result are shown in Table 5-7.

Table 5-7: Conducted Spurious Emissions

Channel (MHz)	Maximul level of spurious emission (dBm)		Reference
	Hi Power	Low Power	
450.025	-24.5 dBm	-34.2 dBm	Figure 7-2 to Figure 7-5
511.975	-24.5 dBm	-34.0 dBm	Figure 7-6 to Figure 7-9

5.2.5 Test Conclusion

The test results met the requirement.

5.2.6 Test Equipment List

Table 5-8: Test Equipment used for Conducted Spurious Emissions

Category	Manufacture	Model Number	Description	Serial Number	Cal. Due
Attenuator	Weinschel	53-20-33	20 dB, 500 W	KW975	22/04/2005
Attenuator	Weinschel	6070-10	10 dB, 25 W	BE0846	13/10/2005
Spectrum analyzer	HP	8564A	40 GHz	SSG012069	28/04/2005
High Pass filter	Microwave Circuits	H8008501	800 MHz high pass	SSG012709	NR
Signal generator	HP	83732A	20 GHz	SSG012125	13/10/2005

NR: not required, calibrated using the signal generator and spectrum analyzer

The measurement instrumentation conforms to ANSI C63.2[5] and CISPR 16 [6]. Calibration of the measurement instrumentation is maintained in accordance with the supplier's recommendations, or as necessary to ensure its accuracy.

5.3 Emission Mask

5.3.1 Test Specification

The system was tested to the limits of the requirements listed in Table 5-9:

Table 5-9: Emission Mask Requirement

Requirement	Part / Section
FCC	2.1049, 22.359, 74.462, 90.210
RSS-119	6.4

5.3.1.1 Limits

The specification levels in Table 5-10 were used.

Table 5-10: Emission Mask Limits

Emission Type	Mask Requirement
Analog (25 kHz channel)	Part 90 Mask B (Part 22 and 74 are the same)
Analog (12.5 kHz channel)	Part 90 Mask D (Part 74 is the same) Part 22.359
2 level digital (25 kHz channel)	Part 90 Mask C (Part 74 is the same) Part 22.359
2 level digital (12.5 kHz channel)	Part 90 Mask D (Part 74 and 80 is the same) Part 22.359

The master of this document is stored on an electronic database and is "write-protected" and may be altered only by authorized persons at Solectron EMS Canada Inc.. Viewing of the master document electronically ensures access to the current issue. Any hard copies must be regarded as uncontrolled copies.

Page 20 of 71 Release date: December 22, 2004

Emission Type	Mask Requirement
C4FM / 9600 bits/sec (12.5 kHz channel)	Part 90 Mask D (Part 74 is the same) Part 22.359
C4FM / 4800 bits/sec (6.25 kHz channel)	Part 90 Mask E (Part 74 is the same) Part 22.359

5.3.2 Test Facility Information

Location: Solectron Design and Engineering Lab 1

Date tested: December 9, 2004

Tested by: Denis Lalonde

5.3.3 Test Procedure

The emission mask measurements were performed at 470.025 MHz. The system was tested at its maximum (100 W) power level. Six modulation types of the transmitted signal were setup as follows:

- 1. Wibeband Analog signal: the power amplifier output was modulated with a 2500 Hz signal which had a level 16 dB higher than what was required to produce a deviation of 50% of rated system deviation (+/- 5kHz) at 1 kHz.
- 2. Narrowband Analog signal: the power amplifier output was modulated with a 2500 Hz signal which had a level 16 dB higher than what was required to produce a deviation of 50% of rated system deviation (+/- 2.5kHz) at 1 kHz.
- 3. Wideband 2 level/9600 baud modulation: the power amplifier output was modulated with a 2 level 9600 baud pseudo-random signal which had the level required for +/- 3 kHz deviation.
- 4. Narrowband 2 level/9600 baud modulation: the power amplifier output was modulated with a 2 level 9600 baud pseudo-random signal which had the level required for +/- 1.9 kHz deviation.
- 5. C4FM 9600 bits/second modulation: the power amplifier output was modulated with a C4FM pseudo-random signal which had the level required for a maximum of +/- 2826 Hz deviation.
- 6. C4FM 4800 bits/second modulation: the power amplifier output was modulated with a C4FM pseudo-random signal which had the level required for a maximum of +/- 1100 Hz deviation.

For all of these measurements, the power amplifier output was connected to the spectrum analyzer through a 10 dB and a 20 dB attenuator.

5.3.4 Test Results

Table 5-11 lists the modulation modes measured:

Table 5-11: Emission Mask Results

Measurement	Type of signal	Test result	Reference
470.025 MHz (Part 74, 90, RSS-119)	2500 Hz analog (WB)	Pass	Figure 7-10
470.025 MHz (Part 74, 90, RSS-119)	2500 Hz analog (NB)	Pass	Figure 7-11
470.025 MHz (Part 74, 90, RSS-119)	2 level 9600 baud / +/- 3 KHz deviation	Pass	Figure 7-12
470.025 MHz (Part 74, 90, RSS-119)	2 level 9600 baud / +/- 1.9 KHz deviation	Pass	Figure 7-13
470.025 MHz (Part 74, 90, RSS-119)	C4FM / 9600 bits/sec	Pass	Figure 7-14
470.025 MHz (Part 74, 90, RSS-119)	C4FM / 4800 bits/sec	Pass	Figure 7-15
470.025 MHz (Part 22)	2500 Hz analog (WB)	Pass	Figure 7-16
470.025 MHz (Part 22)	2500 Hz analog (NB)	Pass	Figure 7-17
470.025 MHz (Part 22)	2 level 9600 baud / +/- 3 KHz deviation	Pass	Figure 7-18
470.025 MHz (Part 22)	2 level 9600 baud / +/- 1.9 KHz deviation	Pass	Figure 7-19
470.025 MHz (Part 22)	C4FM / 9600 bits/sec	Pass	Figure 7-20
470.025 MHz (Part 74, 90, RSS-119)	C4FM / 4800 bits/sec	Pass	Figure 7-21

5.3.5 Test Conclusion

The test results met the requirement.

5.3.6 Test Equipment List

Table 5-12: Test Equipment used for Emission Mask

Category	Manufacture	Model	Description	Serial Number	Cal. Due
Attenuator	Weinschel	53-20-33	20 dB, 500 W	KW975	22/04/2005
Attenuator	Weinschel	6070-10	10 dB, 25 W	BE0846	13/10/2005
Spectrum analyzer	HP	8564A	40 GHz	SSG012069	28/04/2005

The measurement instrumentation conforms to ANSI C63.2[5]. Calibration of the measurement instrumentation is maintained in accordance with the supplier's recommendations, or as necessary to ensure its accuracy.

Page 22 of 71 Release date: December 22, 2004

5.4 Field Strength of Spurious Emissions

5.4.1 Test Specification

The system was tested to the limits of the following requirements:

Table 5-13: Field Strength of Spurious Emissions Requirement

Requirement	Part / Section
FCC	2.1053, 90.210, 22.359, 74.462

5.4.1.1 Limits

The following specification levels are worst-case limits taken from all test specifications.

Table 5-14: Field Strength of Spurious Emissions Limit

Frequency Range (MHz)	ERP Limit (dBm)
30 to 5120	-20

The ERP limit was calculated using the minimum attenuation requirement of FCC 90.210 d)3).

Attenuation = minimum of 50 + 10 log (P) dB or 70 dB (when 12.5 kHz channels are used)

= minimum of 50 + 10 log (100) or 70 dB

= minimum of 70 dB or 70 dB

=70 dB

ERP limit = $10 \log (100 \text{ W}) - 70 \text{ dB}$

= -20 dBm

When operating at 10 W, the ERP limit for spurious emissions is -20 dBm.

5.4.2 Test Facility Information

Location: Solectron Design and Engineering 10m Ambient Free Chamber

Date tested: November 21 and December 1, 2004

Tested by: S. Turner and D. Lalonde

5.4.3 Test Procedure

Verifications of the test equipment and AFC were performed prior to the installation of the EUT in accordance with the quality assurance procedures in KP000270-LP-EMC-01-01 [7]. The test was performed as per the relevant Test procedures: ANSI C63.4 [4].

The system was tested in the following manner:

- The EUT was placed on a turntable inside the AFC and it was configured as in normal operation. The system and its cables were separated from the ground plane by an insulating support 10 mm in height. The system was grounded in accordance with its normal installation specifications. No additional grounding connections are allowed.
- For tests between 30 MHz and 1 GHz a broadband bilog antenna was placed at a 10 m distance; a horn antenna, placed also at 10 m distance from the EUT, was used for measurements between 1 GHz and 5.12 GHz.
- A pre-scan was performed to find emissions (frequencies) requiring detail measurement.
 The pre-scan (using a peak detector) was performed by rotating the system 360 degrees
 while recording all emissions (frequency and amplitude). This procedure was repeated for
 antenna heights of 1 to 4 meters, in steps of 1 meter, and for horizontal and vertical
 polarizations of the receiving antenna (for measurements above 30 MHz).
- Prescan optimization was performed based on the pre-scan data. All frequencies, having
 emission levels within 10 dB of the specification(s) limits, were optimized. For each such
 frequency, the EUT was rotated in azimuth over 360 degrees and the direction of
 maximum emission was noted. Antenna height was then varied from 1 to 4 meters at this
 azimuth to obtain maximum emissions. The procedure was repeated for both horizontal
 and vertical polarizations of the search antenna. Then the maximum level measured was
 recorded.
- The frequency range investigated was 30 MHz to 5.12 GHz.
- Between 30 MHz and 1 GHz, a resolution bandwidth of 120 kHz was used.
- Above 1 GHz, a 1 MHz resolution bandwidth and 1 MHz video bandwidth were used.
- The highest emissions were evaluated using the substitution method. This is accomplished by replacing the EUT by a calibrated antenna, cable and signal generator. This equipment is used to transmit a signal that will generate a RF meter reading level identical to the one recorded when the EUT was present. The signal generator power level, the calibration data of the cable and antenna is then used to evaluate the Effective Radiated Power (ERP) of the EUT. The following formula is used:

ERP = Signal generator level - Cable losses + Antenna gain (dBi) - Gain of tuned dipole (dBi)

Margin = Limit - ERP

The measurement was performed while the power amplifier was operating at minimum power output (10 W) and its maximum power output (100 W). A 2 level 9600 baud wideband signal tuned at 450.025 MHz and 511.975 MHz was used for this test. A 50 ohm load was connected to the power amplifier output.

5.4.4 Test Results

Table 5-15 lists the highest emissions measured, all other emission had more than 20 dB margin:

Page 24 of 71 Release date: December 22, 2004

Table 5-15: Field Strength of Spurious Emissions

Tx Channel	Freq. of Emission (MHz)	Signal Generator Level Hi Power (dBm)	Antenna Gain (dBi)	Cable losses (dB)	ERP Low Power (dBm)	ERP Hi Power (dBm)	Margin (dB)	Reference
450.025 MHz	1350.075 (3Tx)	-43.3	7.6	1.3	-59.5	-39.2	19.2	Figure 7-22 to Figure 7-25
511.975 MHz	1023.95 (2Tx) 2047.9 (4Tx) 3583.825 (7 Tx) 4095.8 (8Tx)	-44.4 -47.9 -50.1 -49.7	6.1 8.7 9.7 9.8	1.1 1.5 2.1 2.3	-52.6 -51.6 -59.5 -61.0	-41.6 -42.9 -44.7 -44.4	21.6 22.9 24.7 24.4	Figure 7-26 to Figure 7-29

5.4.5 Test Conclusion

The test results met the requirement.

5.4.6 Test Equipment List

Table 5-16: Test Equipment used for Field Strength of Spurious Emissions

Description	Manufacturer	Model	Serial Number	Cal. Due
Bilog Antenna	Antenna Research	LPB 2520A	SSG012299	3/2/2005
Double Ridged Horn	Emco	3115	SSG012298	12/29/2004
Pre-Amplifier	BNR	LNA	SSG012360	2/11/2005
Quasi-Peak Adapter, HP85650A, (EMI # 2)	HP	85650A	SSG013046	10/13/2005
RF Amplifier, HP8447 # 1	Agilent	8447D	SSG013045	10/13/2005
Spec. A, RF PreSelector, HP85685A (AFC #1)	HP	85685A	SSG012010	4/29/2005
Spectrum Analyzer Display, HP 85662A	НР	85662A	SSG012433	4/29/2005
Spectrum Analyzer, HP8566B, (AFC #1)	HP	8566B	SSG012521	4/29/2005
Sucoflex Cable, EMC Cable # 1	Huber & Suhner	106A	SSG012454	2/12/2005
Sucoflex Cable, EMC Cable # 2	Huber & Suhner	106A	SSG012453	2/12/2005
Sucoflex Cable, EMC Cable # 5	Huber & Suhner	104PEA	SSG012359	2/11/2005
Sucoflex Cable, EMC Cable # 6	Huber & Suhner	106A	SSG012456	2/12/2005
Utiflex Cable, EMC Cable #4	Micro-Coax	UFA 147B-1- 0300-70X70	SSG012309	10/13/2005

The master of this document is stored on an electronic database and is "write-protected" and may be altered only by authorized persons at Solectron EMS Canada Inc.. Viewing of the master document electronically ensures access to the current issue. Any hard copies must be regarded as uncontrolled copies.

Description	Manufacturer	Model	Serial Number	Cal. Due
Signal generator	HP	83732A	SSG012125	13/10/2005
Horn Antenna	EMCO	3115	2703	24/02/05

The measurement instrumentation conforms to ANSI C63.2[5] and CISPR 16 [6]. Calibration of the measurement instrumentation is maintained in accordance with the supplier's recommendations, or as necessary to ensure its accuracy.

5.5 Frequency Stability

5.5.1 Test Specification

The system was tested to the limits of the following requirements:

Table 5-17: Frequency Stability Requirement

Requirement	Part / Section
FCC	2.1055, 90.213, 22.355, 74.464
RSS-119	7.0

5.5.1.1 Limits

The specification levels are listed in Table 5-18.

Table 5-18: Frequency Stability Limits

Frequency Range (MHz)	Bandwidth (kHz)	Minimum Frequency Stability (ppm)
421 to 512	6.25	0.5
421 to 512	12.5	1.5
421 to 512	25	2.5

5.5.2 Test Facility Information

Location: Solectron Design and Engineering Lab 9

Date tested: December 6 and 21, 2004

Tested by: Denis Lalonde

Page 26 of 71 Release date: December 22, 2004

5.5.3 Test Procedure

The 470.025 MHz unmodulated output of the power amplifier was connected through attenuators into a frequency counter. A 10 MHz rubidium frequency reference was used to provide improved frequency accuracy to the frequency counter.

Frequency measurements were performed with 2 configurations of the base station frequency reference. A 10 MHz external frequency reference is used when the base station is deployed with a 6.25 kHz bandwidth. A 12.8 MHz internal frequency reference is used when the base station is deployed with 12.5 kHz and 25 kHz bandwidths.

The base station was installed in an environmental chamber. The temperature was changed from – 30 degree Celsius up to 50 degree Celsius in 10 degree increments while the EUT was powered off. The temperature was allowed to stabilize for 1 hour after changing the temperature. The measurement of frequency was done 5 minutes after the base station was powered on.

Frequency accuracy measurement were also performed at 20 degree Celsius while modifying the voltage of the AC mains from 85% (102 VAC) to 115% (138 VAC) of the nominal value (120 VAC).

5.5.4 Test Results

The table below lists the frequency stability measurement results:

AC External 10 MHz Frequency Reference Internal 12.8 MHz Frequency Reference **Temperature** (Used for 12.5 and 25 kHz Bandwidths) Voltage (Used for 6.25 kHz Bandwidth) (degree. (V) Celsius) Frequency (MHz) Frequency Error Frequency (MHz) Frequency Error (ppm) (ppm) -30 120 470.025014 0.030 470.025012 0.03 -20 470.025015 0.07 120 0.032 470.025032 -10 120 470.025018 0.038 470.025589 1.25 0 120 470.025018 0.038 470.025344 0.73 10 120 470.025017 0.036 470.025083 0.18 20 102 0.06 470.025013 0.028 470.025029 20 120 470.025013 0.028 470.025029 0.06 20 138 470.025013 0.028 470.025029 0.06 30 120 470.025013 0.028 470.024952 -0.10 40 120 470.025013 0.028 470.024803 -0.42 470.025013 470.024741 50 120 0.028 -0.55

Table 5-19: Frequency Stability Results (470.025 MHz)

5.5.5 Test Conclusion

The test results met the requirement.

5.5.6 Test Equipment List

Table 5-20: Test Equipment used for Frequency Stability

Category	Manufacture	Model	Description	Serial Number	Cal. Due
Frequency Reference	UCT	2008	Rubidium 10 MHz	A1010	27/04/2005
Attenuator	Weinschel	53-20-33	20 dB, 500 W	KW975	22/04/2005
Attenuator	Weinschel	6070-10	10 dB, 25 W	BE0846	13/10/2005
Digital Multimeter	Fluke	83		SSG012586	20/04/2005
Frequency Counter	HP	5385A		SS013044	12/07/2005

The measurement instrumentation conforms to ANSI C63.2[5] and CISPR 16 [6]. Calibration of the measurement instrumentation is maintained in accordance with the supplier's recommendations, or as necessary to ensure its accuracy.

5.6 Transient Frequency Behavior

5.6.1 Test Specification

The system was tested to the limits of the following requirements:

Table 5-21: Transient Frequency Behavior Requirement

Requirement	Part / Section
FCC	90.214, 74.462
RSS-119	6.5

5.6.1.1 Limits

The specification levels are listed in Table 5-22.

Page 28 of 71 Release date: December 22, 2004

Table 5-22: Transient Frequency Behavior Limit

Channel Spacing (kHz)	Time Interval (ms)	Maximum Frequency Difference (kHz)
25	T1 = 10	+/- 25
	T2= 25	+/- 12.5
	T3= 10	+/- 25
12.5	T1 = 10	+/- 12.5
	T2= 25	+/- 6.25
	T3= 10	+/- 12.5
6.25	T1 = 10	+/- 6.25
	T2= 25	+/- 3.125
	T3= 10	+/- 6.25

Note:

t1 is the time period immediately following Txon

t2 is the time period immediately following t1.

t3 is the time period from the instant when the transmitter is turned off until Txoff.

5.6.2 Test Facility Information

Location: Solectron Design and Engineering Lab 1

Date tested: December 9, 2004

Tested by: Denis Lalonde

5.6.3 Test Procedure

The test procedure of ANSI/TIA-603B-2002 [11]section 2.2.19 (modulation domain analyzer method) was used.

5.6.4 Test Results

Table 5-23 shows the transient frequency behavior measurement results. Each graph shows the transmitted signal frequency at the center of the +/- 25 kHz frequency scale over 25 msec. The measurement was actually performed over 35 msec. The transient frequency behavior over the 10 msec part of the measurement which is not shown on the plots is the same or lower than recorded in Table 5-23.

Table 5-23: Transient Frequency Behavior Test Results

Channel	Channel Spacing (kHz)	Time Interval (ms)	Maximum Frequency Difference (kHz)	Measured Frequency Difference (kHz)	Measurement reference
470.025 MHz	25	T1 = 10	+/- 25	<1	Figure 7-30
IVIIIZ		T2= 25	+/-12.5	<1	Figure 7-30 & Figure 7-31
		T3= 10	+/- 25	<1	Figure 7-31
470.025	12.5	T1 = 10	+/- 12.5	<1	Figure 7-32
MHz		T2= 25	+/-6.25	<1	Figure 7-32 & Figure 7-33
		T3= 10	+/- 12.5	<1	Figure 7-33
470.025	6.25	T1 = 10	+/- 6.25	<1	Figure 7-30
MHz		T2= 25	+/-3.125	<1	Figure 7-30 & Figure 7-31
		T3= 10	+/- 6.25	<1	Figure 7-31

T1 is the time period immediately following Txon

5.6.5 Test Conclusion

The test results met the requirement.

5.6.6 Test Equipment List

Table 5-24: Test Equipment used for Transient Frequency Behavior Measurement

Category	Manufacture	Model	Description	Serial Number	Cal. Due
Attenuator	Weinschel	53-20-33	20 dB, 500 W	KW975	22/04/2005
Attenuator	Weinschel	6070-10	10 dB, 25 W	BE0846	13/10/2005
Modulation Domain analyzer	HP	53310A		3121A01217	27/04/2005

Calibration of the measurement instrumentation is maintained in accordance with the supplier's recommendations, or as necessary to ensure its accuracy.

5.7 Audio Frequency Response

5.7.1 Test Specification

The system was tested to the limits of the following requirement:

Page 30 of 71 Release date: December 22, 2004

T2 the time period immediately following T1.

T3 is the time period from the instant when the transmitter is turned off until Txoff.

Table 5-25: Frequency Response Requirement

Requirement	Part / Section	
FCC	2.1047	

5.7.1.1 Limits

The specification levels are listed in Table 5-26.

Table 5-26: Frequency Response Limit

Frequency Range (kHz)	TIA 603-b [11] Recommended Response (dB)		
0.3 to 2.5	+1 dB or -3 dB from a true 6 dB per octave pre- emphasis characteristic as referenced to the 1000 Hz level. The exception is from 500 Hz to 3000 Hz, where an additional 6 dB per octave rolloff is allowed.		
2.5 to 3	An additional 6 dB per octave attenuation is allowed		

5.7.2 Test Facility Information

Location: Solectron Design and Engineering Lab 1

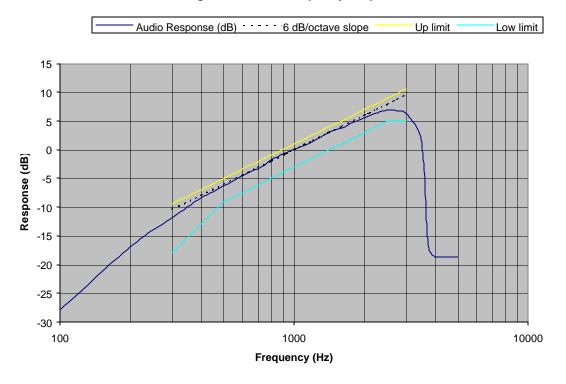
Date tested: November 18, 2004

Tested by: Denis Lalonde

5.7.3 Test Procedure

The frequency deviation of the transmitter output was initially set to 20% of the rated system deviation at 1 kHz by varying the level in the audio input signal to the base station. The frequency of the input signal was then swept from 100 Hz to 5 kHz while keeping the input level constant. The frequency deviation was recorded as the input frequency was changed.

The frequency response was determined by the following formula.


Response $(dB) = 20 \log (measured frequency deviation/frequency deviation at 1 kHz)$

The transmitter was set for narrowband analog signal for this test at 470.025 MHz.

5.7.4 Test Results

Figure 5-1 illustrates the frequency response of the system:

Figure 5-1: Audio Frequency Response Results

5.7.5 Test Conclusion

The test results met the requirement.

5.7.6 Test Equipment List

Table 5-27: Test Equipment used for Frequency Response Measurement

Category	Manufacture	Model	Description	Serial Number	Cal. Due
Modulation Domain analyzer	HP	53310A		3121A01217	27/04/2005
Transmission Test Set	HP	4947A		SSG012652	25/05/2005
Attenuator	Weinschel	53-20-33	20 dB, 500 W	KW975	22/04/2005
Attenuator	Weinschel	6070-10	10 dB, 25 W	BE0846	13/10/2005

Calibration of the measurement instrumentation is maintained in accordance with the supplier's recommendations, or as necessary to ensure its accuracy.

Page 32 of 71 Release date: December 22, 2004

5.8 Audio Low Pass Filter Response

5.8.1 Test Specification

The system was tested to the limits of the following requirements:

Table 5-28: Audio Low Pass Filter Response Requirement

Requirement	Part / Section	
FCC	2.1047	
RSS-119	6.6	

5.8.1.1 Limits

The specification levels are listed in Table 5-29.

Table 5-29: Audio Low Pass Filter Response Limit

Frequency Range (kHz)	RSS-119 Recommended Attenuation (dB)
3 to 20	60 log (freq.(Hz)/3000)
20 to 30	50

5.8.2 Test Facility Information

Location: Solectron Design and Engineering Lab 1

Date tested: November 18, 2004

Tested by: Denis Lalonde

5.8.3 Test Procedure

The system was initially set to transmit a signal with a deviation of 60% of the system rated deviation at 1 kHz. The output of the power amplifier was connected to a FM demodulator. The demodulated output was then fed into an audio signal analyzer. The audio signal analyzer measured the amplitude of the demodulated audio signal while the frequency of the transmitter audio signal was increased from 1 kHz to 30 kHz. The measured amplitude of the audio signal amplitude was recorded for each frequency measurement.

The transmitter was set for wideband analog signal for this test at 470.025 MHz.

5.8.4 Test Results

Figure 5-2 shows the low pass filter response measurement results.

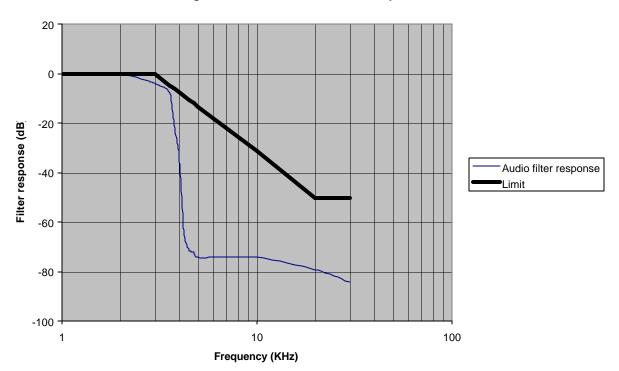


Figure 5-2 Audio Low Pass Filter Response

5.8.5 Test Conclusion

The test results met the requirement.

5.8.6 Test Equipment List

Table 5-30: Test Equipment used for Audio Low Pass Filter Response Measurement

Category	Manufacture	Model	Description	Serial Number	Cal. Due
Spectrum analyzer	HP	3585A	40 MHz, 1 Mohm IN	1750A03502	14/10/2005
Spectrum analyzer	Rohde & Schwarz	FSM		SSG012659	7/10/2005
Attenuator	Weinschel	53-20-33	20 dB, 500 W	KW975	22/04/2005
Attenuator	Weinschel	6070-10	10 dB, 25 W	BE0846	13/10/2005
Modulation Domain analyzer	HP	53310A		3121A01217	27/04/2005
Transmission Test Set	HP	4934A		SSG012418	23/02/2005

Page 34 of 71 Release date: December 22, 2004

Calibration of the measurement instrumentation is maintained in accordance with the supplier's recommendations, or as necessary to ensure its accuracy.

5.9 Modulation Limiting

5.9.1 Test Specification

The system was tested to the limits of the following requirements:

Table 5-31: Modulation Limiting Requirement

Requirement	Part / Section
FCC	2.1047

5.9.1.1 Limits

The specification levels are listed in Table 5-32.

Table 5-32: Modulation Limiting Limit

Relative Input Signal Level (dB)	12.5 kHz Channel Spacing	25 kHz Channel Spacing
-20 to 20	< rated deviation (2.5 kHz)	< rated deviation (5 kHz)

5.9.2 Test Facility Information

Location: Solectron Design and Engineering Lab 1

Date tested: November 18 and December 3, 2004

Tested by: Denis Lalonde

5.9.3 Test Procedure

The system was initially set to transmit a signal with a deviation of 60% of the system rated deviation at 1 kHz. The input level required for this deviation was then recorded as the reference level. The positive peak and negative peak frequency deviation was then recorded while the input signal was changed from -20 dB to 20 dB relative to the reference level. This was repeated for an input signal of 300 Hz and 2500 Hz.

The measurements were performed while the transmitter transmitted a wideband and narrowband analog signal at 470.025 MHz.

5.9.4 Test Results

Figure 5-3 to Figure 5-6 shows the modulation limiting measurement results:

Figure 5-3 Modulation Limiting, Positive Peak (25 kHz channel)

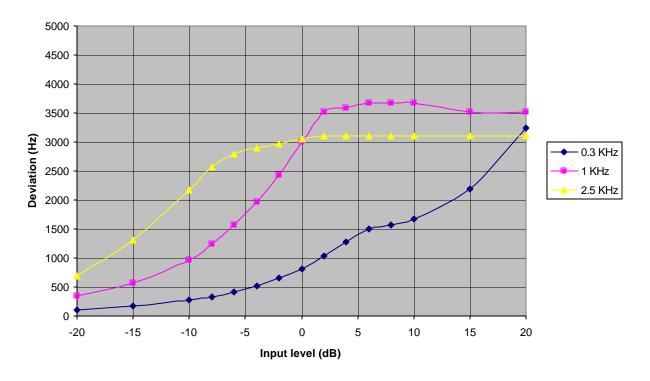
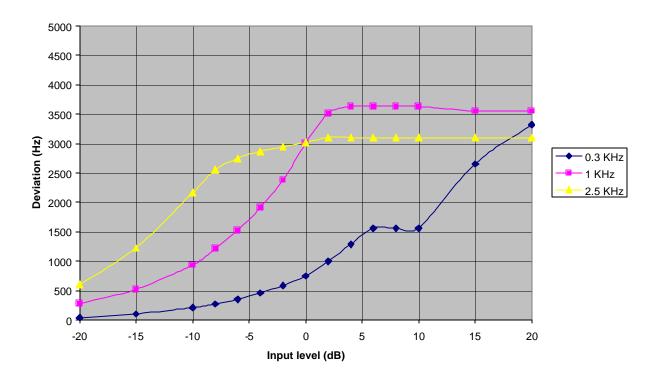



Figure 5-4 Modulation Limiting, Negative Peak (25 kHz channel)

Page 36 of 71 Release date: December 22, 2004

Figure 5-5 Modulation Limiting, Positive Peak (12.5 kHz channel)

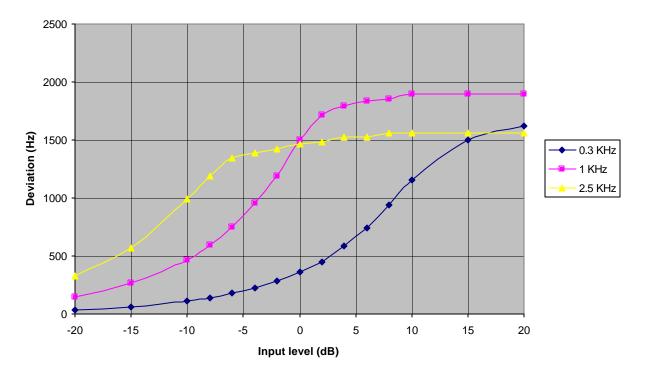
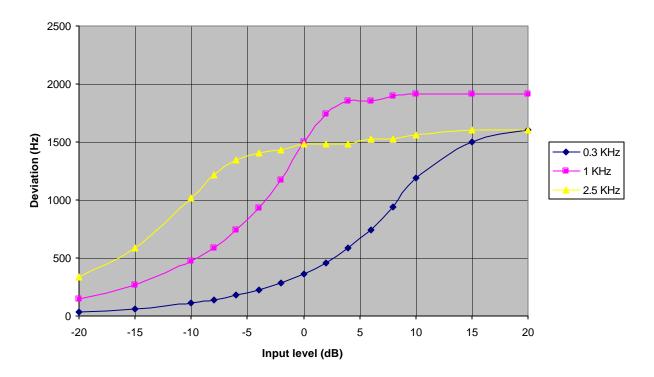



Figure 5-6 Modulation Limiting, Negative Peak (12.5 kHz channel)

5.9.5 Test Conclusion

The test results met the requirement.

5.9.6 Test Equipment List

Table 5-33: Test Equipment used for Audio Low Pass Filter Response Measurement

Category	Manufacture	Model	Description	Serial Number	Cal. Due
Modulation Domain analyzer	HP	53310A		3121A01217	27/04/2005
Transmission Test Set	HP	4947A		SSG012652	25/05/2005
Attenuator	Weinschel	53-20-33	20 dB, 500 W	KW975	22/04/2005
Attenuator	Weinschel	6070-10	10 dB, 25 W	BE0846	13/10/2005

Calibration of the measurement instrumentation is maintained in accordance with the supplier's recommendations, or as necessary to ensure its accuracy.

5.10 Occupied Bandwidth

5.10.1 Test Specification

The system occupied bandwidth was evaluated according to the specifications listed in Table 5-34:

Table 5-34: Occupied Bandwidth

Requirement	Part / Section
FCC	2.202
RSP-100	7.2

5.10.2 Test Facility Information

Location: Solectron Design and Engineering Lab 1

Date tested: December 9, 2004

Tested by: Denis Lalonde

5.10.3 Test Procedure

Six occupied bandwidth measurements were performed at 470.025 MHz.

Page 38 of 71 Release date: December 22, 2004

- 1. Wideband Analog signal: the power amplifier output was modulated with a 2500 Hz signal which had a level 16 dB higher than what was required to produce a deviation of 50% of rated system deviation (5 kHz) at 1 kHz.
- 2. Narrowband Analog signal: the power amplifier output was modulated with a 2500 Hz signal which had a level 16 dB higher than what was required to produce a deviation of 50% of rated system deviation (2.5 kHz) at 1 kHz.
- 3. Wideband two level/9600 baud modulation: the power amplifier output was modulated with a 2 level 9600 baud pseudo-random signal which had the level required for +/- 3 kHz deviation.
- 4. Narrowband two level/9600 baud modulation: the power amplifier output was modulated with a 2 level 9600 baud pseudo-random signal which had the level required for +/- 1.9 kHz deviation.
- 5. C4FM 9600 bits/sec. modulation: the power amplifier output was modulated with a C4FM pseudo-random signal which had the level required for a maximum of +/- 2826 Hz deviation.
- 6. C4FM 4800 bits/sec. modulation: the power amplifier output was modulated with a C4FM pseudo-random signal which had the level required for a maximum of +/- 1100 Hz deviation.

For all of these measurements, the power amplifier output was connected to the spectrum analyzer through a 10 dB and a 20 dB attenuator.

The occupied bandwidth was measured using the 99% bandwidth measuring feature of the spectrum analyzer.

5.10.4 Test Results

The table below lists the calculated and measured occupied bandwidth.

Table 5-35: Occupied Bandwidth Values (470.025 MHz)

Type of signal	Calculation	Measurement	Emission designator
Audio (wideband)	Max. modulation (M) = 3 kHz Max. deviation (D) = 5 kHz K = 1 Bn = 2M + 2DK Bn = 16 kHz	10.2 kHz Figure 7-34 (measured with 2.5 kHz tone)	16K0F3E
Audio (narrowband)	Max. modulation (M) = 3 kHz Max. deviation (D) = 2.5 kHz K = 1 Bn = 2M + 2DK Bn = 11 kHz	5.25 kHz Figure 7-35 (measured with 2.5 kHz tone)	11K0F3E
2 level 9600 baud / 3 KHz deviation	Max. modulation (B) = 9.6 kHz Max. deviation (D) = 3 kHz K = 1 Bn = B + 2DK Bn = 15.6 kHz	11.2 kHz Figure 7-36	15K6F1D 15K6F1E
2 level 9600 baud / 1.9 KHz deviation	Max. modulation (B) = 9.6 kHz Max. deviation (D) = 1.9 kHz K = 1 Bn = B + 2DK Bn = 13.4 kHz	8.08 kHz Figure 7-37	13K4F1D 13K4F1E
C4FM / 9600 bits/s	Max. modulation (B) = 4.8 kHz Max. deviation (D) = 2.826 kHz K = 1 Bn = B + 2DK Bn = 10.452 kHz	8.08 kHz Figure 7-38	10K5F1D 10K5F1E
C4FM / 4800 bits/s	Max. modulation (B) = 2.4 kHz Max. deviation (D) = 1.1 kHz K = 1 Bn = B + 2DK Bn = 4.6 kHz	3.42 kHz Figure 7-39	4K60F1D 4K60F1E

5.10.5 Test Equipment List

Table 5-36: Test Equipment used for Occupied bandwidth

Category	Manufacture	Model	Description	Serial Number	Cal. Due
Attenuator	Weinschel	53-20-33	20 dB, 500 W	KW975	22/04/2005
Attenuator	Weinschel	6070-10	10 dB, 25 W	BE0846	13/10/2005
Spectrum analyzer	HP	8564A	40 GHz	SSG012069	28/04/2005

The master of this document is stored on an electronic database and is "write-protected" and may be altered only by authorized persons at Solectron EMS Canada Inc.. Viewing of the master document electronically ensures access to the current issue. Any hard copies must be regarded as uncontrolled copies.

Page 40 of 71 Release date: December 22, 2004

The measurement instrumentation conforms to ANSI C63.2[5]. Calibration of the measurement instrumentation is maintained in accordance with the supplier's recommendations, or as necessary to ensure its accuracy.

5.11 Receive Antenna Port Conducted Emissions

These tests are performed to assure that the product does not produce excessive conducted emissions on the receive antenna port.

5.11.1 Test Specification

The system was tested to the requirements listed in Table 5-37:

Table 5-37: Receive Port Conducted Emissions Requirement

Requirement	Section	Country of Application
RSS-119	8	Canada
FCC Part 15, Subpart B	15.111	USA

5.11.1.1 Limits

The specification levels in Table 5-38 are worst-case limits taken from all test specifications.

Table 5-38: Receive Antenna Port Conducted Emissions Limits

Frequency Range (MHz)	FCC Part 15 / RSS-119 (dBm)
30 - 2560	-57

5.11.2 Test Facility Information

Location: Solectron Design and Engineering Lab 1

Date tested: December 9, 2004

Tested by: Denis Lalonde

5.11.3 Test Configurations

For conducted emissions test cases, the EUT hardware configuration / software load used is described in sections 3.6 (see Figure 3-2).

5.11.4 Test Procedure

Verifications of the test equipment were performed prior to the installation of the EUT in accordance with the quality assurance procedures in KP000270-LP-EMC-01-01 [7]. The test was performed as per the relevant Test procedures: ANSI C63.4 [4], RSS-119[10].

The test method shown in Figure 5-7 was used for conducted emission measurements on the receive antenna port.

Receive antenna port EUT

EMC s/w

Figure 5-7: Rx Antenna Port Test Method

SA

Abbreviations used in the above figures:

EUT Equipment under test SA Spectrum Analyzer

- The connection of the antenna port cable was representative of installation practice as shown in the figure above.
- Conducted emissions were measured by connecting the spectrum analyzer input to the antenna port of the Receiver Front End Module
- A pre-scan was taken for all the frequency range from the requirement, using a peak detector on the spectrum analyzer. The pre-scan data was then compared to the specification limits. All emissions within 10 dB from the limit lines were recorded.

5.11.5 Test Results:

This section presents the conducted emissions on the receive antenna port test results. Graphical representations of the measurements taken appear in Appendix H: Conducted Receiver Emissions Plots.

Page 42 of 71 Release date: December 22, 2004

All emissions had more than 10 dB margin.

5.11.6 Test Conclusion

The EUT has passed the Receive Antenna Port Conducted Emissions tests with respect to FCC Part 15 and RSS-119 with more than 10 dB of margin.

5.11.7 Test Equipment List

Table 5-39: Test Equipment used for Conducted Spurious Emissions

Category	Manufacture	Model Number	Description	Serial Number	Cal. Due
Spectrum analyzer	HP	8564A	40 GHz	SSG012069	28/04/2005

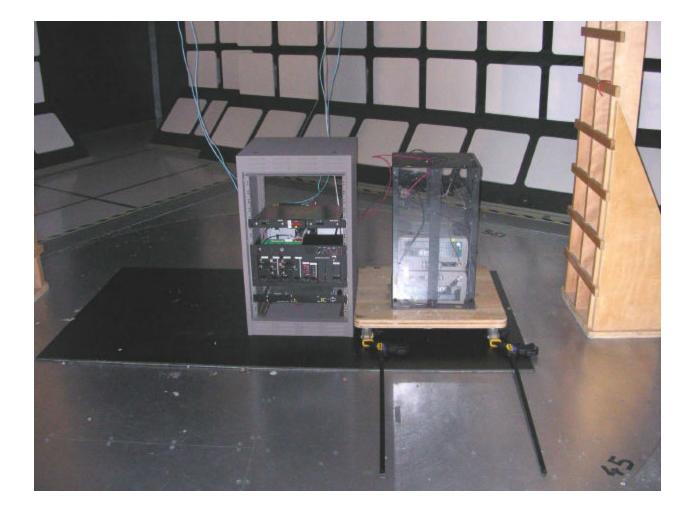
The measurement instrumentation conforms to ANSI C63.2 [5] and CISPR 16 [6]. Calibration of the measurement instrumentation is maintained in accordance with the supplier's recommendations, or as necessary to ensure its accuracy.

6. References

- Standards Council of Canada Scope of Accreditation Letter SCC 1003-15/163 dated 2002-12-16 (Scope of accreditation is effective until 2005-10-05 and includes FCC Part 15 and ICES-003). This scope of accreditation is outlined at the following web site http://www.scc.ca/scopes/reg126-eng-s.pdf.
- 2. Solectron EMS Canada Inc. Quality Manual, K0000608-QD-QM-01-07, 2004.
- 3. Solectron EMS Canada Inc. Lab Operations Manual KG000347-QD-LAB-01-05, 2004.
- 4. ANSI C63.4-2001, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz, 17 June 2001.
- 5. ANSI C63.2-1996, American National Standard for Electromagnetic Noise and Field Strength Instrumentation, 10 Hz to 40 GHz Specifications.
- CISPR 16-1, Specification for Radio Disturbance and Immunity Measuring Apparatus and Methods - Part 1: Radio Disturbance and Immunity Measuring Apparatus, Edition 2.0, 1999-10.
- 7. Solectron EMS Canada Inc., EMC General Lab Test Procedure, KP000270-LP-EMC-01-01, February 2004.
- 8. FCC Rules for Radio Frequency Devices, Title 47 of the Code of Federal Regulations), Part 2, U.S. Federal Communications Commission.
- 9. FCC Rules for Radio Frequency Devices, Title 47 of the Code of Federal Regulations), Part 90, U.S. Federal Communications Commission.
- 10. RSS-119, Issue 6, "Land Mobile and Fixed Radio, Transmitters and Receivers, 27.41 to 960 MHz" March 25, 2000.
- 11. ANSI/TIA-603-B-2002, "Land Mobile FM or PM Communications Equipment Measurement and Performance Standards", November 7, 2002
- 12. VCCI, V-3/02.04 16th edition, April 2002. Title: AGREEMENT OF VOLUNTARY CONTROL COUNCIL FOR INTERFERENCE BY INFORMATION TECHNOLOGY EQUIPMENT
- 13. APLAC, Asia Pacific Laboratory Accreditation Cooperation, Website (February 10th, 2004): http://www.aplac.org.
- 14. ILAC, International Laboratory Accreditation Cooperation, Website (February 10th, 2004): http://www.ilac.org/
- 15. Industry Canada, RSS 212, Test Facilities and Test Methods for Radio Equipment, Issue 1 (Provisional), February 27, 1999.

7. Appendices

7.1 Appendix A: Glossary


Included below are definitions and abbreviations of terms used in this document.

Term	Definition
AC	Alternating Current
AFC	Ambient Free Chamber
AM	Amplitude modulation
ANSI	American National Standards Institute
AVG	Average detector
CISPR	Comité International Spécial Perturbation Radioélectrique (International Special Committee on Radio Interference)
Class A	Class A Limits for typical commercial establishments
Class B	Class B Limits for typical domestic and residential establishments
dB	Decibel
EMC	Electromagnetic Compatibility
EMI	Electromagnetic Interference
EN	European Normative
EUT	Equipment Under Test
FCC	Federal Communications Commission, USA
GND	Ground
IC	Industry Canada
PA	Broadband Power Amplifier
RBW	Resolution Bandwidth
RF	Radio-Frequency
RFI	Radio-Frequency Interference
SCC	Standards Council of Canada

7.2 Appendix B: Test Set-up Photographs

Figure 7-1: M/A-COM MASTRIII UHF Base Station Radiated Emissions Set-up

Page 46 of 71 Release date: December 22, 2004

7.3 Appendix C: Conducted Spurious Emissions Plots

Figure 7-2: Tx at 450.025 MHz, 100 W Power, 30 MHz to 800 MHz

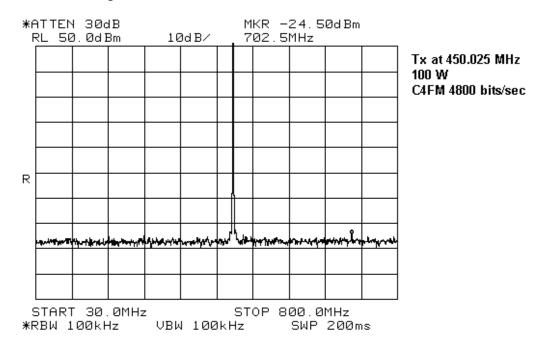


Figure 7-3: Tx at 450.025 MHz, 100 W Power, 800 MHz to 5.12 GHz

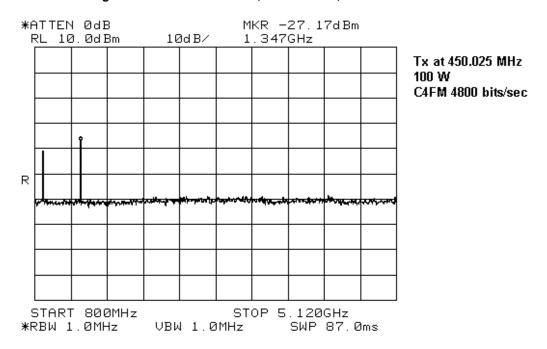


Figure 7-4: Tx at $450.025 \, \text{MHz}$, 10 W Power, 30 MHz to 800 MHz

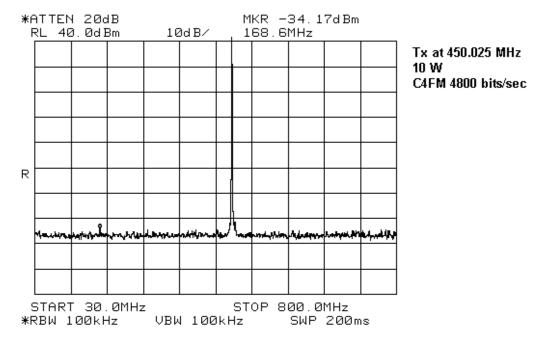
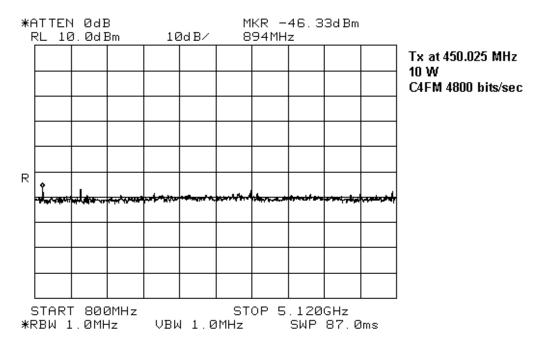



Figure 7-5: Tx at 450.025 MHz, 10 W Power, 800 MHz to 5.12 GHz

Page 48 of 71 Release date: December 22, 2004

Figure 7-6: Tx at 511.975 MHz, 100 W Power, 30 MHz to 800 MHz

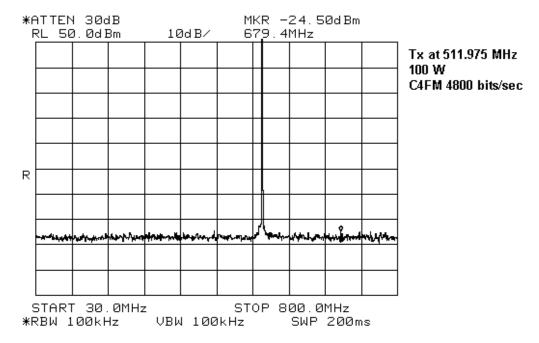


Figure 7-7: Tx at 511.975 MHz, 100 W Power, 800 MHz to 5.12 GHz

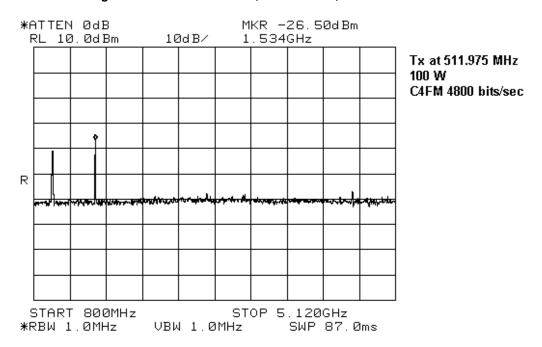


Figure 7-8: Tx at 511.975 MHz, 10 W Power, 30 MHz to 800 MHz

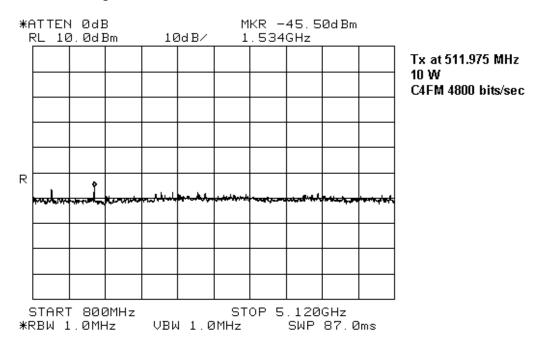
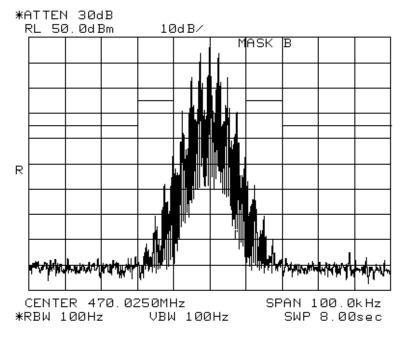



Figure 7-9: Tx at 511.975 MHz, 10 W Power, 800 MHz to 5.12 GHz


Page 50 of 71 Release date: December 22, 2004

7.4 Appendix D: Emission Mask Plots

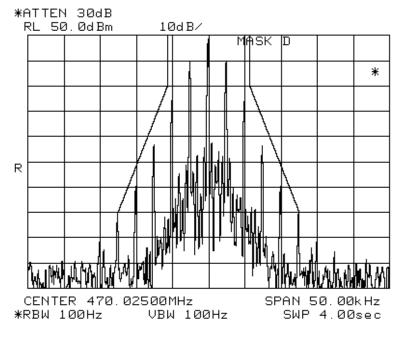

This appendix presents all emission Mask plots for the test cases measured.

Figure 7-10: 2500 Hz Audio Signal Wideband, 470.025 MHz, FCC Part 90 Mask

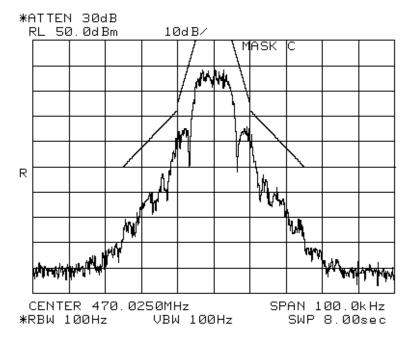

Tx at 470.025 MHz 100 W Analog modulation WB 2500 Hz signal level 16 dB higher than required for 50% deviation at 1 kHz

Figure 7-11: 2500 Hz Audio Signal Narrowband, 470.025 MHz, FCC Part 90 Mask

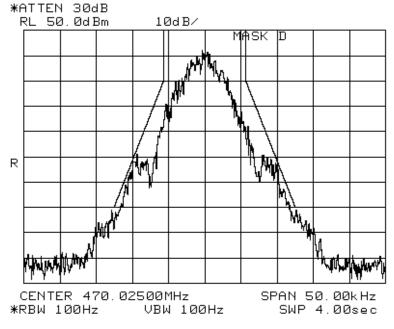
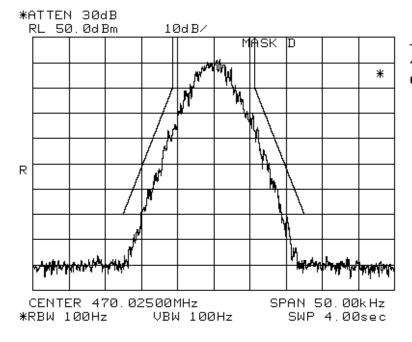

Tx at 470.025 MHz 100 W Analog modulation NB 2500 Hz signal level 16 dB higher than required for 50% deviation at 1 kHz

Figure 7-12: 2 Level 9600 baud Signal with +/- 3 kHz Deviation, 470.025 MHz, FCC Part 90 Mask

Tx at 470.025 MHz 100 W 2 level digital modulation +/- 3 kHz deviation


Figure 7-13: 2 Level 9600 baud Signal with +/- 1.9 kHz Deviation, 470.025 MHz, FCC Part 90 Mask

Tx at 470.025 MHz 100 W 2 level digital modulation +/- 1.9 kHz deviation

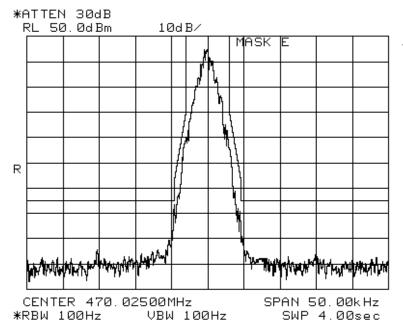

Page 52 of 71 Release date: December 22, 2004

Figure 7-14: C4FM /9600 bits/sec Signal, 470.025 MHz, FCC Part 90 Mask

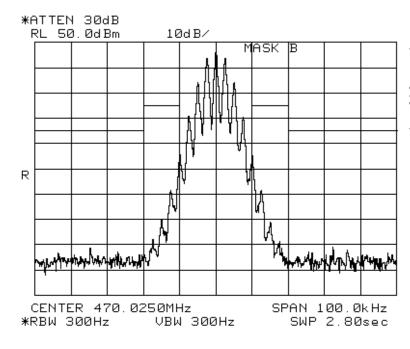

Tx at 470.025 MHz 100 W C4FM 9600 bits/sec

Figure 7-15: C4FM /4800 bits/sec Signal, 470.025 MHz, FCC Part 90 Mask

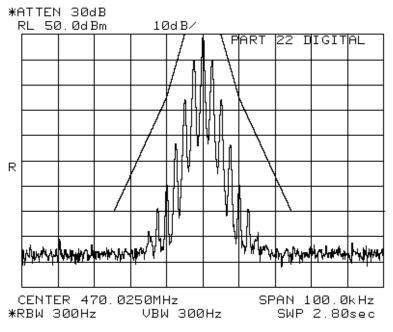
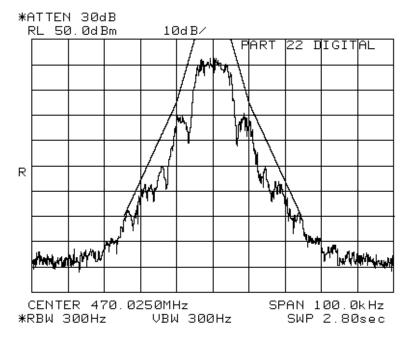

Tx at 470.025 MHz 100 W C4FM 4800 bits/sec

Figure 7-16: 2500 Hz Audio Signal Wideband, 470.025 MHz, FCC Part 22 Mask

Tx at 470.025 MHz 100 W Analog modulation WB 2500 Hz signal level 16 dB higher than required for 50% deviation at 1 kHz

Figure 7-17: 2500 Hz Audio Signal Narrowband, 470.025 MHz, FCC Part 22 Mask



Tx at 470.025 MHz 100 W Analog modulation NB 2500 Hz signal level 16 dB higher than required for 50% deviation at 1 kHz

Note: Mask B should be on this plot

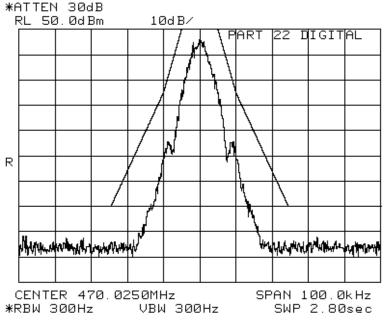
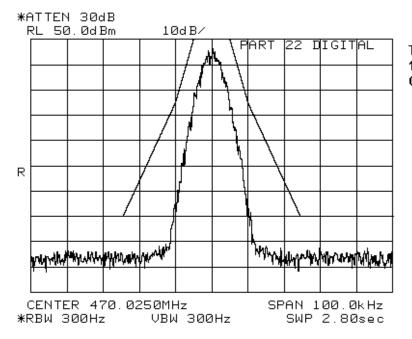

Page 54 of 71 Release date: December 22, 2004

Figure 7-18: 2 Level 9600 baud Signal with +/- 3 kHz Deviation, 470.025 MHz, FCC Part 22 Mask

Tx at 470.025 MHz 100 W 2 level digital modulation +/- 3kHz deviation


Figure 7-19: 2 Level 9600 baud Signal with +/- 1.9 kHz Deviation, 470.025 MHz, FCC Part 22 Mask

Tx at 470.025 MHz 100 W 2 level digital modulation +/- 1.9 kHz deviation

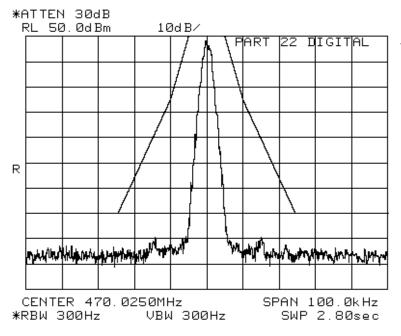

The master of this document is stored on an electronic database and is "write-protected" and may be altered only by authorized persons at Solectron EMS Canada Inc.. Viewing of the master document electronically ensures access to the current issue. Any hard copies must be regarded as uncontrolled copies.

Figure 7-20: C4FM /9600 bits/sec Signal, 470.025 MHz, FCC Part 22 Mask

Tx at 470.025 MHz 100 W C4FM 9600 bits/sec

Figure 7-21: C4FM /4800 bits/sec Signal, 470.025 MHz, FCC Part 22 Mask

Tx at 470.025 MHz 100 W C4FM 4800 bits/sec

Page 56 of 71 Release date: December 22, 2004

7.5 Appendix E: Field Strength of Spurious Emissions Plots

This appendix presents all field strength plots for the test cases measured.

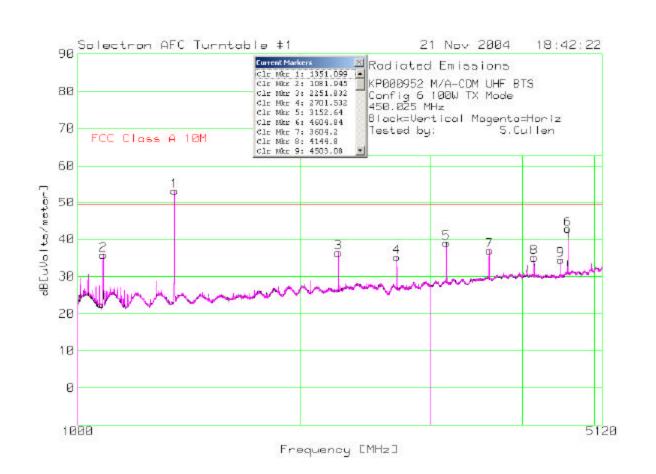
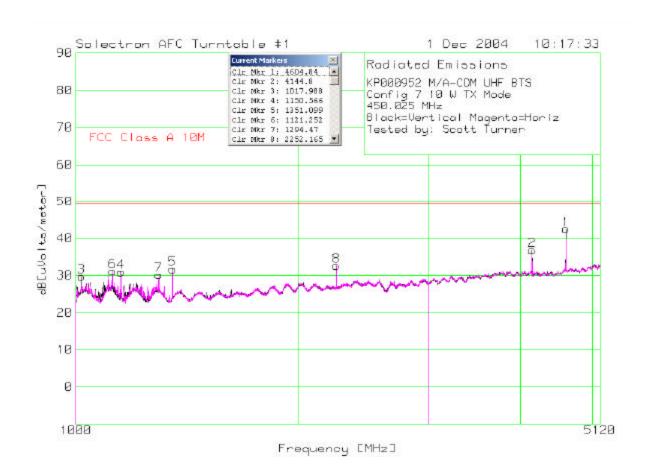



Figure 7-22: Field Strength with 100 W Tx, 30 MHz to 1 GHz (Tx at 450.025 MHz)

Note: the emissions at 450.025 MHz is leakage of the transmitted signal.

Figure 7-23: Field Strength with 100 W Tx, 1 GHz to 5.12 GHz (Tx at 450.025 MHz)

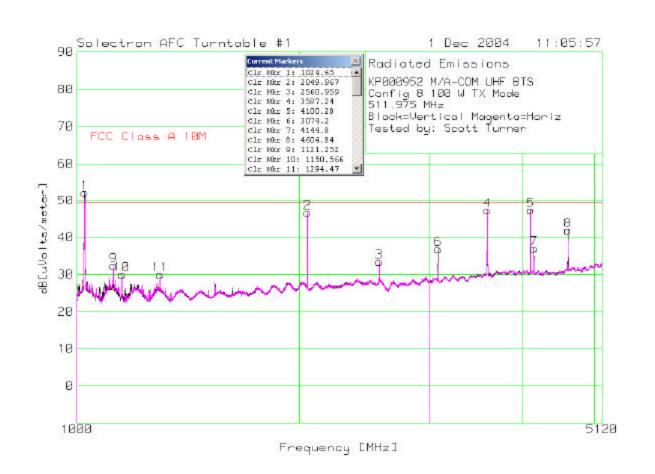

Page 58 of 71 Release date: December 22, 2004

Solectron AFC Turntable #1 1 Dec 2004 09:28:16 Radiated Emissions Clr Mkr 1: 450,4222 |-Clr Mkr 2: 460,5906 Clr Mkr 3: 121,1117 Clr Mkr 4: 79,1906 KP000952 M/A-CDM UHF BTS Config 7 10 W TX Mode 450.025 MHz 80 FCC Class 1 0 M À Clr Mkr 5: 752.3507 Black=Vertical Magenta=Horiz Clr Mkr 6: 826.5001 Clr Mkr 7: 575.7007 Clr Mkr 8: 885.3835 70 Tested by: Scott Turner 60 6 dB[uVolts/meter] 50 40 2 30 28 10 0 30 100 1000 Frequency [MHz]

Figure 7-24: Field Strength with 10 W Tx, 30 MHz to 1 GHz (Tx at 450.025 MHz)

Note: the emissions at 450.025 MHz is leakage of the transmitted signal.

Figure 7-25: Field Strength with 10 W Tx, 1 GHz to 5.12 GHz (Tx at 450.025 MHz)

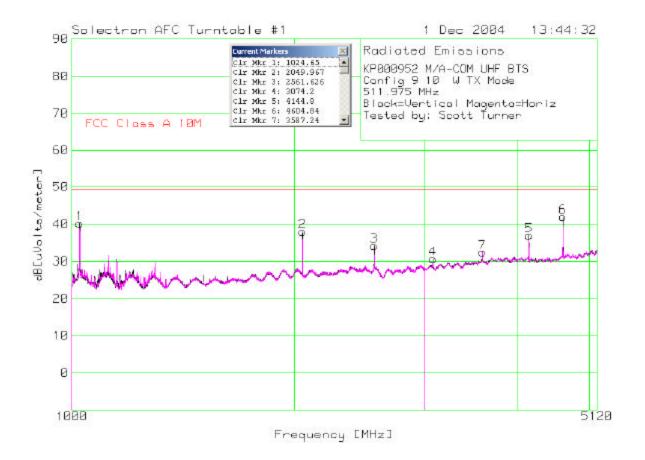

Page 60 of 71 Release date: December 22, 2004

1 Dec 2004 AFC Turntable #1 11:58:13 Radiated Emissions Clr Mkr 1; 512,4557 ▲ clr Mkr 2: 460.5996 _ clr Mkr 3: 121.354 KP000952 M/A-CDM UHF BTS 80 Config 8 100 W TX Mode 511.975 MHz Clr Mkr 4: 78.9483 Clr Mkr 5: 146.0704 Clr Mkr 6: 856.063 FCC 10M Class À Black=Vertical Magenta=Horiz 78 Clr Mkr 7: 826.5001 Tested by: Scott Turner Clr Mkr 8: 985,3935 💌 60 dBEulolts/meter] 50 40 2 30 20 10 0 30 100 1000 Frequency [MHz]

Figure 7-26: Field Strength with 100 W Tx, 30 MHz to 1 GHz (Tx at 511.975 MHz)

Note: the emissions at 511.975 MHz is leakage of the transmitted signal.

Figure 7-27: Field Strength with 100 W Tx, 1 GHz to 5.12 GHz (Tx at 511.975 MHz)


Page 62 of 71 Release date: December 22, 2004

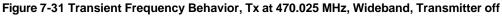
1 Dec 2004 AFC Turntable #1 12:48:36 Solectron Radiated Emissions Clr Mkr 1: 512.4557 Clr Mkr 2: 460.5996 Clr Mkr 3: 120.8693 Clr Mkr 4: 79.1906 KP000952 M/A-CDM UHF BTS 80 Config 9 10 W TX Mode 511.975 MHz Class 10M Clr Mkr 5: 144.8589 Clr Mkr 6: 177.3295 Clr Mkr 7: 856.063 Black=Vertical Magenta=Horiz 78 Tested by: Scott Turner Clr Mkr 9: 826.5001 Clr Mkr 9: 885.3835 60 dB[uVolts/meter] 50 40 2 30 20 18 0 30 100 1000 Frequency [MHz]

Figure 7-28: Field Strength with 10 W Tx, 30 MHz to 1 GHz (Tx at 511.975 MHz)

Note: the emissions at 511.975 MHz is leakage of the transmitted signal.

Figure 7-29: Field Strength with 10 W Tx, 1 GHz to 5.12 GHz, (Tx at 511.975 MHz)

Page 64 of 71 Release date: December 22, 2004



7.6 Appendix F: Transient Frequency Behavior Plots

This appendix presents all the transient frequency behavior plots for the test cases measured

Transient Frequency Behavior 470.05000M 470.04500M 470.04000M 470,03500M Frequency(Hz) 470.03000M-470.02500M 470.02000M 470.01500M 470.01000M 470.00500M 470,00000M 10.0m 15.0m 5.0m 20.0m 25.0m 0.0 Time (s)

Figure 7-30 Transient Frequency Behavior, Tx at 470.025 MHz, Wideband, Transmitter on

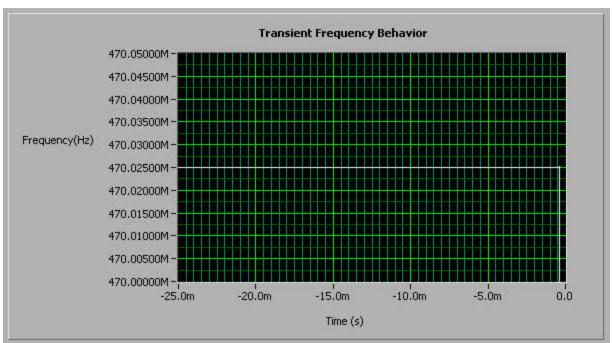


Figure 7-32 Transient Frequency Behavior, Tx at 470.025 MHz, Narrowband, Transmitter on

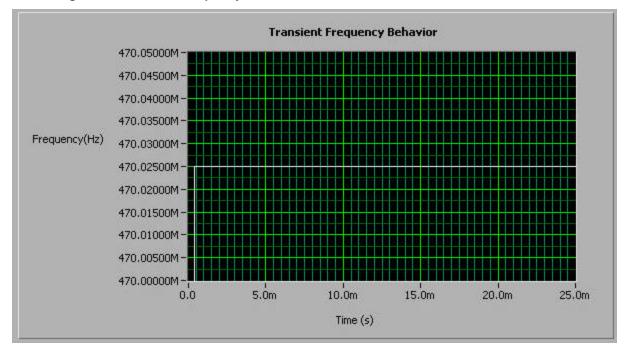
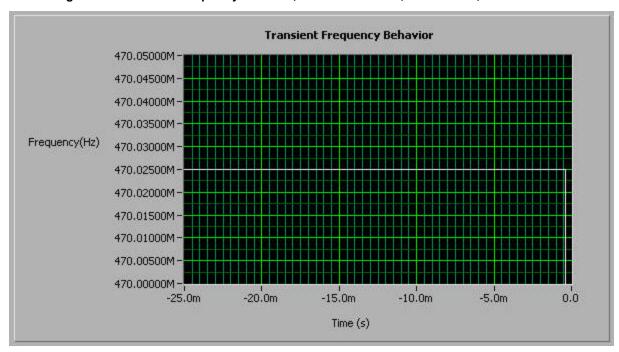
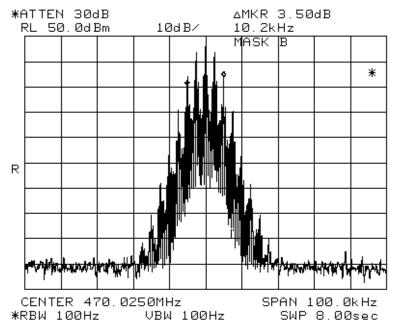



Figure 7-33 Transient Frequency Behavior, Tx at 470.025 MHz, Narrowband, Transmitter off


Page 66 of 71 Release date: December 22, 2004

7.7 Appendix G: Occupied Bandwidth Plots

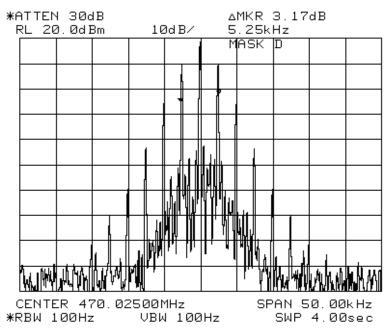
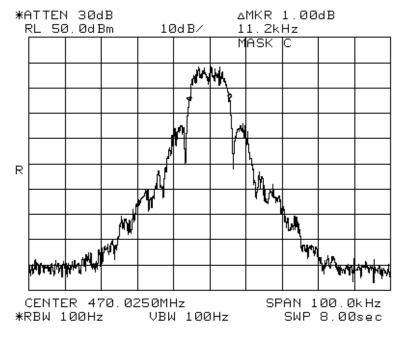

This appendix presents all the occupied bandwidth plots for the test cases measured.

Figure 7-34: 2500 Hz Audio Signal Wideband, 470.025 MHz

Tx at 470.025 MHz 100 W Analog deviation 2500 Hz signal level 16 dB higher than required for 50% deviation at 1 kHz


Figure 7-35: 2500 Hz Audio Signal Narrowband, 470.025 MHz

Tx at 470.025 MHz 100 W Analog modulation NB 2500 Hz signal level 16 dB higher than required for 50% deviation at 1 kHz

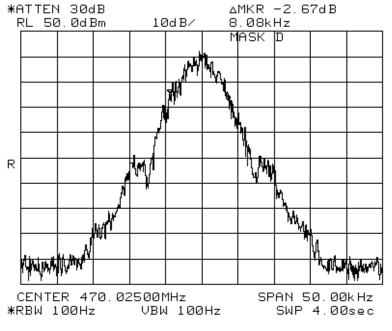
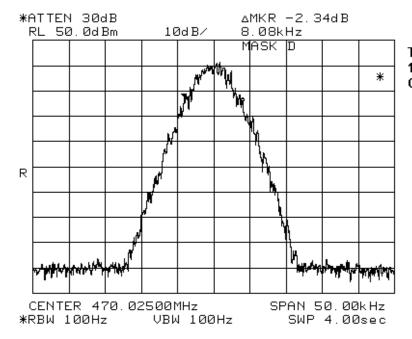

The master of this document is stored on an electronic database and is "write-protected" and may be altered only by authorized persons at Solectron EMS Canada Inc.. Viewing of the master document electronically ensures access to the current issue. Any hard copies must be regarded as uncontrolled copies.

Figure 7-36: 2 Level 9600 baud Signal with +/- 3 kHz Deviation, 470.025 MHz

Tx at 470.025 MHz 100 W 2 level digital modulation +/- 3 kHz deviation


Figure 7-37: 2 Level 9600 baud Signal with +/- 1.9 kHz Deviation, 470.025 MHz

Tx at 470.025 MHz 100 W 2 level digital modulation +/- 1.9 kHz deviation

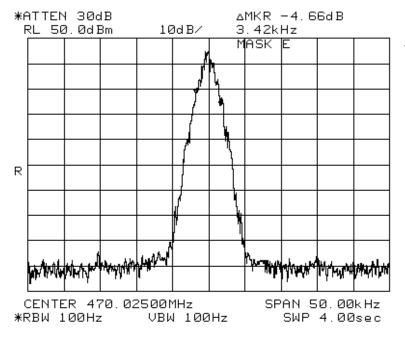

Page 68 of 71 Release date: December 22, 2004

Figure 7-38: C4FM / 9600 bits/sec Signal, 470.025 MHz

Tx at 470.025 MHz 100 W C4FM 9600 bits/sec

Figure 7-39: C4FM / 4800 bits/sec Signal, 470.025 MHz

Tx at 470.025 MHz 100 W C4FM 4800 bits/sec

7.8 Appendix H: Conducted Receiver Emissions Plots

Figure 7-40: Rx at 481.525 MHz, 30 MHz to 1GHz

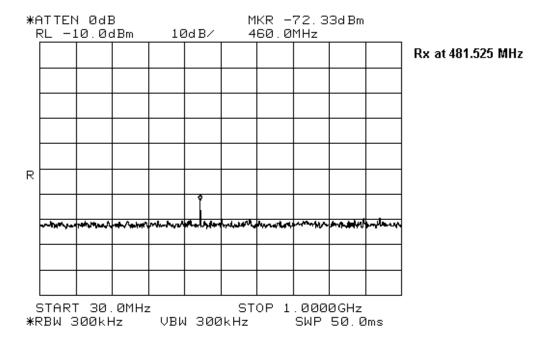
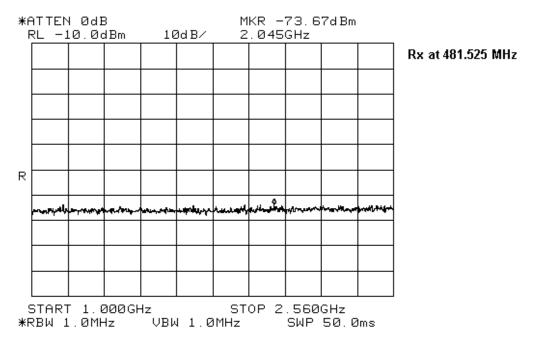



Figure 7-41: Rx at 481.525 MHz, 1 GHz to 2.56 GHz

Page 70 of 71 Release date: December 22, 2004

SOLECTRON EMS CANADA INC.

Certification Report for M/A-COM MASTRIII UHF Base Station FCC Part 22, 74, 90, & RSS-119

© Copyright Solectron EMS Canada Inc. December 22, 2004

The master of this document is stored on an electronic database and is "write-protected" and may be altered only by authorized persons at Solectron EMS Canada Inc. Viewing of the master document electronically ensures access to the current issue. Any hard copies must be regarded as uncontrolled copies.

Solectron EMS Canada Inc. accepts no liability for the content of this document except when it is reproduced in its entirety by a method acceptable to Solectron EMS Canada Inc.