

CERTIFICATE OF COMPLIANCE SAR EVALUATION

Test Lab:

CELLTECH RESEARCH INC.
Testing and Engineering Lab
1955 Moss Court
Kelowna, B.C.
Canada V1Y 9L3
Phone: 250 - 860-3130
Fax: 250 - 860-3110
Toll Free: 1-877-545-6287
e-mail: info@celltechlabs.com
web site: www.celltechlabs.com

Applicant Information:

M/A-COM PRIVATE RADIO SYSTEMS, INC.
3315 Old Forest Road
Lynchburg, VA 24501

FCC Rule Part(s):

2.1093; ET Docket 96-326

FCC ID:

OWDTR-0012-E

Model(s):

J725M

EUT Type(s):

**Mobile FM PTT Radio Transceiver
(Motorcycle-Mount Unit & Vehicle-Mount Unit)**

Modulation:

FM

Tx Frequency Range(s):

**806-821 MHz (Repeater Input mode)
821-824 MHz (NPSPAC, Repeater Input mode)
851-866 MHz (Talk-Around mode)
866-869 MHz (NPSPAC, Talk-Around mode)**

Rated RF Conducted Power:

35 Watts

Antenna Type(s):

1/4 Wave Antenna

Celltech Research Inc. declares under its sole responsibility that this device was found to be in compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in OET Bulletin 65, Supplement C, Edition 01-01 (General Population / Uncontrolled Exposure), and was tested in accordance with the appropriate measurement standards, guidelines, and recommended practices specified in American National Standards Institute C95.1-1992.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

*This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Research Inc.
The results and statements contained in this report pertain only to the device(s) evaluated.*

**Shawn McMillen
General Manager
Celltech Research Inc.**

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	DESCRIPTION OF EQUIPMENT UNDER TEST	1
3.0	SAR MEASUREMENT SYSTEM	2
4.0	MEASUREMENT SUMMARY	3-4
5.0	DETAILS OF SAR EVALUATION	5
6.0	EVALUATION PROCEDURES	6
7.0	SYSTEM VALIDATION	7
8.0	TISSUE PARAMETERS	7
9.0	SIMULATED TISSUES	8
10.0	SAR SAFETY LIMITS	8
11.0	ROBOT SYSTEM SPECIFICATIONS	9
12.0	PROBE SPECIFICATION	10
13.0	SAM PHANTOM	10
14.0	PLANAR PHANTOM	10
15.0	DEVICE HOLDER	10
16.0	TEST EQUIPMENT LIST	11
17.0	MEASUREMENT UNCERTAINTIES	12
18.0	REFERENCES	13
	APPENDIX A - SAR MEASUREMENT DATA	14
	APPENDIX B - DIPOLE VALIDATION	15
	APPENDIX C - PROBE CALIBRATION	16
	APPENDIX D - SAR SENSITIVTIES	17
	APPENDIX E - SAR TEST PHOTOGRAPHS	18
	APPENDIX F - EUT PHOTOGRAPHS	19

1.0 INTRODUCTION

This measurement report shows that the M/A-COM PRS INC. Model: J725M Mobile FM PTT Radio Transceiver FCC ID: OWDTR-0012-E complies with FCC Part 2.1093, ET Docket 96-326 Rules for mobile and portable devices (uncontrolled environment). The test procedures, as described in American National Standards Institute C95.1-1992 (see reference [1]), and FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [2]) were employed. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

2.0 DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)

Rule Part(s)	FCC 2.1093; ET Docket 96.326
EUT Type	Mobile FM PTT Radio Transceiver (Motorcycle-Mount Unit & Vehicle-Mount Unit)
FCC ID	OWDTR-0012-E
Model(s)	J725M
Serial No.	Pre-production
Modulation	FM
Tx Frequency Range (MHz)	806-821 MHz (Repeater Input mode) 821-824 MHz (NPSPAC, Repeater Input mode) 851-866 MHz (Talk-Around mode) 866-869 MHz (NPSPAC, Talk-Around mode)
Rated RF Conducted Output Power	35 Watts
Antenna Type(s)	1/4 Wave Antenna
Antenna Length	102 mm
Power Supply	14VDC Vehicle Battery

3.0 SAR MEASUREMENT SYSTEM

Celltech Research SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY system is comprised of the robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. The DAE3 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

DASY3 SAR Measurement System with SAM phantom

4.0 MEASUREMENT SUMMARY

The measurement results were obtained with the EUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the EUT are reported in Appendix A.

Body SAR Measurements – Motorcycle-Mount Unit

Freq. (MHz)	Chan.	Mode	Cond. Power Before (dBm)	Cond. Power After (dBm)	Antenna Separation Distance (cm)	SAR (w/kg)	
						100% Duty Cycle	50% Duty Cycle
806.0125	Low	CW	45.66	45.58	20.0	1.51	0.755
815.5000	Mid	CW	45.69	45.60	20.0	1.73	0.865
823.9875	High	CW	45.67	45.59	20.0	1.96	0.980
851.0125	Low	CW	45.38	45.31	20.0	2.05	1.03
860.5000	Mid	CW	45.49	45.41	20.0	1.49	0.745
868.9875	High	CW	45.60	45.53	20.0	1.17	0.585
Mixture Type: Body Dielectric Constant: 55.5 Conductivity: 0.97 (Measured)			ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure / General Population BODY: 1.6 W/kg (averaged over 1 gram)				

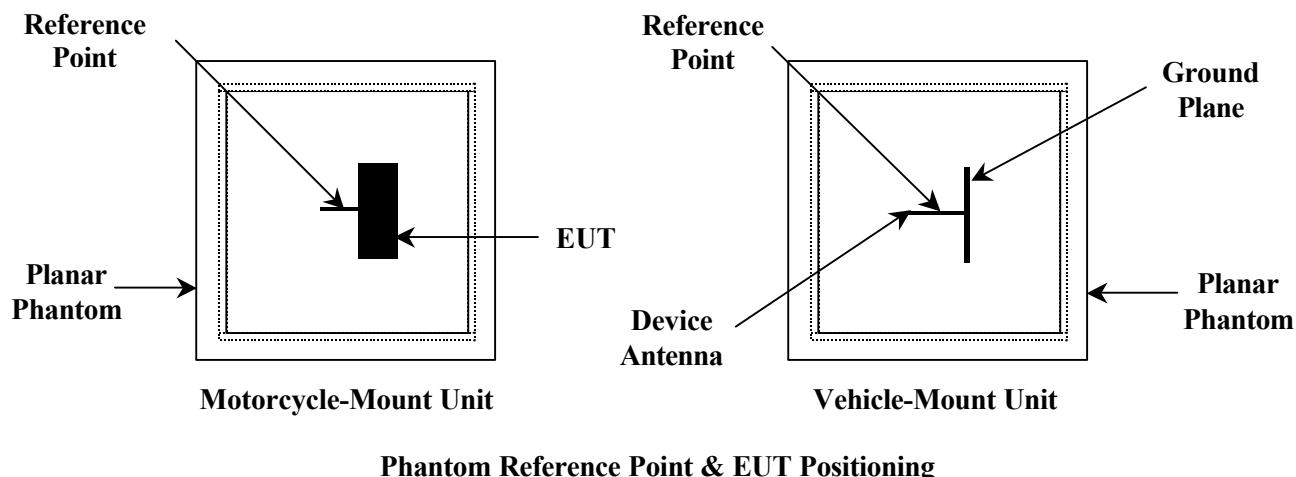
Notes:

1. The SAR values found were below the maximum limit of 1.6 w/kg (uncontrolled exposure, 50% duty cycle).
2. The highest body SAR value found was 1.03 w/kg (50% duty cycle).
3. The EUT was tested for body SAR with a 20 cm separation distance between the antenna and the outer surface of the planar phantom.
4. Ambient TEMPERATURE: 22.7 °C
Relative HUMIDITY: 59.6 %
Atmospheric PRESSURE: 102.0 kPa
5. Fluid Temperature 23.0 °C
6. During the entire test the conducted power was maintained to within 5% of the initial conducted power.

MEASUREMENT SUMMARY (Cont.)

Body SAR Measurements – Vehicle-Mount Unit

Freq. (MHz)	Chan.	Mode	Cond. Power Before (dBm)	Cond. Power After (dBm)	Antenna Separation Distance (cm)	SAR (w/kg)	
						100% Duty Cycle	50% Duty Cycle
806.0125	Low	CW	45.68	45.60	20.0	1.50	0.75
815.5000	Mid	CW	45.67	45.58	20.0	1.62	0.81
823.9875	High	CW	45.65	45.57	20.0	1.58	0.79
851.0125	Low	CW	45.35	45.29	20.0	1.24	0.62
860.5000	Mid	CW	45.47	45.40	20.0	1.37	0.69
868.9875	High	CW	45.63	45.56	20.0	1.34	0.67
Mixture Type: Body Dielectric Constant: 55.5 Conductivity: 0.97 (Measured)			ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure / General Population BODY: 1.6 W/kg (averaged over 1 gram)				


Notes:

1. The SAR values found were below the maximum limit of 1.6 w/kg (uncontrolled exposure, 50% duty cycle).
2. The highest body SAR value found was 0.81 w/kg (50% duty cycle).
3. The EUT was tested for body SAR with a 20 cm separation distance between the antenna and the outer surface of the medium planar phantom.
4. Ambient TEMPERATURE: 22.7 °C
Relative HUMIDITY: 59.6 %
Atmospheric PRESSURE: 102.0 kPa
5. Fluid Temperature 23.0 °C
6. During the entire test the conducted power was maintained to within 5% of the initial conducted power.

5.0 DETAILS OF SAR EVALUATION

The M/A-COM PRS INC. Model: J725M Mobile FM PTT Radio Transceiver FCC ID: OWDTR-0012-E was found to be compliant for localized Specific Absorption Rate (uncontrolled exposure) based on the following test provisions and conditions:

1. The motorcycle-mount unit was tested for body SAR with the antenna placed parallel to the outer surface of the planar phantom. A 20 cm separation distance was maintained between the antenna and the outer surface of the planar phantom.
2. The vehicle-mount unit was tested for body SAR with the antenna attached to a ground plane and placed parallel to the outer surface of the planar phantom. A 20 cm separation distance was maintained between the antenna and the outer surface of the planar phantom.
3. The EUT was evaluated for SAR at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimize drift. The conducted power levels were checked before and after each test. If the conducted power level deviated more than 5% of the initial power level, then the EUT was retested. Any unusual anomalies over the course of the test also warranted a re-evaluation.
4. The conducted power was measured according to the procedures described in FCC Part 2.1046.
5. The EUT was tested with the transmitter in continuous operation (100% duty cycle) throughout the SAR evaluation. As this is a push-to-talk device the 50% duty cycle compensation reported assumes a transmit/receive cycle of equal time base.
6. The location of the maximum spatial SAR distribution (Hot Spot) was determined relative to the device and its antenna.
7. The EUT was tested with a 14V DC vehicle battery.

6.0 EVALUATION PROCEDURES

The Specific Absorption Rate (SAR) evaluation was performed in the following manner:

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated in accordance with FCC OET Bulletin 65, Supplement C (Edition 01-01) using the SAM phantom.
(ii) For body-worn and face-held devices a planar phantom was used. Depending on the phantom used for the evaluation, all other phantoms were drained of fluid.
- b. The SAR was determined by a pre-defined procedure within the DASY3 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface using a uniform grid spacing.
- c. A 5x5x7 matrix was performed around the greatest spatial SAR distribution found during the area scan of the applicable exposed region. SAR values were then calculated using a 3-D spline interpolation algorithm and averaged over spatial volumes of 1 and 10 grams.
- d. The depth of the simulating tissue in the planar phantom used for the SAR evaluation was no less than 15.0 cm.
- e. The target tissue parameters for 835MHz were used in the SAR evaluation software. If there was any appreciable variation in the measured tissue parameters from the target values specified then the SAR was adjusted using the sensitivities to SAR (see "Appendix D-SAR Sensitivities").
- f. The E-field probe conversion factors for 835MHz were determined as follows:
 - In brain and muscle tissue between 750MHz and 1GHz, the conversion factor decreases approximately 1.3% per 100MHz frequency increase.
 - In brain and muscle tissue between 1.6GHz and 2GHz, the conversion factor decreases approximately 1% per 100MHz frequency increase.

Motorcycle-Mount Unit - SAR Test Setup

Vehicle-Mount Unit - SAR Test Setup

7.0 SYSTEM VALIDATION

Prior to the assessment, the system was verified in a medium planar phantom with a 900MHz dipole. A forward power of 250mW was applied to the dipole and the system was verified to a tolerance of $\pm 10\%$. The applicable verifications are as follows (see Appendix B for validation test plots):

Dipole Validation Kit	Target SAR 1g (w/kg)	Measured SAR 1g (w/kg)	Fluid Temperature	Validation Date
D900V2	2.78	2.90	≈ 23.0 °C	11/26/01

8.0 TISSUE PARAMETERS

The dielectric parameters of the fluids were verified prior to the SAR evaluation using an 85070C Dielectric Probe Kit and an 8753E Network Analyzer. The dielectric parameters of the fluid are as follows:

TISSUE PARAMETERS FOR DIPOLE VALIDATION			
Brain Equivalent Tissue	Dielectric Constant ϵ_r	Conductivity σ (mho/m)	r (Kg/m ³)
900MHz (Target)	$41.5 \pm 5\%$	$0.97 \pm 5\%$	1000
900MHz (Measured) 11/26/01	41.6	0.97	1000

TISSUE PARAMETERS FOR EUT EVALUATION			
Body Equivalent Tissue	Dielectric Constant ϵ_r	Conductivity σ (mho/m)	r (Kg/m ³)
835MHz (Target)	$55.2 \pm 5\%$	$0.97 \pm 5\%$	1000
835MHz (Measured) 11/26/01	55.5	0.97	1000

9.0 SIMULATED TISSUES

The brain and body mixtures consist of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution. Preservation with a bactericide is added and visual inspection is made to ensure air bubbles are not trapped during the mixing process. The fluid was prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

TISSUE MIXTURE Dipole Validation & EUT Evaluation		
INGREDIENT	900MHz Validation Brain Mixture (%)	835MHz Evaluation Body Mixture (%)
Water	40.71	53.70
Sugar	56.63	45.10
Salt	1.48	0.97
HEC	1.00	0.13
Bactericide	0.18	0.10

10.0 SAR SAFETY LIMITS

EXPOSURE LIMITS	SAR (W/Kg)	
	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average (averaged over the whole body)	0.08	0.4
Spatial Peak (averaged over any 1g of tissue)	1.60	8.0
Spatial Peak (hands/wrists/feet/ankles averaged over 10g)	4.0	20.0

Notes:

1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

11.0 ROBOT SYSTEM SPECIFICATIONS

Specifications

POSITIONER: Stäubli Unimation Corp. Robot Model: RX60L
Repeatability: 0.02 mm
No. of axis: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor: Pentium III
Clock Speed: 450 MHz
Operating System: Windows NT
Data Card: DASY3 PC-Board

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic
Software: DASY3 software
Connecting Lines: Optical downlink for data and status info.
Optical uplink for commands and clock

PC Interface Card

Function: 24 bit (64 MHz) DSP for real time processing
Link to DAE3
16-bit A/D converter for surface detection system
serial link to robot
direct emergency stop output for robot

E-Field Probe

Model: ET3DV6
Serial No.: 1590
Construction: Triangular core fiber optic detection system
Frequency: 10 MHz to 6 GHz
Linearity: ± 0.2 dB (30 MHz to 3 GHz)

Phantom(s)

Type 1: SAM V4.0C
Configuration: Left Head, Right Head, Planar Section
Shell Material: Fiberglass
Thickness: 2.0 ± 0.1 mm
Volume: Approx. 20 liters
Type 2: Medium Planar Phantom
Shell Material: Plexiglas
Bottom Thickness: $2.0 \text{ mm} \pm 0.1\text{mm}$
Dimensions: Box: 49.5cm (L) x 49.5cm (W) x 21cm (H); Back Plane: 22.2cm (H)

12.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core
Built-in shielding against static charges
PEEK enclosure material (resistant to organic solvents, e.g. glycol)

Calibration: In air from 10 MHz to 2.5 GHz
In brain simulating tissue at frequencies of 900 MHz
and 1.8 GHz (accuracy \pm 8%)

Frequency: 10 MHz to $>$ 6 GHz; Linearity: \pm 0.2 dB
(30 MHz to 3 GHz)

Directivity: \pm 0.2 dB in brain tissue (rotation around probe axis)
 \pm 0.4 dB in brain tissue (rotation normal to probe axis)

Dynam. Rnge: 5 μ W/g to $>$ 100 mW/g; Linearity: \pm 0.2 dB

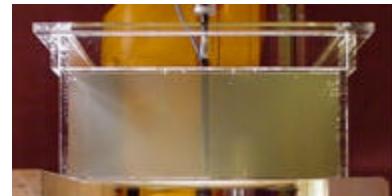
Srfce. Detect. \pm 0.2 mm repeatability in air and clear liquids over
diffuse reflecting surfaces

Dimensions: Overall length: 330 mm
Tip length: 16 mm
Body diameter: 12 mm
Tip diameter: 6.8 mm
Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz
Compliance tests of mobile phone

ET3DV6 E-Field Probe

13.0 SAM PHANTOM V4.0C


The SAM phantom V4.0C is a fiberglass shell phantom with a 2.0mm shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by SCC34-SC2. The device holder positions are adjusted to the standard measurement positions in the three sections.

SAM Phantom

14.0 MEDIUM PLANAR PHANTOM

The medium planar phantom is constructed of Plexiglas material with a 2.0 mm shell thickness for face-held and body-worn SAR evaluations. The medium planar phantom is mounted on top of the wooden table of the DASY3 system.

Medium Planar Phantom

15.0 DEVICE HOLDER

The DASY3 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

16.0 TEST EQUIPMENT LIST

SAR MEASUREMENT SYSTEM		
<u>EQUIPMENT</u>	<u>SERIAL NO.</u>	<u>DATE CALIBRATED</u>
DASY3 System -Robot -ET3DV6 E-Field Probe -900MHz Validation Dipole -1800MHz Validation Dipole -SAM Phantom V4.0C	599396-01 1590 054 247 N/A	N/A Mar 2001 June 2001 June 2001 N/A
85070C Dielectric Probe Kit	N/A	N/A
Gigatronics 8652A Power Meter -Power Sensor 80701A -Power Sensor 80701A	1835272 1833535 1833542	Oct 2001 Jan 2001 Feb 2001
E4408B Spectrum Analyzer	US39240170	Nov 2001
8594E Spectrum Analyzer	3543A02721	Mar 2001
8753E Network Analyzer	US38433013	Nov 2001
8648D Signal Generator	3847A00611	Aug 2001
5S1G4 Amplifier Research Power Amplifier	26235	N/A

17.0 MEASUREMENT UNCERTAINTIES

Uncertainty Description	Error	Distribution	Weight	Standard Deviation	Offset
Probe Uncertainty					
Axial isotropy	±0.2 dB	U-Shaped	0.5	±2.4 %	
Spherical isotropy	±0.4 dB	U-Shaped	0.5	±4.8 %	
Isotropy from gradient	±0.5 dB	U-Shaped	0	±	
Spatial resolution	±0.5 %	Normal	1	±0.5 %	
Linearity error	±0.2 dB	Rectangle	1	±2.7 %	
Calibration error	±3.3 %	Normal	1	±3.3 %	
SAR Evaluation Uncertainty					
Data acquisition error	±1 %	Rectangle	1	±0.6 %	
ELF and RF disturbances	±0.25 %	Normal	1	±0.25 %	
Conductivity assessment	±5 %	Rectangle	1	±5.8 %	
Spatial Peak SAR Evaluation Uncertainty					
Extrapolated boundary effect	±3 %	Normal	1	±3 %	±5 %
Probe positioning error	±0.1 mm	Normal	1	±1 %	
Integrated and cube orientation	±3 %	Normal	1	±3 %	
Cube Shape inaccuracies	±2 %	Rectangle	1	±1.2 %	
Device positioning	±6 %	Normal	1	±6 %	
Combined Uncertainties				±11.7 %	±5 %

Measurement uncertainties in SAR measurements are difficult to quantify due to several variables including biological, physiological, and environmental.

According to ANSI/IEEE C95.3, the overall uncertainties are difficult to assess and will vary with the type of meter and usage situation. However, accuracy's of ±1 to 3 dB can be expected in practice, with greater uncertainties in near-field situations and at higher frequencies (shorter wavelengths), or areas where large reflecting objects are present. Under optimum measurement conditions, SAR measurement uncertainties of at least ±2dB can be expected.

According to CENELEC, typical worst-case uncertainty of field measurements is ±5 dB. For well-defined modulation characteristics the uncertainty can be reduced to ±3 dB.

18.0 REFERENCES

- (1) ANSI, *ANSI/IEEE C95.1: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300 Ghz*, The Institute of Electrical and Electronics Engineers, Inc., New York, NY: 1992.
- (2) Federal Communications Commission, “Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields”, OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- (3) Thomas Schmid, Oliver Egger, and Neils Kuster, “Automated E-field scanning system for dosimetric assessments”, *IEEE Transaction on Microwave Theory and Techniques*, Vol. 44, pp. 105 – 113: January 1996.
- (4) Niels Kuster, Ralph Kastle, and Thomas Schmid, “Dosimetric evaluation of mobile communications equipment with know precision”, *IEICE Transactions of Communications*, vol. E80-B, no. 5, pp. 645 – 652: May 1997.

CELLTECH RESEARCH INC.
1955 Moss Court, Kelowna
B.C. Canada V1Y 9L3

Test Report S/N: 102301-1750WD
Date of Tests: November 26, 2001
FCC SAR Evaluation

APPENDIX A - SAR MEASUREMENT DATA

M/A-COM FCC ID: OWDTR-0012-E

Medium Planar Phantom; Planar Section; Position: (270°,90°)

Probe: ET3DV6 - SN1590; ConvF(6.70,6.70,6.70); Crest factor: 1.0

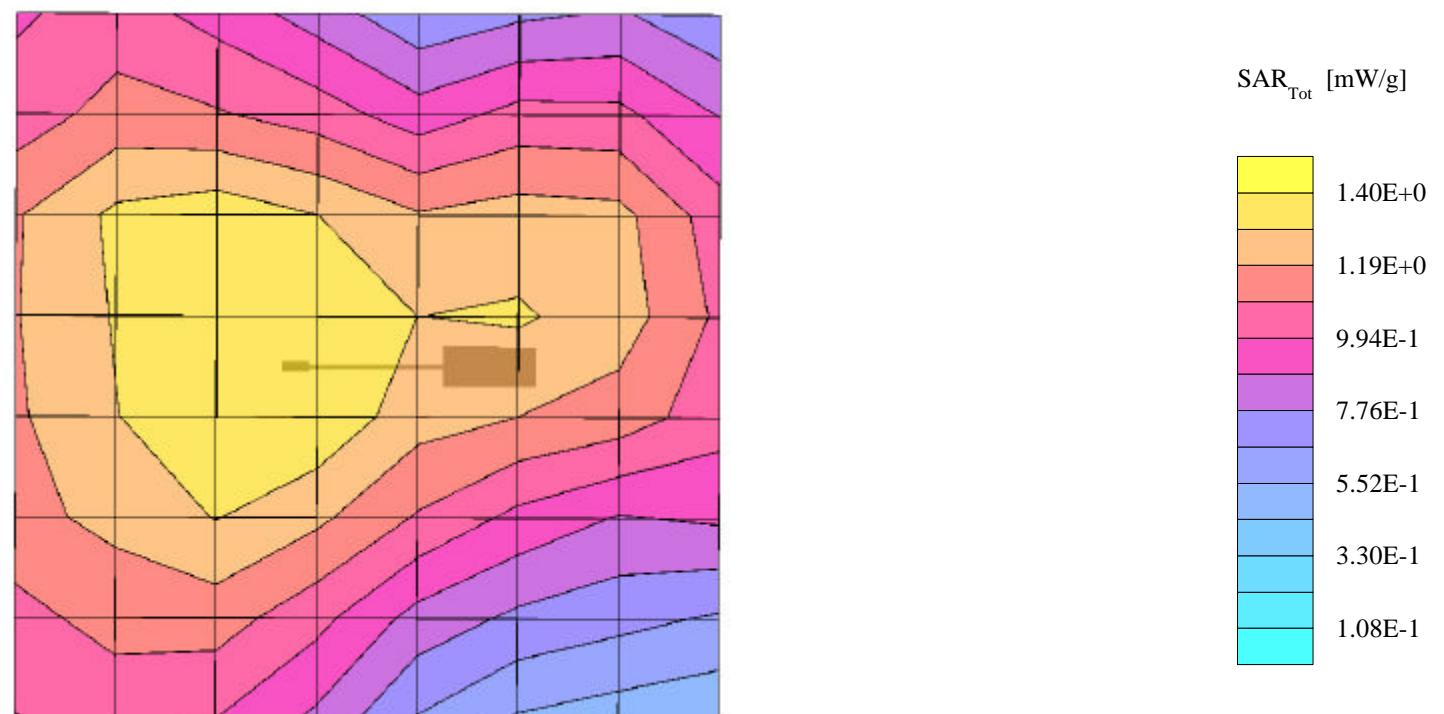
835 MHz Muscle; $\sigma = 0.97 \text{ mho/m}$ $\epsilon_r = 55.2$ $\rho = 1.00 \text{ g/cm}^3$

Coarse: Dx = 40.0, Dy = 40.0, Dz = 10.0

Cube 5x5x7 Powerdrift: -0.07 dB

SAR (1g): 1.51 mW/g, SAR (10g): 1.09 mW/g

Body SAR with 20 cm Separation Distance


M/A-Com Model: J725M (Motorcycle-Mount Unit)

Continuous Wave Mode

Low Channel [806.0125 Mhz]

Conducted Pwr: 45.45 dBm

Date Tested: November 26, 2001

M/A-COM FCC ID: OWDTR-0012-E

Medium Planar Phantom; Planar Section; Position: (270°,90°)

Probe: ET3DV6 - SN1590; ConvF(6.70,6.70,6.70); Crest factor: 1.0

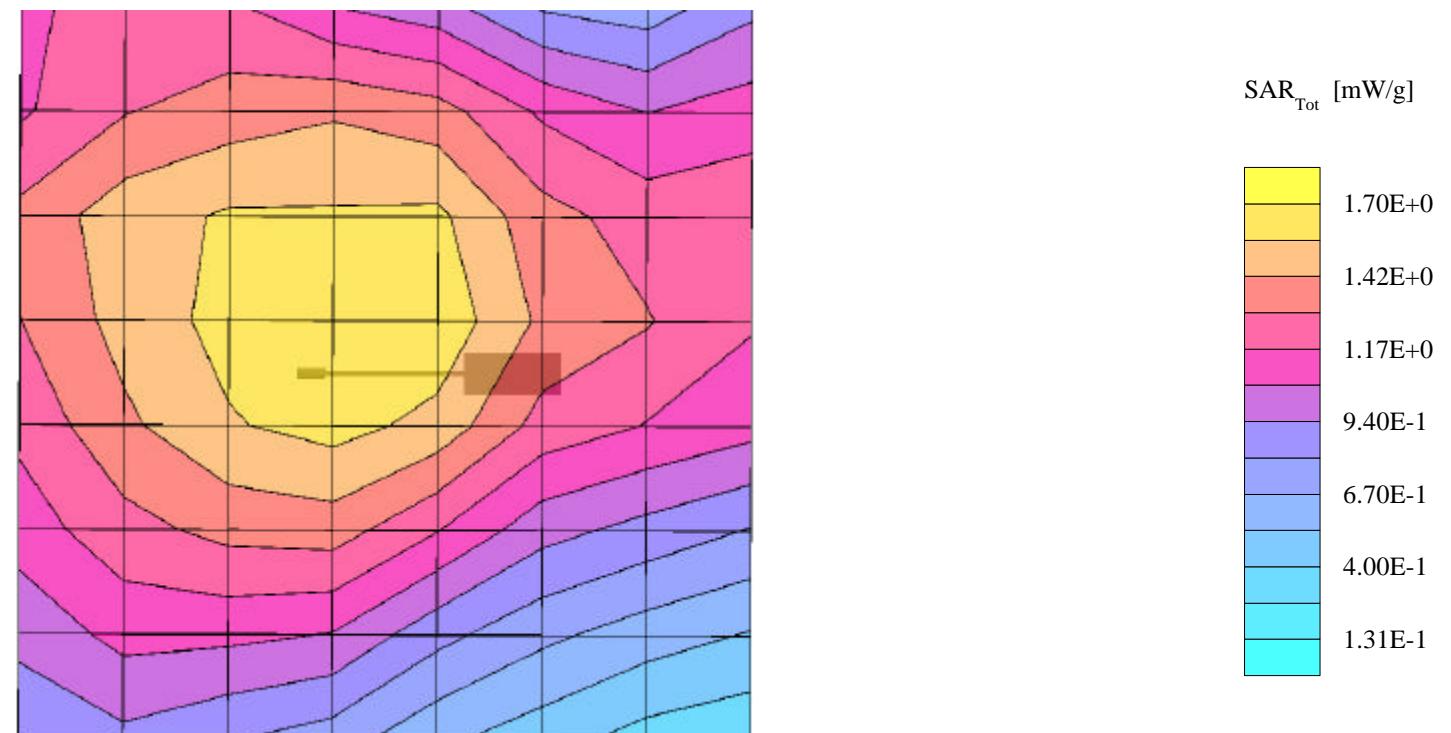
835 MHz Muscle; $\sigma = 0.97 \text{ mho/m}$ $\epsilon_r = 55.2$ $\rho = 1.00 \text{ g/cm}^3$

Coarse: Dx = 40.0, Dy = 40.0, Dz = 10.0

Cube 5x5x7 Powerdrift: -0.10 dB

SAR (1g): 1.73 mW/g , SAR (10g): 1.21 mW/g

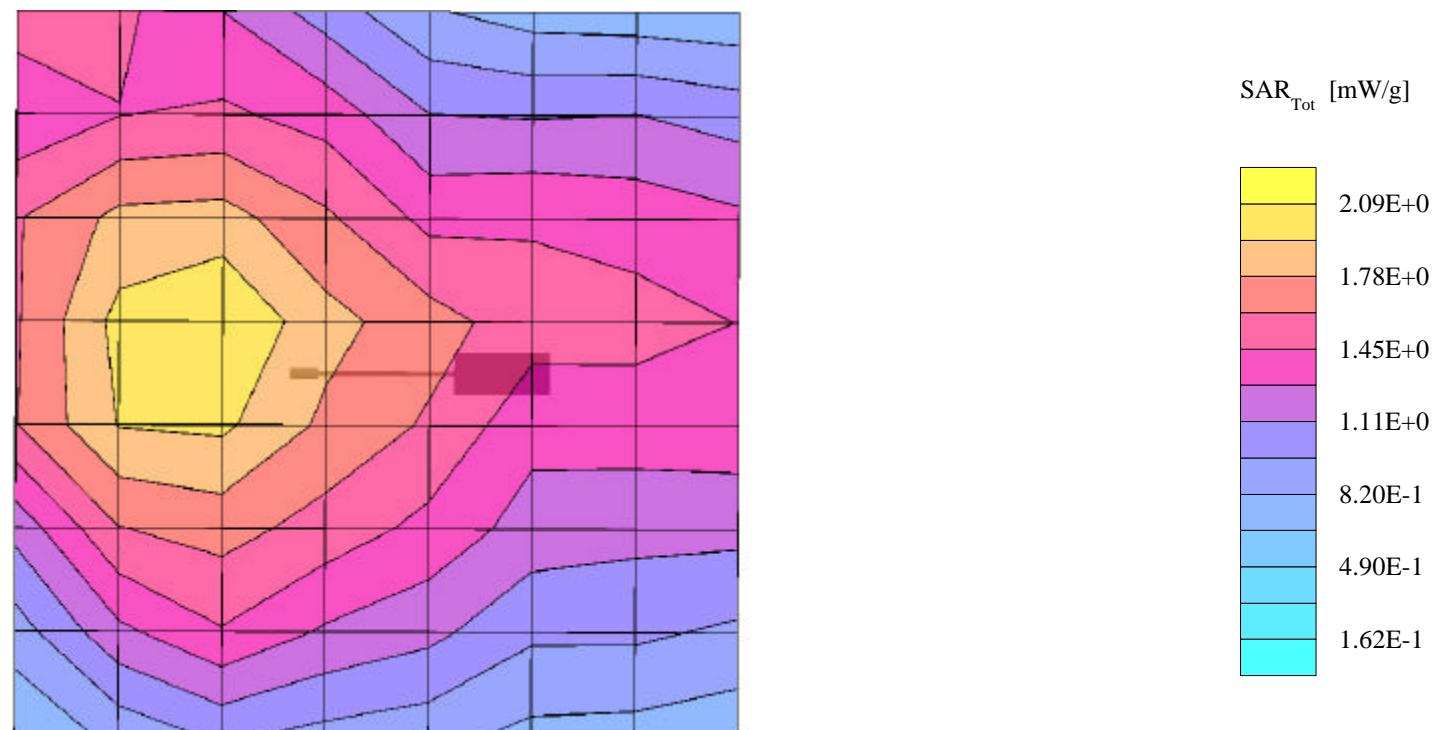
Body SAR with 20 cm Separation Distance


M/A-Com Model: J725M (Motorcycle-Mount Unit)

Continuous Wave Mode

MID Channel [815.5000 Mhz]

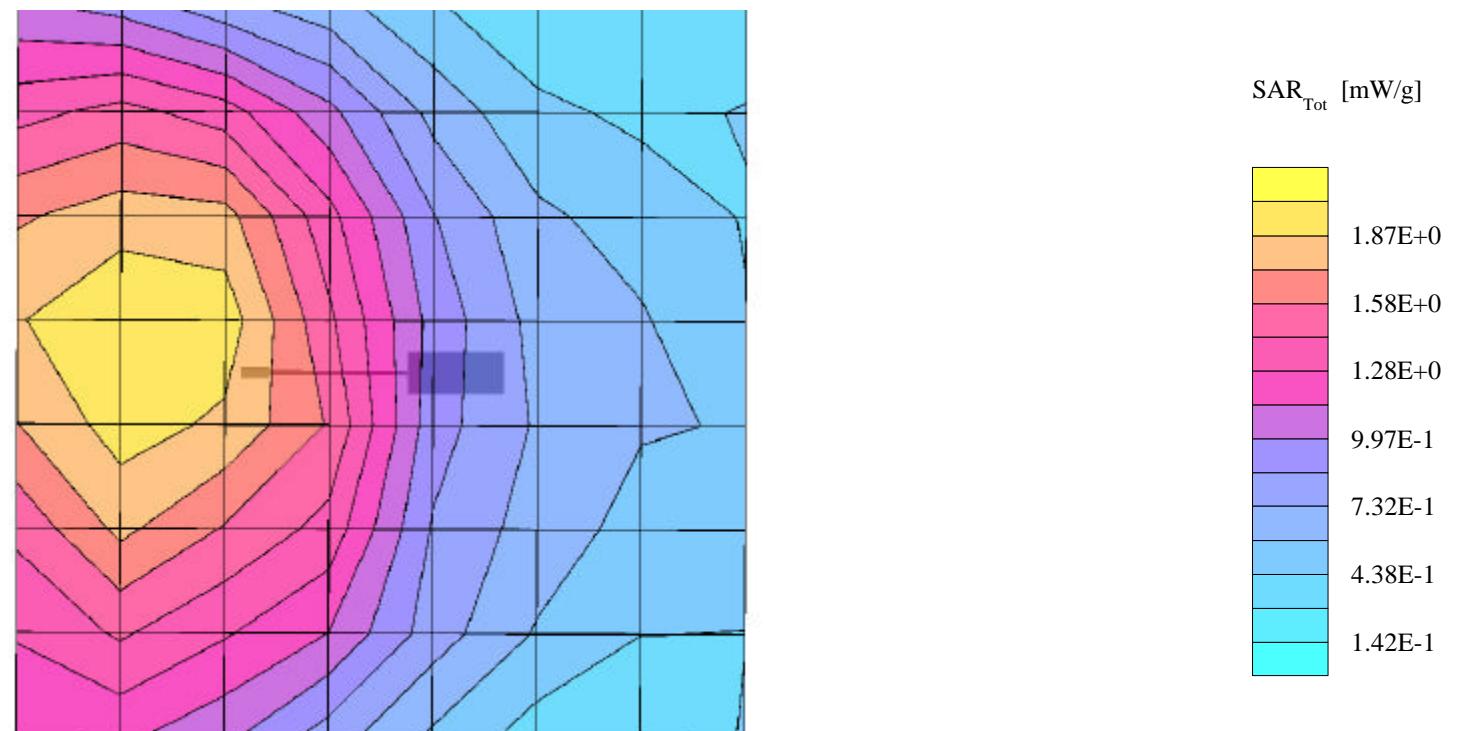
Conducted Pwr: 45.46 dBm


Date Tested: November 26, 2001

M/A-COM FCC ID: OWDTR-0012-E

Medium Planar Phantom; Planar Section; Position: (270°,90°)
Probe: ET3DV6 - SN1590; ConvF(6.70,6.70,6.70); Crest factor: 1.0
835 MHz Muscle: $\sigma = 0.97 \text{ mho/m}$ $\epsilon_r = 55.2$ $\rho = 1.00 \text{ g/cm}^3$
Coarse: Dx = 40.0, Dy = 40.0, Dz = 10.0
Cube 5x5x7 Powerdrift: -0.07 dB
SAR (1g): 1.96 mW/g, SAR (10g): 1.44 mW/g

Body SAR with 20 cm Separation Distance
M/A-Com Model: J725M (Motorcycle-Mount Unit)
Continuous Wave Mode
High Channel [823.9875 MHz]
Conducted Pwr: 45.48 dBm
Date Tested: November 26, 2001



M/A-COM FCC ID: OWDTR-0012-E

Medium Planar Phantom; Planar Section; Position: (270°,90°)
Probe: ET3DV6 - SN1590; ConvF(6.70,6.70,6.70); Crest factor: 1.0
835 MHz Muscle: $\sigma = 0.97 \text{ mho/m}$ $\epsilon_r = 55.2$ $\rho = 1.00 \text{ g/cm}^3$
Coarse: Dx = 40.0, Dy = 40.0, Dz = 10.0
Cube 5x5x7 Powerdrift: -0.09 dB
SAR (1g): 2.05 mW/g, SAR (10g): 1.47 mW/g

Body SAR with 20 cm Separation Distance
M/A-Com Model: J725M (Motorcycle-Mount Unit)

Continuous Wave Mode
Low Channel [851.0125 Mhz]
Conducted Pwr: 45.45 dBm
Date Tested: November 26, 2001

M/A-COM FCC ID: OWDTR-0012-E

Medium Planar Phantom; Planar Section; Position: (270°,90°)

Probe: ET3DV6 - SN1590; ConvF(6.70,6.70,6.70); Crest factor: 1.0

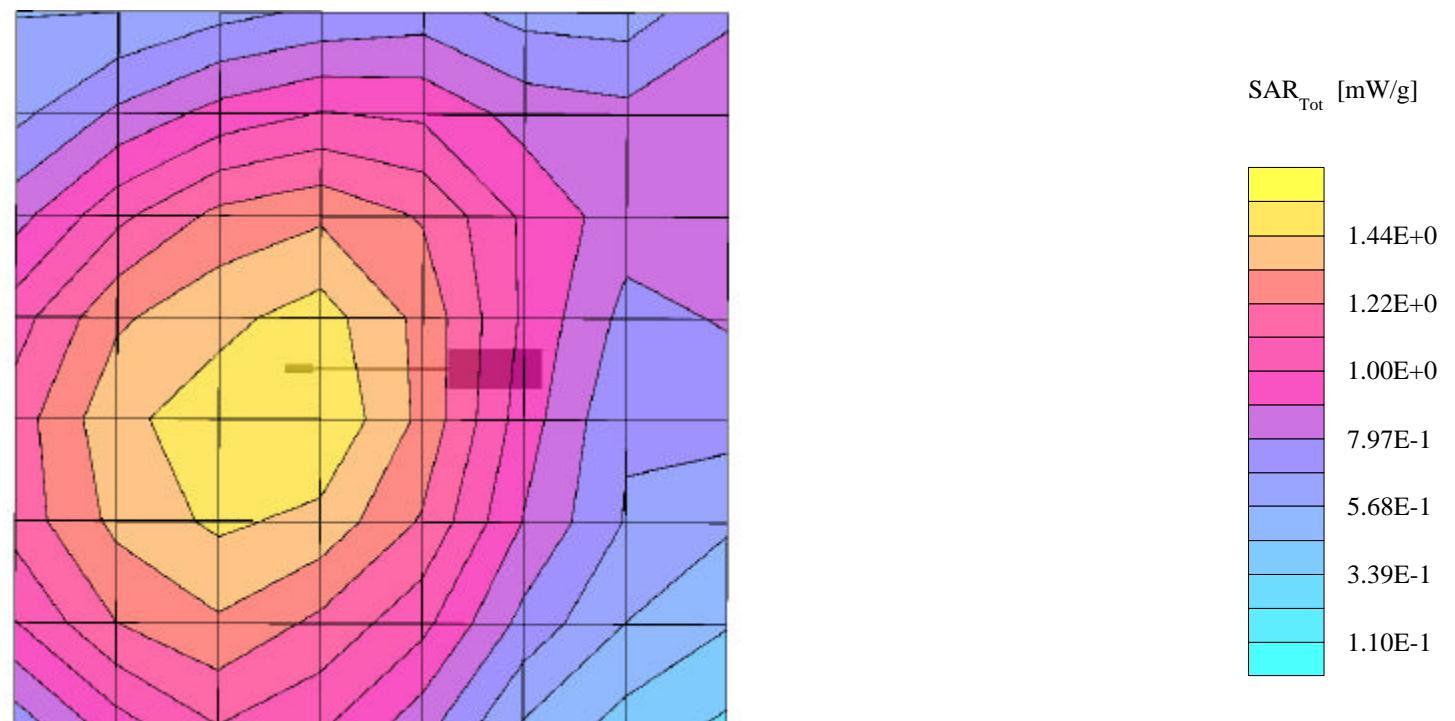
835 MHz Muscle: $\sigma = 0.97 \text{ mho/m}$ $\epsilon_r = 55.2$ $\rho = 1.00 \text{ g/cm}^3$

Coarse: Dx = 40.0, Dy = 40.0, Dz = 10.0

Cube 5x5x7 Powerdrift: -0.11 dB

SAR (1g): 1.49 mW/g, SAR (10g): 1.08mW/g

Body SAR with 20 cm Separation Distance


M/A-Com Model: J725M (Motorcycle-Mount Unit)

Continuous Wave Mode

Mid Channel [860.5000 Mhz]

Conducted Pwr: 45.47 dBm

Date Tested: November 26, 2001

M/A-COM FCC ID: OWDTR-0012-E

Medium Planar Phantom; Planar Section; Position: (270°,90°)

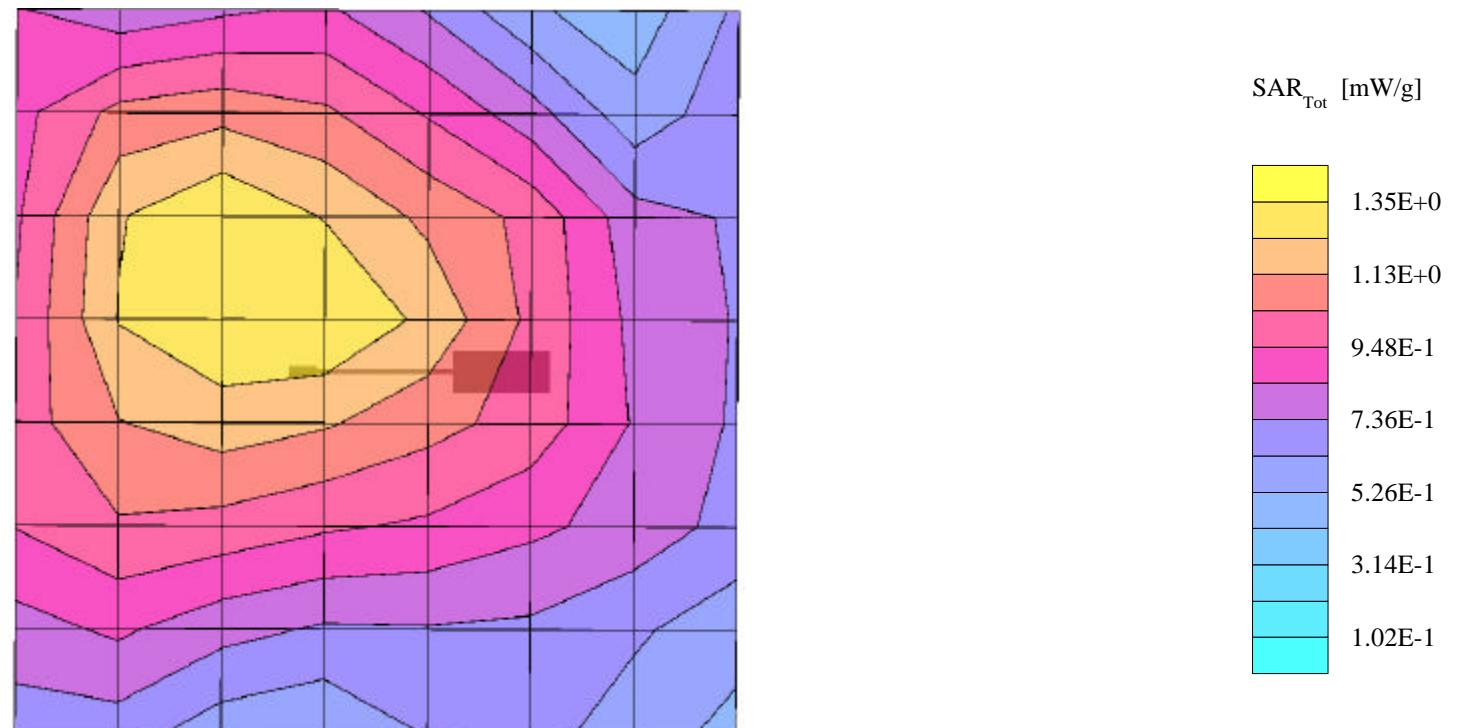
Probe: ET3DV6 - SN1590; ConvF(6.70,6.70,6.70); Crest factor: 1.0

835 MHz Muscle: $\sigma = 0.97 \text{ mho/m}$ $\epsilon_r = 55.2$ $\rho = 1.00 \text{ g/cm}^3$

Coarse: Dx = 40.0, Dy = 40.0, Dz = 10.0

Cube 5x5x7 Powerdrift: -0.09 dB

SAR (1g): 1.17 mW/g, SAR (10g): 0.890 mW/g


Body SAR with 20 cm Separation Distance
M/A-Com Model: J725M (Motorcycle-Mount Unit)

Continuous Wave Mode

High Channel [868.9875 MHz]

Conducted Pwr: 45.43 dBm

Date Tested: November 26, 2001

M/A-COM FCC ID: OWDTR-0012-E

Medium Planar Phantom; Planar Section; Position: (270°,90°)

Probe: ET3DV6 - SN1590; ConvF(6.70,6.70,6.70); Crest factor: 1.0

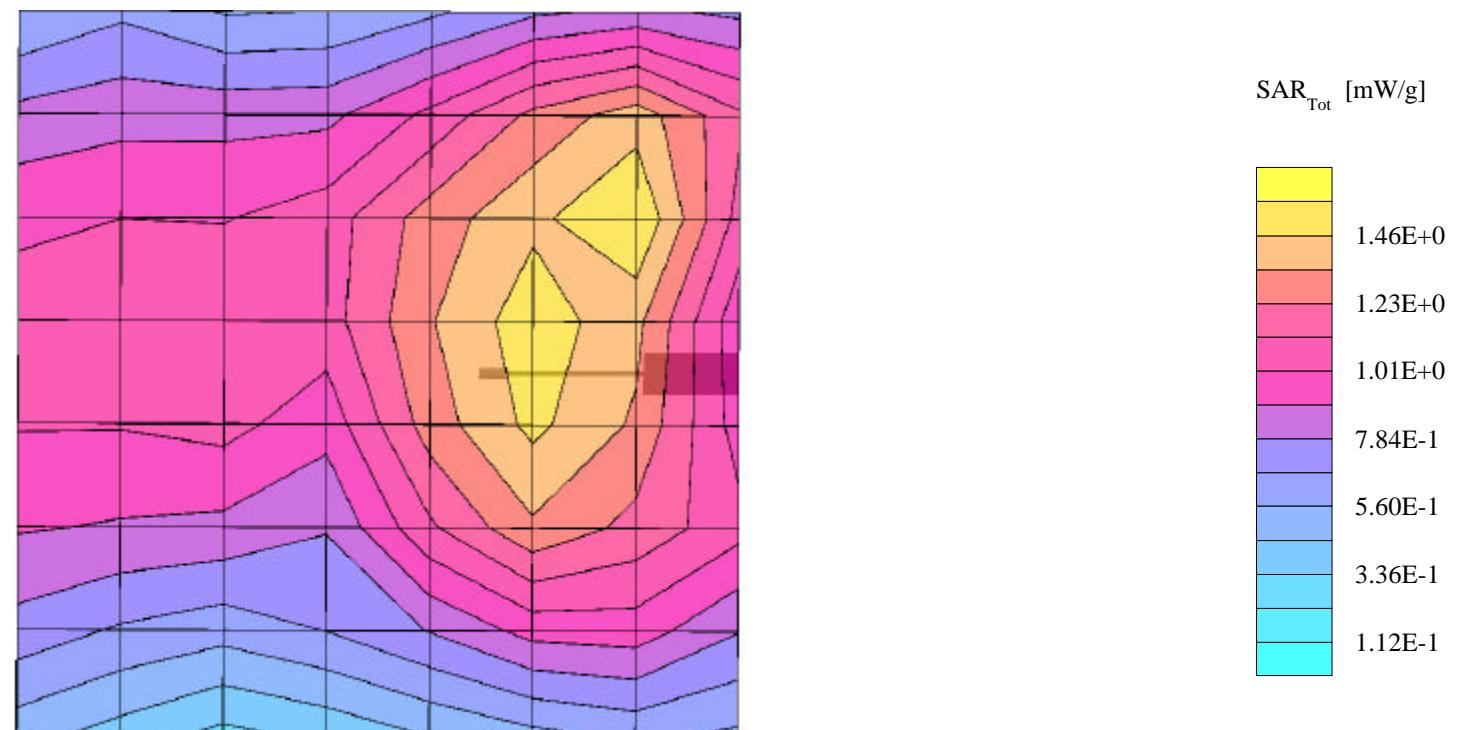
835 MHz Muscle; $\sigma = 0.97 \text{ mho/m}$ $\epsilon_r = 55.2$ $\rho = 1.00 \text{ g/cm}^3$

Coarse: Dx = 40.0, Dy = 40.0, Dz = 10.0

Cube 5x5x7 Powerdrift: -0.10 dB

SAR (1g): 1.50 mW/g, SAR (10g): 1.09 mW/g

Body SAR with 20 cm Separation Distance


M/A-Com Model: J725M - Vehicle-Mount Antenna

Continuous Wave Mode

Low Channel [806.0125 Mhz]

Conducted Pwr: 45.47 dBm

Date Tested: November 26, 2001

M/A-COM FCC ID: OWDTR-0012-E

Medium Planar Phantom; Planar Section; Position: (270°,90°)

Probe: ET3DV6 - SN1590; ConvF(6.70,6.70,6.70); Crest factor: 1.0

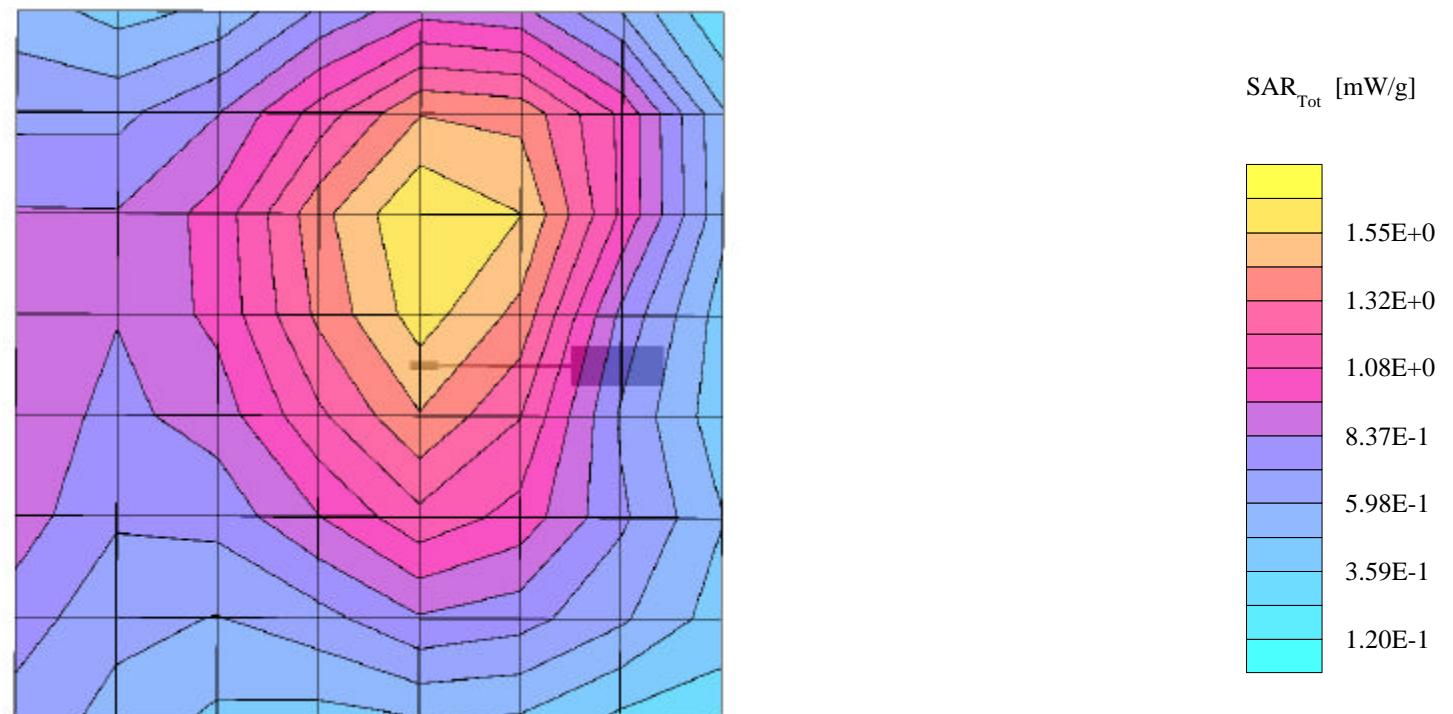
835 MHz Muscle: $\sigma = 0.97 \text{ mho/m}$ $\epsilon_r = 55.2$ $\rho = 1.00 \text{ g/cm}^3$

Coarse: Dx = 40.0, Dy = 40.0, Dz = 10.0

Cube 5x5x7 Powerdrift: -0.12 dB

SAR (1g): 1.62 mW/g, SAR (10g): 1.21 mW/g

Body SAR with 20 cm Separation Distance


M/A-Com Model: J725M - Vehicle-Mount Antenna

Continuous Wave Mode

Mid Channel [815.5000 MHz]

Conducted Pwr: 45.45 dBm

Date Tested: November 26, 2001

M/A-COM FCC ID: OWDTR-0012-E

Medium Planar Phantom; Planar Section; Position: (270°,90°)

Probe: ET3DV6 - SN1590; ConvF(6.70,6.70,6.70); Crest factor: 1.0

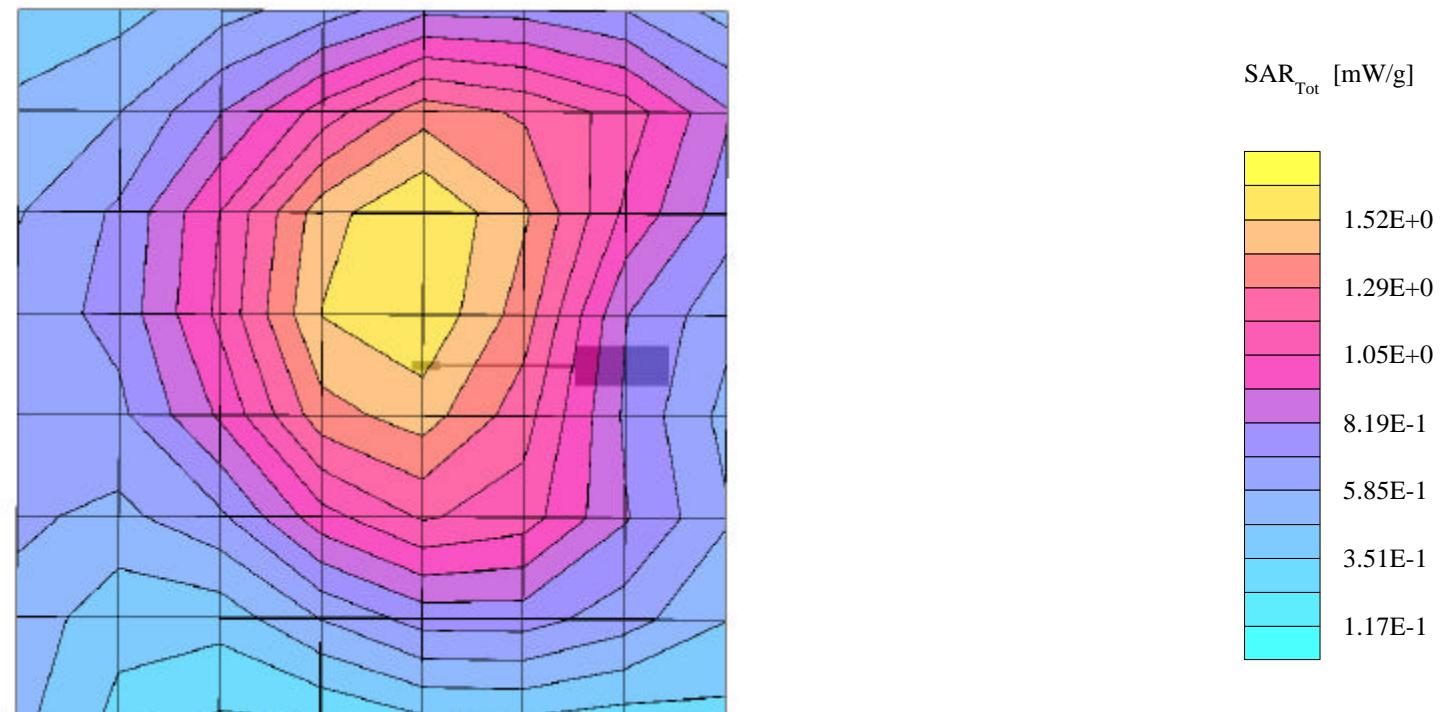
835 MHz Muscle: $\sigma = 0.97 \text{ mho/m}$ $\epsilon_r = 55.2$ $\rho = 1.00 \text{ g/cm}^3$

Coarse: Dx = 40.0, Dy = 40.0, Dz = 10.0

Cube 5x5x7 Powerdrift: -0.07 dB

SAR (1g): 1.58 mW/g, SAR (10g): 1.20 mW/g

Body SAR with 20 cm Separation Distance


M/A-Com Model: J725M - Vehicle-Mount Antenna

Continuous Wave Mode

High Channel [823.9875 MHz]

Conducted Pwr: 45.44 dBm

Date Tested: November 26, 2001

M/A-COM FCC ID: OWDTR-0012-E

Medium Planar Phantom; Planar Section; Position: (270°,90°)

Probe: ET3DV6 - SN1590; ConvF(6.70,6.70,6.70); Crest factor: 1.0

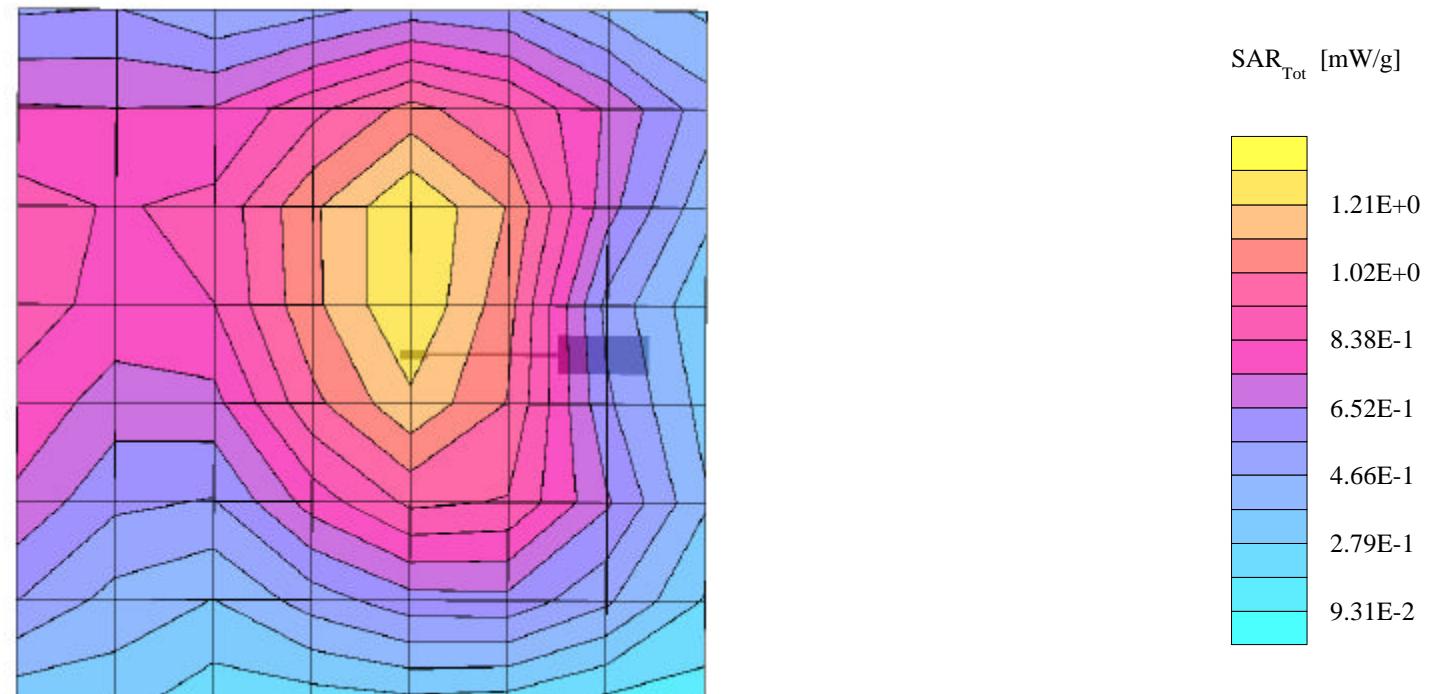
835 MHz Muscle: $\sigma = 0.97 \text{ mho/m}$ $\epsilon_r = 55.2$ $\rho = 1.00 \text{ g/cm}^3$

Coarse: Dx = 40.0, Dy = 40.0, Dz = 10.0

Cube 5x5x7 Powerdrift: -0.08 dB

SAR (1g): 1.24 mW/g, SAR (10g): 0.916 mW/g

Body SAR with 20 cm Separation Distance


M/A-Com Model: J725M - Vehicle-Mount Antenna

Continuous Wave Mode

Low Channel [851.0125 Mhz]

Conducted Pwr: 45.48 dBm

Date Tested: November 26, 2001

M/A-COM FCC ID: OWDTR-0012-E

Medium Planar Phantom; Planar Section; Position: (270°,90°)

Probe: ET3DV6 - SN1590; ConvF(6.70,6.70,6.70); Crest factor: 1.0

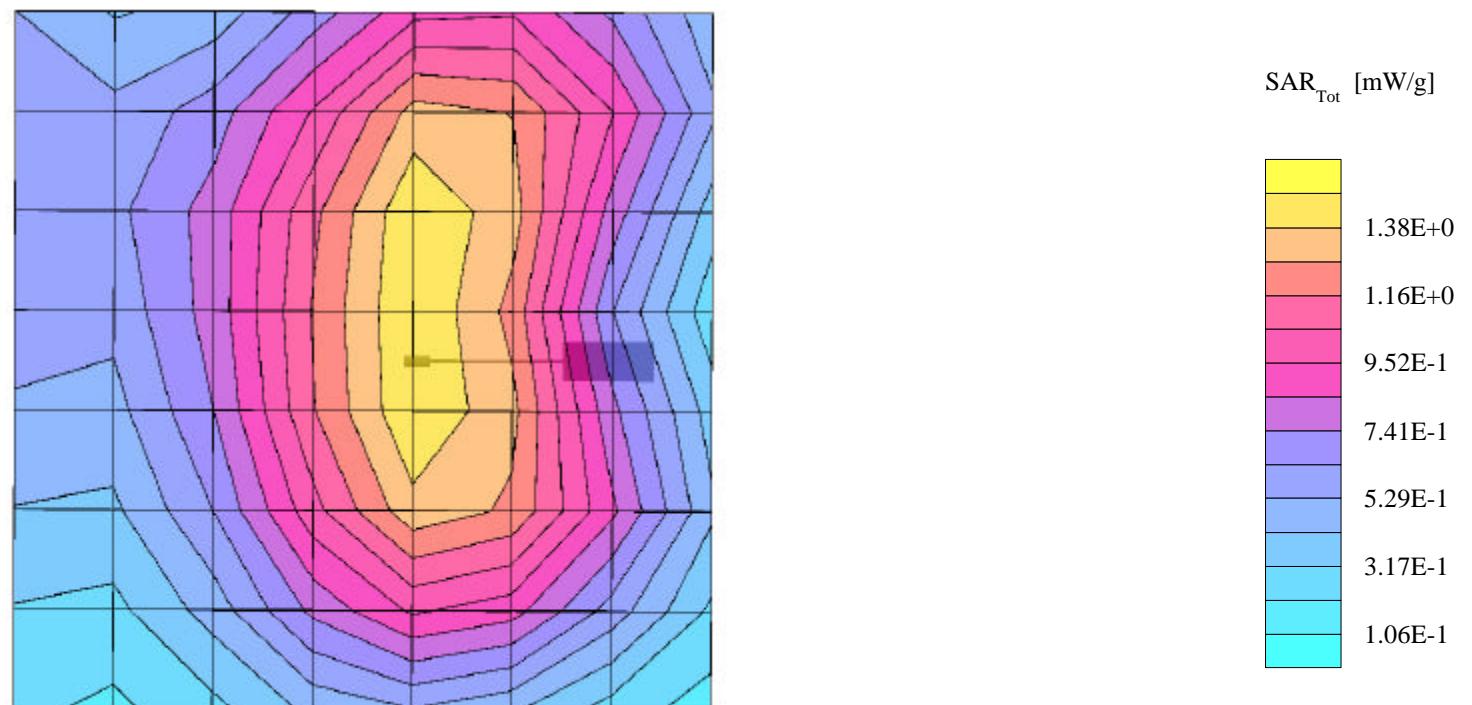
835 MHz Muscle; $\sigma = 0.97 \text{ mho/m}$ $\epsilon_r = 55.2$ $\rho = 1.00 \text{ g/cm}^3$

Coarse: Dx = 40.0, Dy = 40.0, Dz = 10.0

Cube 5x5x7 Powerdrift: -0.09 dB

SAR (1g): 1.37 mW/g, SAR (10g): 1.02 mW/g

Body SAR with 20 cm Separation Distance


M/A-Com Model: J725M - Vehicle-Mount Antenna

Continuous Wave Mode

Mid Channel [860.5000 MHz]

Conducted Pwr: 45.42 dBm

Date Tested: November 26, 2001

M/A-COM FCC ID: OWDTR-0012-E

Medium Planar Phantom; Planar Section; Position: (270°,90°)

Probe: ET3DV6 - SN1590; ConvF(6.70,6.70,6.70); Crest factor: 1.0

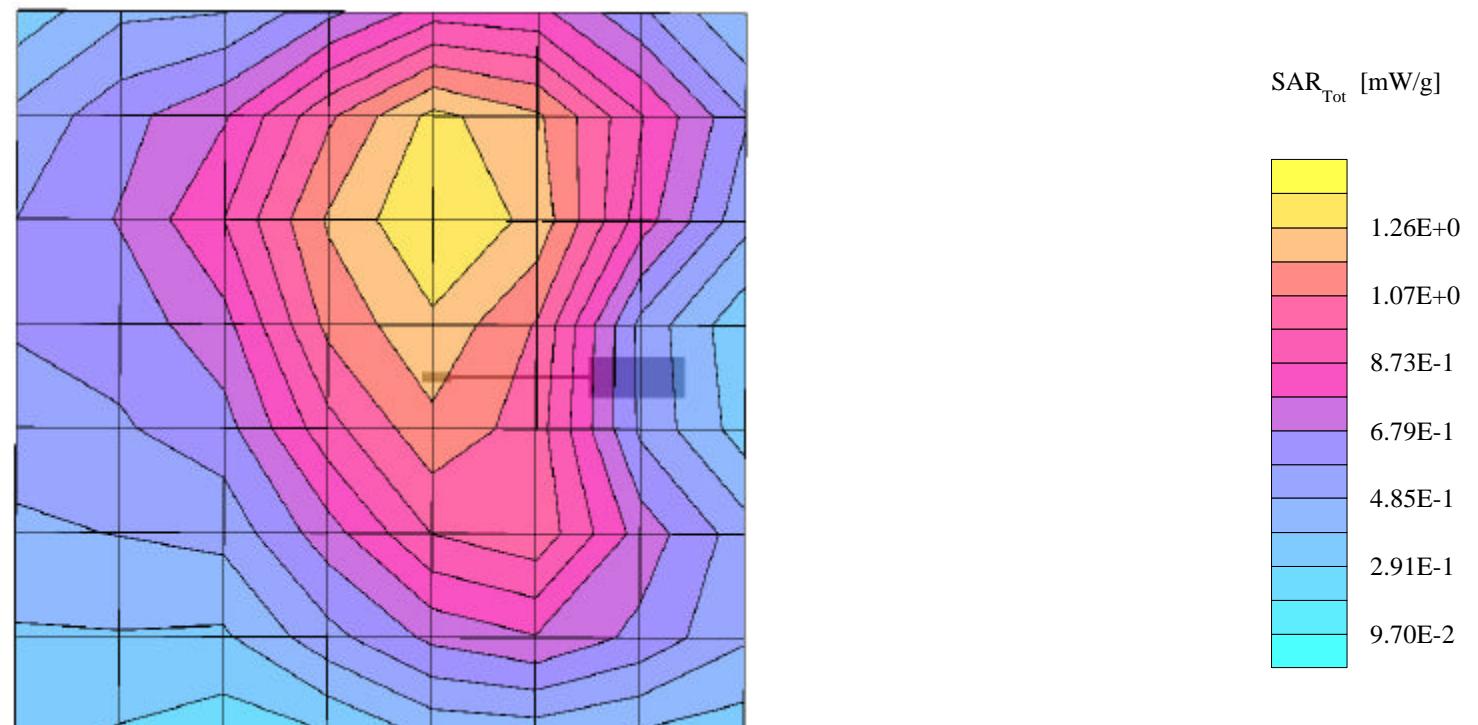
835 MHz Muscle: $\sigma = 0.97 \text{ mho/m}$ $\epsilon_r = 55.2$ $\rho = 1.00 \text{ g/cm}^3$

Coarse: Dx = 40.0, Dy = 40.0, Dz = 10.0

Cube 5x5x7 Powerdrift: -0.08 dB

SAR (1g): 1.34 mW/g, SAR (10g): 0.990 mW/g

Body SAR with 20 cm Separation Distance


M/A-Com Model: J725M - Vehicle-Mount Antenna

Continuous Wave Mode

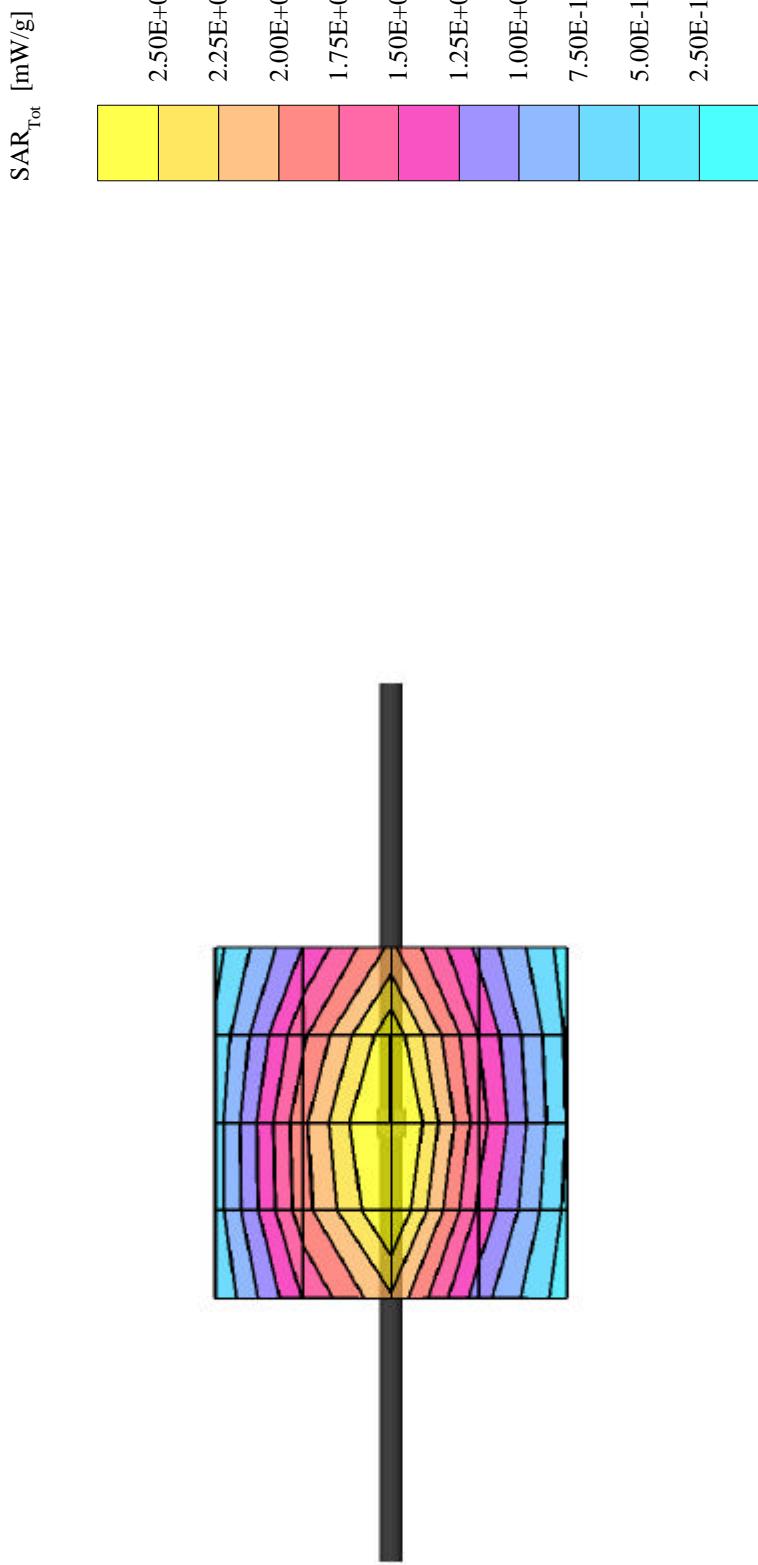
High Channel [868.9875 MHz]

Conducted Pwr: 45.43 dBm

Date Tested: November 26, 2001

APPENDIX B - DIPOLE VALIDATION

Validation Dipole D900V2 SN:054, d = 15 mm


Frequency: 900 MHz; Antenna Input Power: 250 [mW]

Generic Twin Phantom; Flat Section; Grid Spacing: Dx = 15.0, Dy = 15.0, Dz = 10.0

Probe: ET3DV6 - SN1507; ConvF(6.27,6.27,6.27); Crest factor: 1.0; IEEE1528 900 MHz: $\sigma = 0.97$ mho/m $\epsilon_r = 42.4$ $\rho = 1.00$ g/cm³
 Cubes (2): Peak: 4.47 mW/g \pm 0.05 dB, SAR (1g): 2.78 mW/g \pm 0.04 dB, SAR (10g): 1.76 mW/g \pm 0.02 dB, (Worst-case extrapolation)

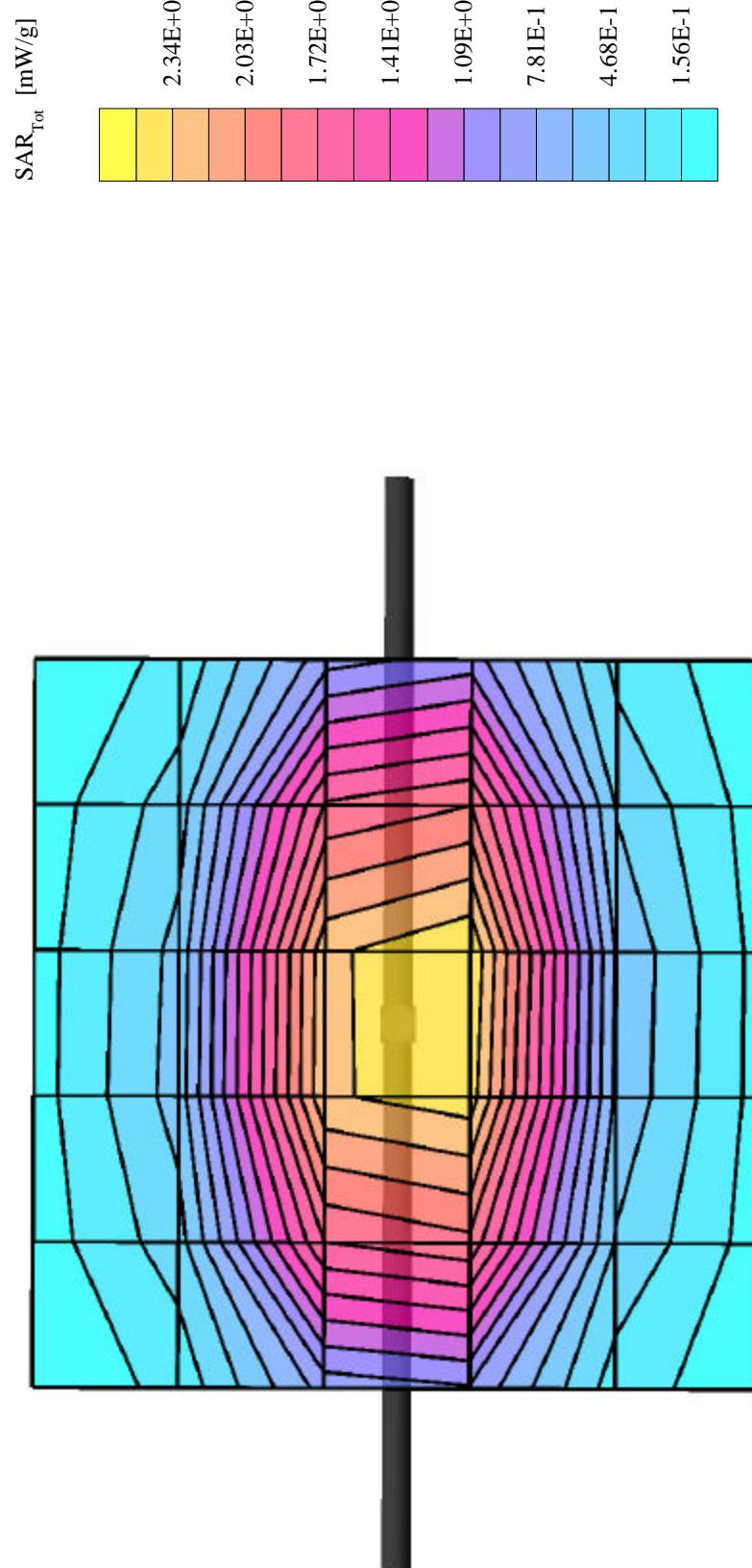
Penetration depth: 11.5 (10.3, 13.2) [mm]

Powerdrift: -0.00 dB

Dipole 900 MHz

Frequency: 900 MHz; Conducted Input Power: 250 [mW]

Medium Planar Phantom; Planar Section

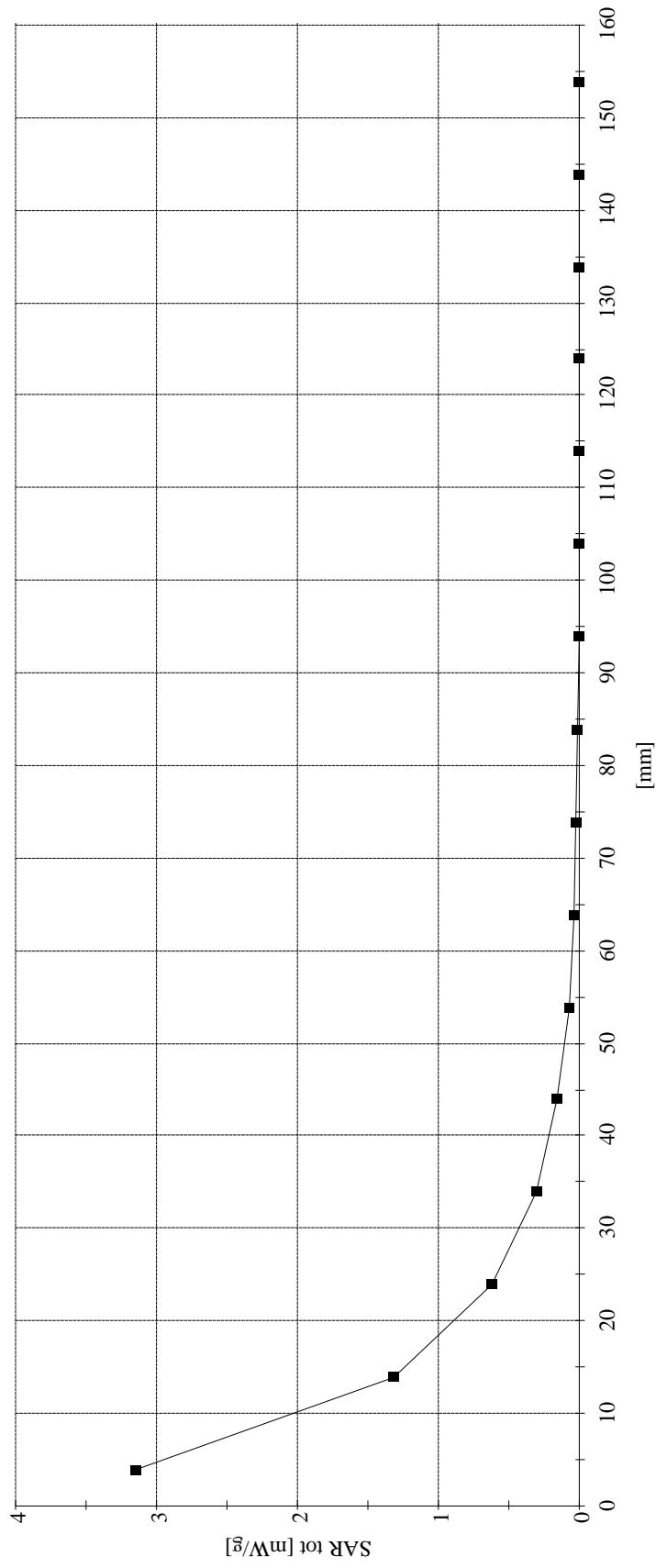

Probe: ET3DV6 - SNI1590; ConvF(6.83,6.83,6.83); Crest factor: 1.0; 900 MHz Brain: $\sigma = 0.97 \text{ mho/m}$ $\epsilon_r = 41.5$ $\rho = 1.00 \text{ g/cm}^3$

Cube 5x5x7: Peak: 4.66 mW/g, SAR (1g): 2.90 mW/g, SAR (10g): 1.83 mW/g, (Worst-case extrapolation)

Penetration depth: 11.5 (10.4, 13.0) [mm]

Powerdrift: -0.83 dB

Calibration Date: Nov. 26, 2001



Dipole 900 MHz

Medium Planar Phantom; Section; Position:

Probe: ET3DV6 - SNI590; ConvF(6.83,6.83,6.83); Crest factor: 1.0
900 MHz Brain: $\sigma = 0.97 \text{ mho/m}$ $\epsilon_r = 41.5$ $\rho = 1.00 \text{ g/cm}^3$
Z-Axis: Dx = 0.0, Dy = 0.0, Dz = 10.0

Conducted Power: 250.0 mW
Date Tested: November 26, 2001

APPENDIX C - PROBE CALIBRATION

Probe ET3DV6

SN:1590

Manufactured: March 19, 2001
Calibrated: March 26, 2001

Calibrated for System DASY3

DASY3 - Parameters of Probe: ET3DV6 SN:1590

Sensitivity in Free Space

NormX	1.77 $\mu\text{V}/(\text{V}/\text{m})^2$
NormY	1.91 $\mu\text{V}/(\text{V}/\text{m})^2$
NormZ	1.67 $\mu\text{V}/(\text{V}/\text{m})^2$

Diode Compression

DCP X	100 mV
DCP Y	100 mV
DCP Z	100 mV

Sensitivity in Tissue Simulating Liquid

Head **450 MHz** $e_r = 43.5 \pm 5\%$ $s = 0.87 \pm 10\% \text{ mho/m}$

ConvF X	7.36 extrapolated	Boundary effect:
ConvF Y	7.36 extrapolated	Alpha 0.29
ConvF Z	7.36 extrapolated	Depth 2.72

Head **900 MHz** $e_r = 42 \pm 5\%$ $s = 0.97 \pm 10\% \text{ mho/m}$

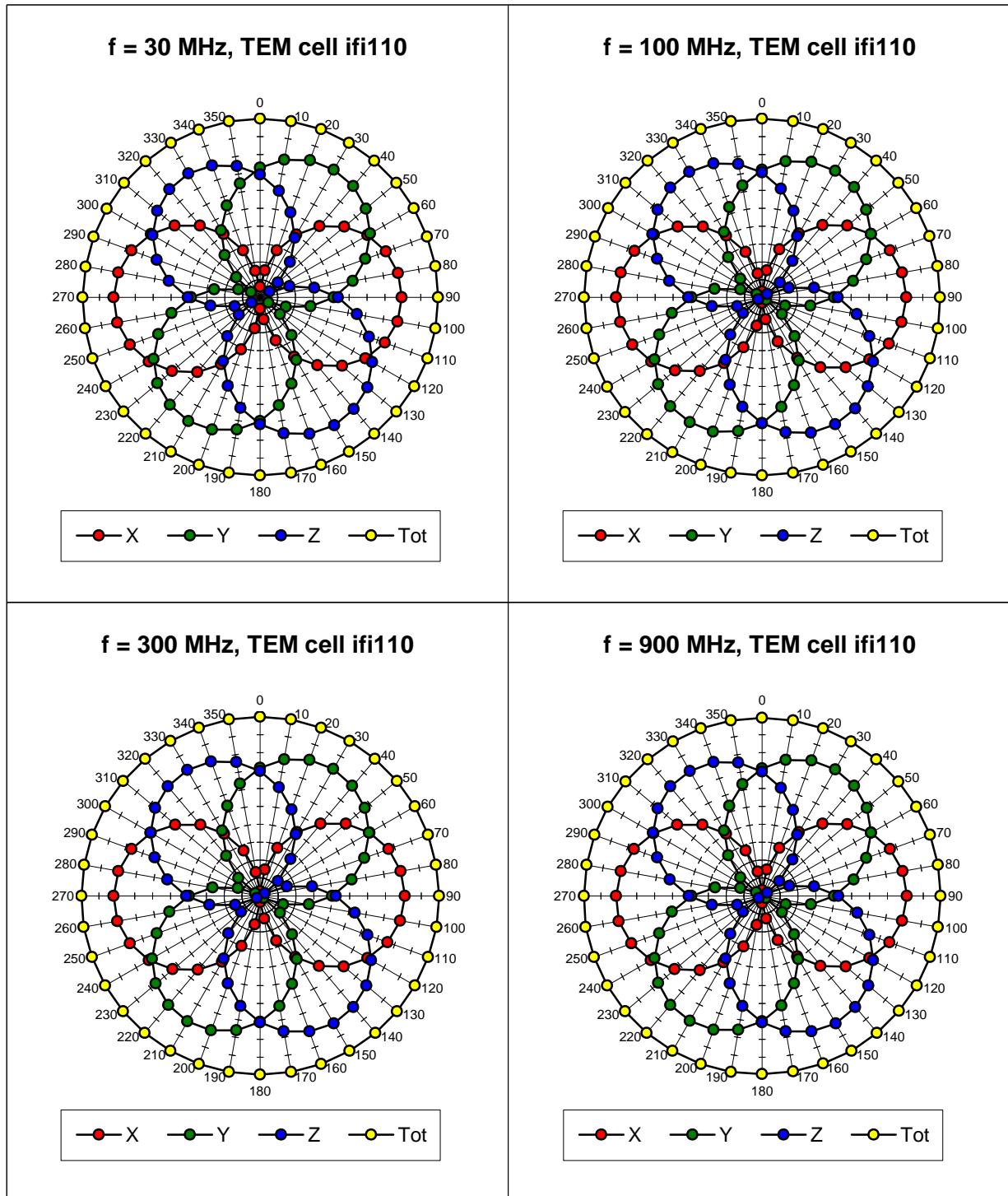
ConvF X	6.83 $\pm 7\%$ (k=2)	Boundary effect:
ConvF Y	6.83 $\pm 7\%$ (k=2)	Alpha 0.37
ConvF Z	6.83 $\pm 7\%$ (k=2)	Depth 2.48

Head **1500 MHz** $e_r = 40.4 \pm 5\%$ $s = 1.23 \pm 10\% \text{ mho/m}$

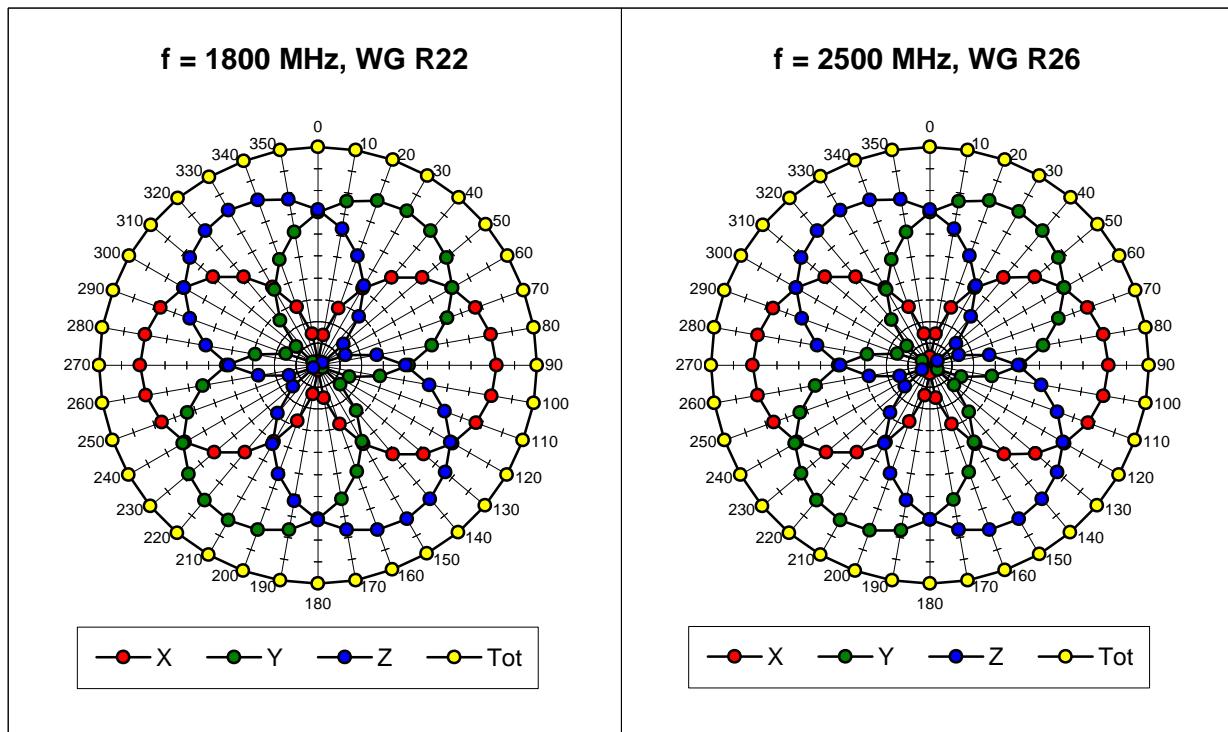
ConvF X	6.13 interpolated	Boundary effect:
ConvF Y	6.13 interpolated	Alpha 0.47
ConvF Z	6.13 interpolated	Depth 2.17

Head **1800 MHz** $e_r = 40 \pm 5\%$ $s = 1.40 \pm 10\% \text{ mho/m}$

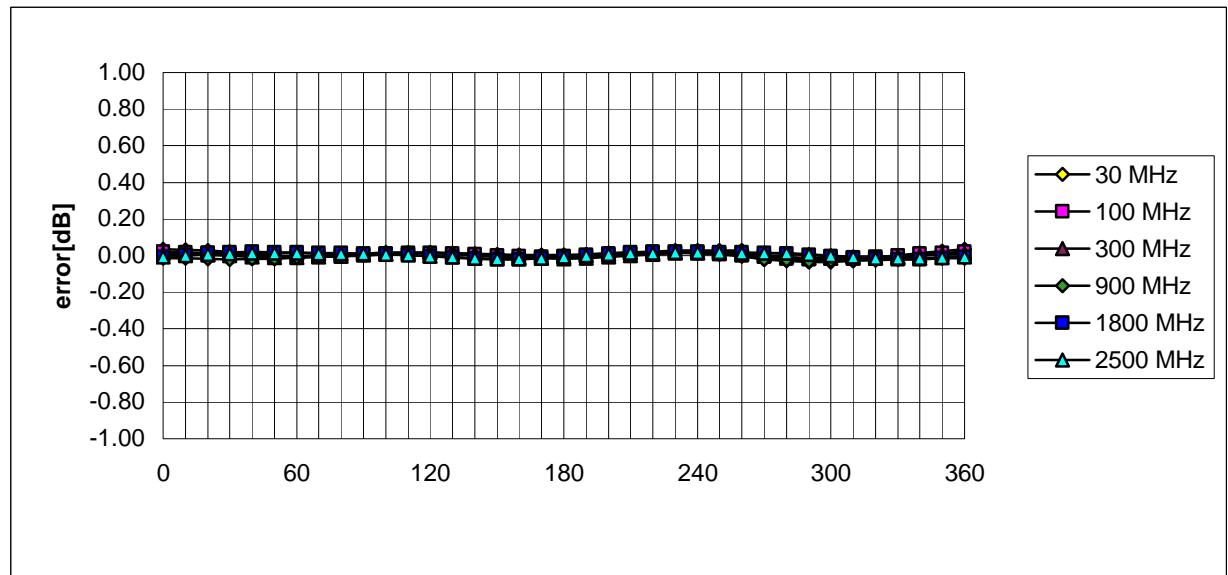
ConvF X	5.78 $\pm 7\%$ (k=2)	Boundary effect:
ConvF Y	5.78 $\pm 7\%$ (k=2)	Alpha 0.53
ConvF Z	5.78 $\pm 7\%$ (k=2)	Depth 2.01


Sensor Offset

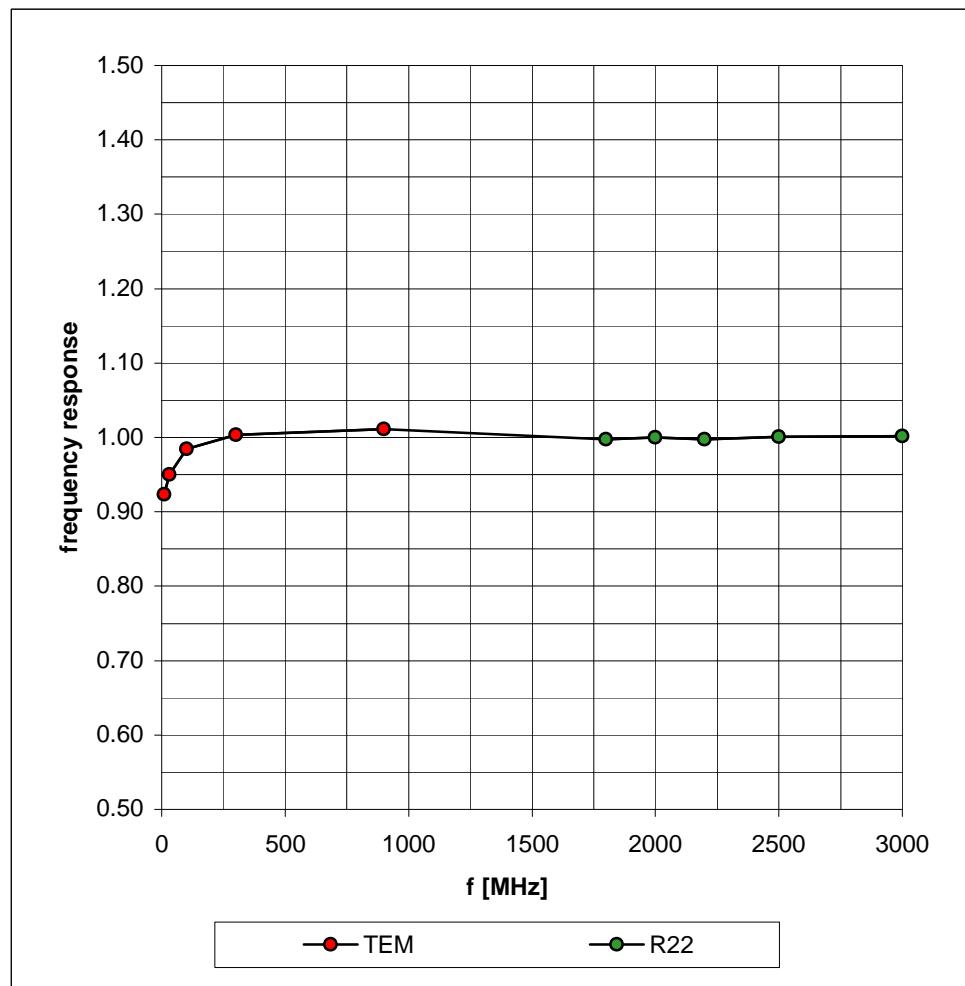
Probe Tip to Sensor Center	2.7	mm
Optical Surface Detection	1.2 \pm 0.2	mm


DASY3 - Parameters of Probe: ET3DV6 SN: 1590

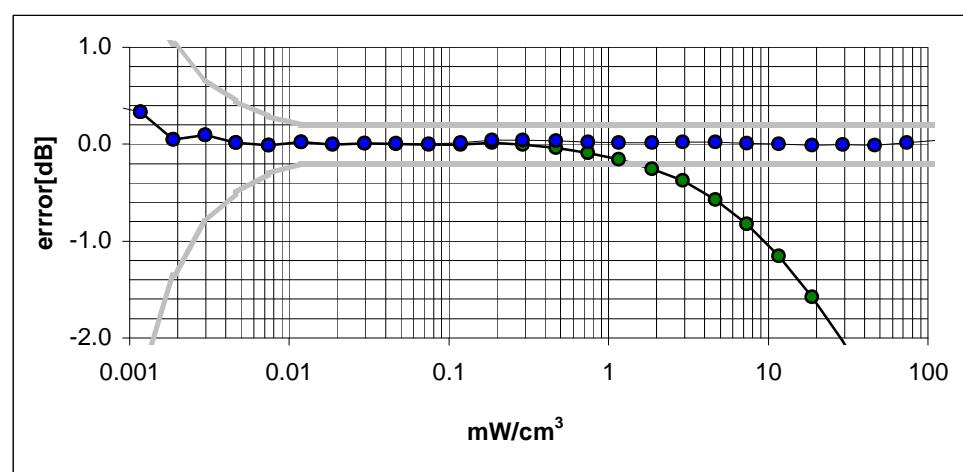
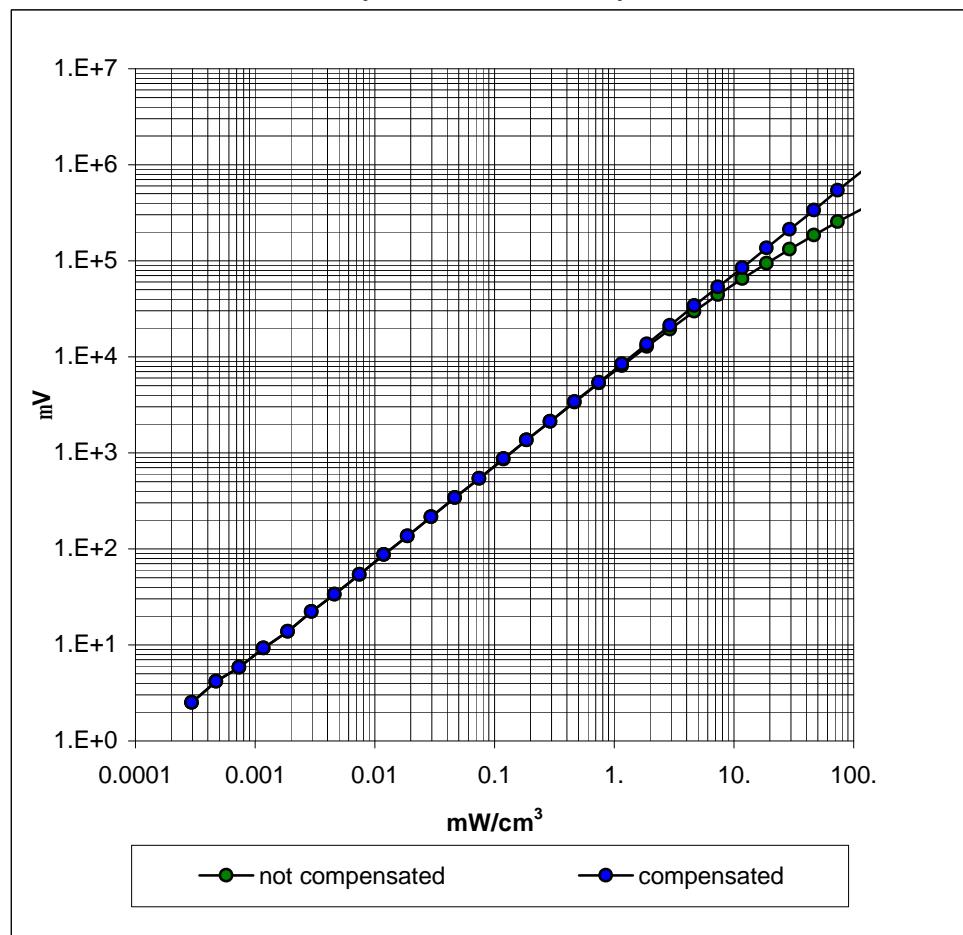
Body	450 MHz	$\epsilon_r = 56.7 \pm 5\%$	$\sigma = 0.94 \pm 10\% \text{ mho/m}$
	ConvF X	7.23 extrapolated	
	ConvF Y	7.23 extrapolated	
	ConvF Z	7.23 extrapolated	
Body	900 MHz	$\epsilon_r = 55.0 \pm 5\%$	$\sigma = 1.05 \pm 10\% \text{ mho/m}$
	ConvF X	6.61 $\pm 7\% \text{ (k=2)}$	
	ConvF Y	6.61 $\pm 7\% \text{ (k=2)}$	
	ConvF Z	6.61 $\pm 7\% \text{ (k=2)}$	
Body	1500 MHz	$\epsilon_r = 54.0 \pm 5\%$	$\sigma = 1.30 \pm 10\% \text{ mho/m}$
	ConvF X	5.78 interpolated	
	ConvF Y	5.78 interpolated	
	ConvF Z	5.78 interpolated	
Body	1800 MHz	$\epsilon_r = 53.3 \pm 5\%$	$\sigma = 1.52 \pm 10\% \text{ mho/m}$
	ConvF X	5.36 $\pm 7\% \text{ (k=2)}$	
	ConvF Y	5.36 $\pm 7\% \text{ (k=2)}$	
	ConvF Z	5.36 $\pm 7\% \text{ (k=2)}$	


Receiving Pattern (f , $q = 0^\circ$)

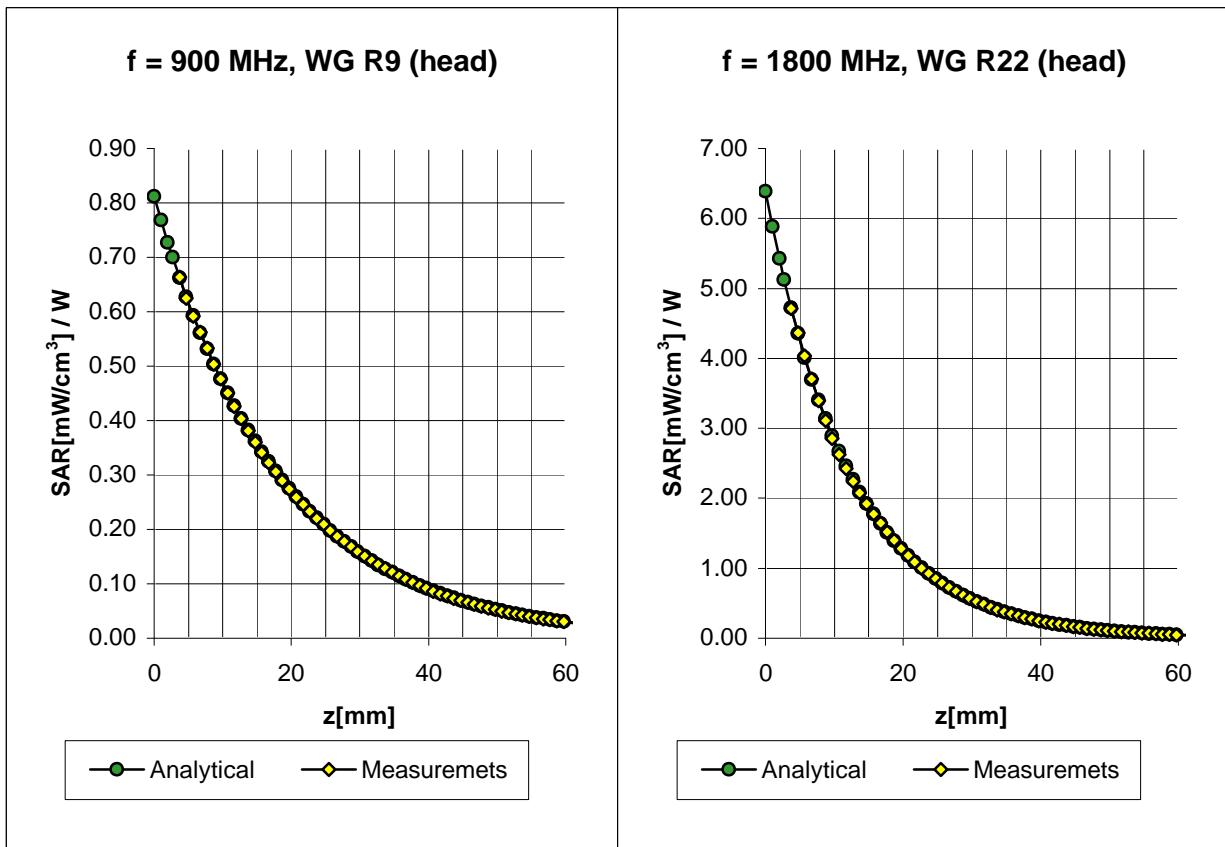
ET3DV6 SN:1590



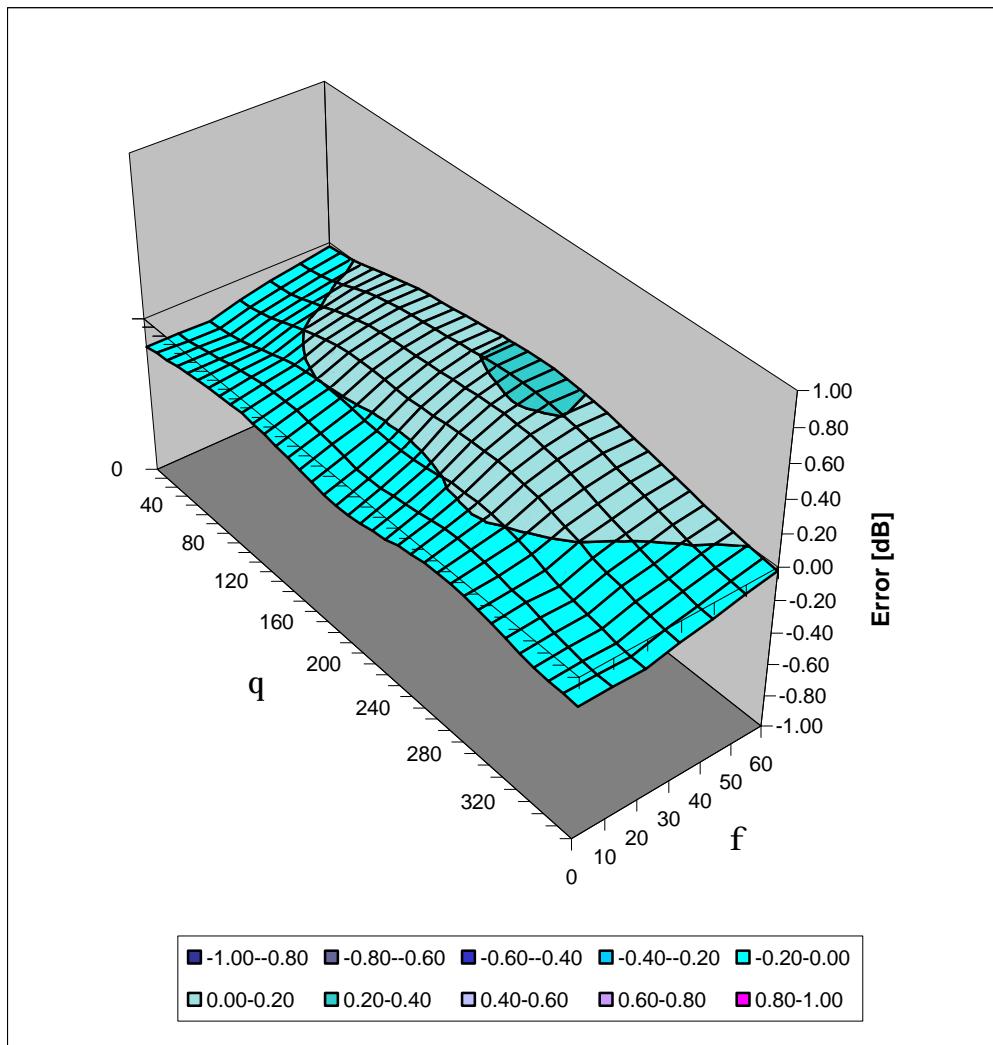
Isotropy Error (f), q = 0°

Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)

Dynamic Range f(SAR_{brain})
(TEM-Cell:ifi110)


Conversion Factor Assessment

ET3DV6 SN:1590

Deviation from Isotropy in HSL

Error (qf), f = 900 MHz

APPENDIX D – SAR SENSITIVITIES

Application Note: SAR Sensitivities

Introduction

The measured SAR-values in homogeneous phantoms depend strongly on the electrical parameters of the liquid. Liquids with exactly matching parameters are difficult to produce; there is always a small error involved in the production or measurement of the liquid parameters. The following sensitivities allow the estimation of the influence of small parameter errors on the measured SAR values. The calculations are based on an approximation formula [1] for the SAR of an electrical dipole near the phantom surface and a adapted plane wave approximation for the penetration depth. The sensitivities are given in percent SAR change per percent change in the controlling parameter:

$$S(x) = \frac{d \text{ SAR} / \text{ SAR}}{d x / x}$$

The controlling parameters x are:

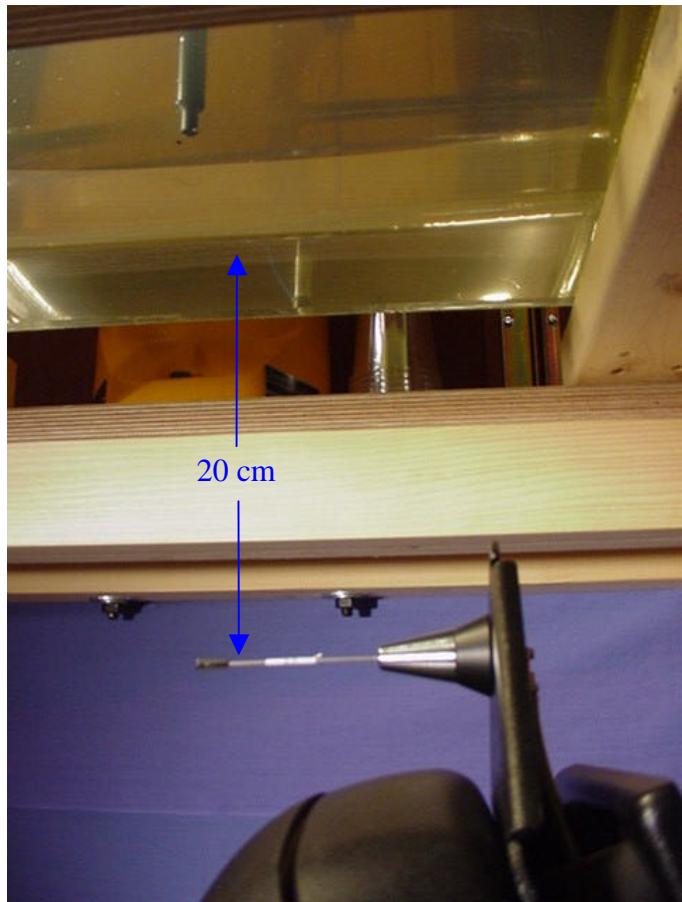
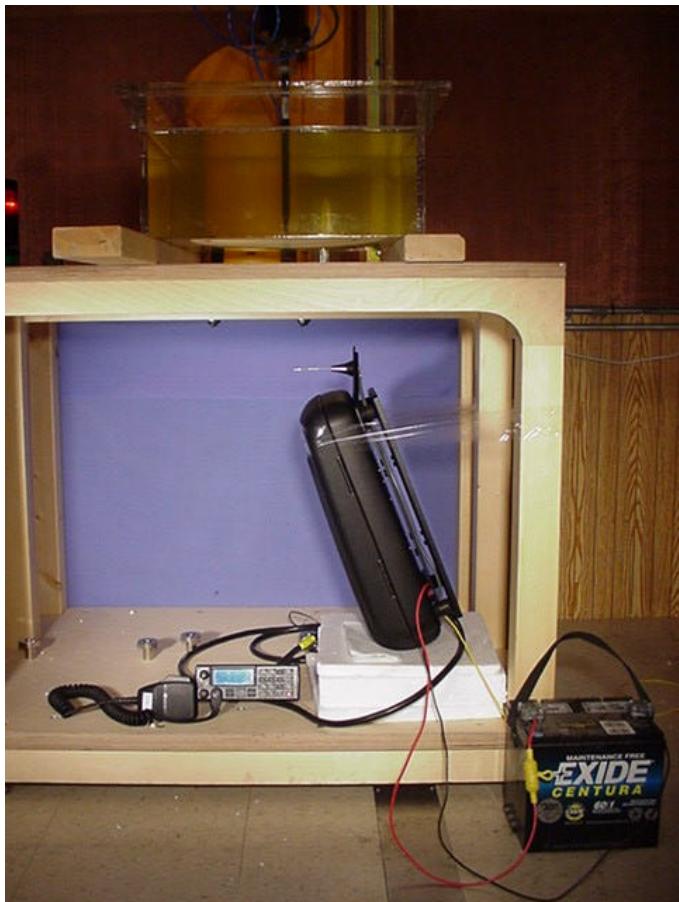
- ϵ : permittivity
- σ : conductivity
- ρ : brain density (= one over integration volume)

For example: If The liquid permittivity increases by 2 percent and the sensitivity of the SAR to permittivity is -0.6 then the SAR will decrease by 1.2 percent.

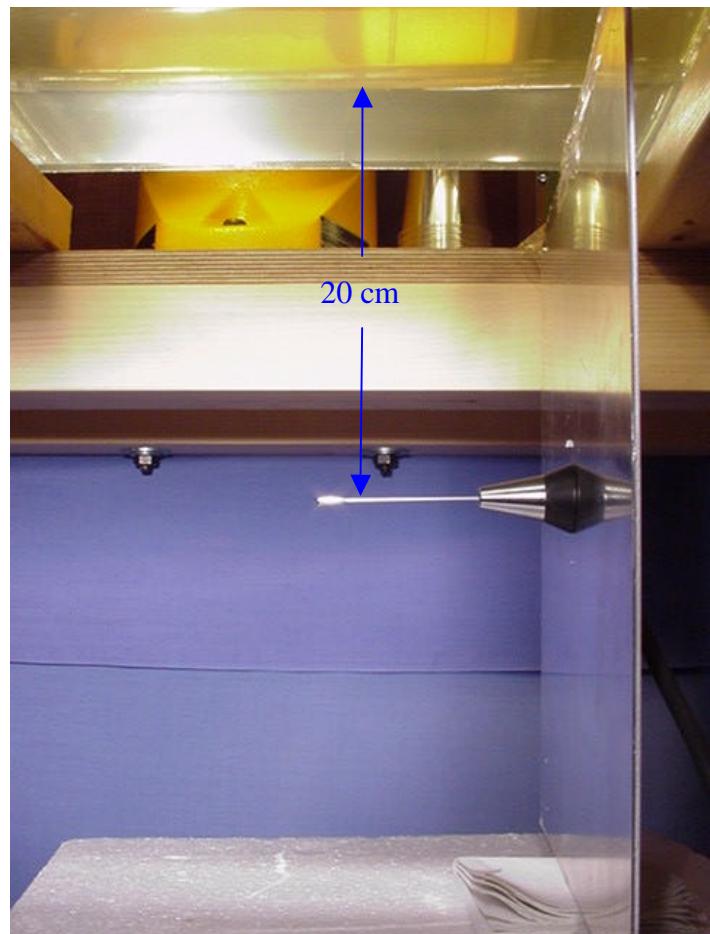
The sensitivities are given for surface SAR values and averaged SAR values for 1 g and 10 g cubes and for dipole distances d of 10mm (for frequencies below 1000 MHz) and 15mm (for frequencies above 1000 MHz) from the liquid surface.

Liquid parameters are as proposed in the new standards (e.g., IEEE 1528).

References



- [1] N. Kuster and Q. Balzano, "Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz", *IEEE Transactions on Vehicular Technology*, vol. 41(1), pp. 17-23, 1992.

Parameter	ϵ	σ	ρ
f=300 MHz ($\epsilon_r=45.3$, $\sigma=0.87\text{S/m}$, $\rho=1\text{g/cm}^3$)			
d=15mm: Surface	- 0.41	+ 0.48	—
1 g	- 0.33	+ 0.28	0.08
10 g	- 0.26	+ 0.09	0.16
f=450 MHz ($\epsilon_r=43.5$, $\sigma=0.87\text{S/m}$, $\rho=1\text{g/cm}^3$)			
d=15mm: Surface	- 0.56	+ 0.67	—
1 g	- 0.46	+ 0.43	0.09
10 g	- 0.37	+ 0.22	0.17
f=835 MHz ($\epsilon_r=41.5$, $\sigma=0.90\text{S/m}$, $\rho=1\text{g/cm}^3$)			
d=15mm: Surface	- 0.70	+ 0.86	—
1 g	- 0.57	+ 0.59	0.10
10 g	- 0.45	+ 0.35	0.18
f=900 MHz ($\epsilon_r=41.5$, $\sigma=0.97\text{S/m}$, $\rho=1\text{g/cm}^3$)			
d=15mm: Surface	- 0.69	+ 0.86	—
1 g	- 0.55	+ 0.57	0.10
10 g	- 0.44	+ 0.32	0.19
f=1450 MHz ($\epsilon_r=40.5$, $\sigma=1.20\text{S/m}$, $\rho=1\text{g/cm}^3$)			
d=10mm: Surface	- 0.73	+ 0.91	—
1 g	- 0.55	+ 0.55	0.12
10 g	- 0.42	+ 0.27	0.22
f=1800 MHz ($\epsilon_r=40.0$, $\sigma=1.40\text{S/m}$, $\rho=1\text{g/cm}^3$)			
d=10mm: Surface	- 0.73	+ 0.92	—
1 g	- 0.52	+ 0.51	0.14
10 g	- 0.38	+ 0.21	0.24
f=1900 MHz ($\epsilon_r=40.0$, $\sigma=1.40\text{S/m}$, $\rho=1\text{g/cm}^3$)			
d=10mm: Surface	- 0.73	+ 0.93	—
1 g	- 0.53	+ 0.51	0.14
10 g	- 0.39	+ 0.22	0.24
f=2000 MHz ($\epsilon_r=40.0$, $\sigma=1.40\text{S/m}$, $\rho=1\text{g/cm}^3$)			
d=10mm: Surface	- 0.74	+ 0.94	—
1 g	- 0.53	+ 0.52	0.14
10 g	- 0.39	+ 0.22	0.24
f=2450 MHz ($\epsilon_r=39.2$, $\sigma=1.80\text{S/m}$, $\rho=1\text{g/cm}^3$)			
d=10mm: Surface	- 0.74	+ 0.93	—
1 g	- 0.49	+ 0.41	0.17
10 g	- 0.34	+ 0.12	0.28
f=3000 MHz ($\epsilon_r=38.5$, $\sigma=2.40\text{S/m}$, $\rho=1\text{g/cm}^3$)			
d=10mm: Surface	- 0.75	+ 0.90	—
1 g	- 0.45	+ 0.28	0.21
10 g	- 0.32	+ 0.02	0.31



APPENDIX E - SAR TEST SETUP PHOTOGRAPHS

BODY SAR TEST SETUP PHOTOGRAPHS
Motorcycle-Mount Unit - 20 cm Separation Distance

BODY SAR TEST SETUP PHOTOGRAPHS
Vehicle-Mount Unit - 20 cm Separation Distance

APPENDIX F – EUT PHOTOGRAPHS

EUT PHOTOGRAPHS

Motorcycle-Mount Control Unit

**Motorcycle-Mount Unit
Enclosure Case Open**

**Motorcycle-Mount Unit
Right Side View**

**Motorcycle-Mount Unit
Left Side View**

**Motorcycle-Mount Unit
Bottom End View**

**Motorcycle-Mount Unit
Top End View**

Vehicle-Mount Control Unit

**Vehicle-Mount Control Unit
with Speaker-Microphone**

**Vehicle-Mount Unit
Bottom End View**

Vehicle-Mount Unit - Left Side View

Vehicle-Mount Unit - Right Side View

Vehicle-Mount Antenna