APPENDIX H: MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES AND REGULATIONS PART 1.1307, 1.1310, 2.1091, 2.1093: RF EXPOSURE COMPLIANCE

1. GENERAL INFORMATION:

- FCC ID: OW5BST801
- Environment: General Population/Uncontrolled Exposure
- Device category: Mobile per Part 2.1093

2. OPERATING CONFIGURATIONS AND TEST CONDITIONS:

2.1 ANTENNA TYPE(S):

Antenna	Туре	Gain (dBi)
MOBILE COMMUNICATIONS TECHNOLOGIES, INC.	Flexible Dual Coil wire	5.6
MOBILE COMMUNICATIONS TECHNOLOGIES, INC	MAGNETIC MOUNT 1/8 WAVE WIRE	5.5
MOBILE COMMUNICATIONS TECHNOLOGIES, INC	GLASS MOUNT 1/8 WAVE WIRE	-2

3. OPERATING CONDITIONS:

The BST-800 Amplifier is a automobile cellular band amplifier for uplink frequencies 824-849 MHz, and the peak conducted and peak radiated (ERP) output power does not exceed 3 W.

4. TEST SIGNAL, TIME-AVERAGING, MAX. MEASURED OUTPUT POWER:

Modulation Type/Modes: IDEN

Frequency Ran 806-821 MHz	Freq. Tolerance (ppm) N/A		Emission Designator AMP	
Output Power (Watt/dBm)	High (Watt)	High (dBm		Time averaging (% Duty Cycle)
Conducted	3.0	34.8		N/A

Rhein Tech Laboratories 360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com Mobile Communication Technologies, Inc. 3W Amplifier FCC: Part 90 & Industry Canada RSS-119 FCC ID: OW5BST801 RTL WO#: 2002165

From FCC 1.1310 table 1A, the maximum permissible RF exposure for an uncontrolled environment is $f/1500 \text{ mW/cm}^2 = 806 \text{ MHz}$ to $821 \text{ MHz}/1500 = 0.54 - 0.55 \text{ mW/cm}^2$. The Electric field generated for a 0.57 mW/cm^2 exposure (S) is calculated as follows:

$$S = E^2/Z$$

where: S = Power density E = Electric field Z = Impedance.

$$E = \sqrt{S \cdot Z}$$

$$0.55 \text{ mW/cm}^2 = 5.5 \text{ W/m}^2$$

The impedance of free space is 377 ohms, where E and H fields are perpendicular.

Thus:

$$E = \sqrt{5.5 \cdot 377}$$
 = 45.5 V/m which is equivalent to 0.55mW/cm²

Using the relationship between Electric field E, Power in watts P, and distance in meters d, the corresponding Antenna numeric gain G and the transmitter output power.

$$E(V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power density: $P_d(mW/cm^2) = \frac{E^2}{2073.5}$

MPE Calculation:

The maximum distance, from the antenna at which MPE is met or exceeded, is calculated from the equation relating field strength E in V/m, transmit power P in Watts, transmit antenna numeric gain G, and separation distance in meters above and solving for d below:

$$d = \frac{\sqrt{30 \times P \times G}}{E} \qquad 0.44m = \frac{\sqrt{30 \times 3.7 \times 3.6}}{45.5}$$

The limit for general population/uncontrolled exposure environment from 300 to 1500MHz is f/1500 mW/cm^2 .

SEPARATION DISTANCE:

Highest Antenna Gain = 3.6 Power ^B (Watt) = 3.7				
Separation Distance ^A				
(in)	(m)			
17.3	0.44			

Notes:

 \overline{A} = Distances are calculated for the largest (worst-case) separation distance as applicable

 B = Measured radiated output power ERP