

RADIO TEST REPORT

Project ID Report ID

PRJ0044270 REP018261

Type of assessment:

Complete Assessment

Applicant:

Barrett Communications Pty Ltd

Product: Model: FCC ID:

4075 Linear Amplifier - 1000 W BC407501 OW4-407510

Specifications:

FCC 47 CFR Part 87

Aviation Services

Date of issue: November 11, 2023

Kevin Rose, EMC/RF Specialist

Tested by

Andrey Adelberg, Senior RF/EMC Specialist

Reviewed by

Signature

Signaturo

|--|

Company name	Nemko Canada Inc.			
Facilities	Ottawa site:	Montréal site:	Cambridge site:	
	303 River Road	292 Labrosse Avenue	1-130 Saltsman Drive	
	Ottawa, Ontario	Pointe-Claire, Québec	Cambridge, Ontario	
	Canada	Canada	Canada	
	K1V 1H2	H9R 5L8	N3E OB2	
	Tel: +1 613 737 9680	Tel: +1 514 694 2684	Tel: +1 519 650 4811	
	Fax: +1 613 737 9691	Fax: +1 514 694 3528		
Test site registration	Organization	Recognition numbers and location		
	FCC/ISED	FCC: CA2040; IC: 2040A-4 (Ottawa); FCC: CA2041; IC: 2040G-5 (Montreal); CA0101 (Cambridge)		
Website	www.nemko.com	<u>emko.com</u>		

Limits of responsibility

Note that this report's results relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of this report.

This test report has been completed following the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report, provided it is reproduced in its entirety and for use by the company's employees only.

Any use that a third party makes of this report, or any reliance on, or decisions made based on it, is such third parties' responsibility.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party due to decisions made or actions based on this report.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party due to decisions made or actions based on this report. © Nemko Canada Inc.

Table of contents

Table o	f contentsf	3
Section	1. Report summary	4
1.1	Applicant and manufacturer	4
1.2	Test specifications	4
1.3	Test methods	4
1.4	Statement of compliance	4
1.5	Exclusions	4
1.6	Test report revision history	
Section	2. Summary of test results	5
2.1	Test results	5
Section	1. F	
3.1	Sample information	6
3.2	EUT information	6
3.3	Technical information	6
3.4	Product description and theory of operation	6
3.5	EUT exercise details	6
3.6	EUT setup diagram	7
3.7	EUT sub assemblies	7
Section	4. Engineering considerations	8
4.1	Modifications incorporated in the EUT	
4.2	Technical judgment	8
4.3	Deviations from laboratory tests procedures	
Section	5. Test conditions	9
5.1	Atmospheric conditions	9
5.2	Power supply range	9
Section	6. Measurement uncertainty	10
6.1	Uncertainty of measurement	10
Section		
7.1	Test equipment list	
Section		
8.1	FCC 87.131 Power and emissions	
8.2	FCC 2.1047 Modulation characteristics	
8.3	FCC 87.139(c) Emission limits, emission mask, bandwidth	
8.4	FCC 87.141(d) Modulation requirements	
8.5	FCC 87.139(c) Emission limits, conducted method	
8.6	FCC 87.139(c) Emission limits, radiated method	
8.7	FCC 87.133 Frequency stability	
Section		
9.1	Radiated emissions set-up for frequencies 30 MHz- 1 GHz	
9.2	Radiated emissions set-up for frequencies below 30 MHz	
9.3	Frequency stability	
9.4	Power limits, Modulation Characteristics, Emission limits, emission mask, bandwidth, Emission limits, conducted method	32

Section 1. Report summary

1.1 Applicant and manufacturer

Company name	Barrett Communications Pty Ltd	
Address	47 Discovery Drive, Bibra Lake, Perth, Western Australia, Australia, 6163	

1.2 Test specifications

CC 47 CFR Part 87	Aviation Services

1.3 Test methods

ANSI C63.26:2015	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Exclusions

None

1.6 Test report revision history

Table 1.6-1: Test report revision history

Revision #	Date of issue	Details of changes made to test report
REP018261	November 11, 2023	Original report issued

Section 2. Summary of test results

2.1 Test results

Table 2.1-1: Test summary

FCC Rule part	Test description	Verdict
87.131	Power and emissions	Pass
2.1047	Modulation characteristics	Reported
87.139(c)	Emission limits, emission mask, bandwidth	Pass
87.141(d)	Modulation requirements	Pass
87.139(c)	Emission limits, conducted method	Pass
87.139(c)	Emission limits, radiated method	Pass
87.133(c)	Frequency stability	Pass

Notes: None

Section 3. Equipment under test (EUT) details

3.1 Sample information

Receipt date	October 9, 2023
Nemko sample ID number	PRJ00442700002

3.2 EUT information

Product name	4075 Linear Amplifier - 1000 W
Model	BC407501
Serial number	201000425

3.3 Technical information

Operating band	1.5–30 MHz
Test frequencies	2.182, 11.363, and 21.964 MHz
Modulation type	J3E and H3E
Occupied bandwidth (99 %)	2.7 kHz (J3E), 3 kHz (H3E)
Power requirements	120–240 V _{AC}
Emission designator	2K70J3E, 3K00H3E
Antenna information	Various types with standard PL-259 connector
RF power Max (W), Conducted	1312.2 W (61.18 dBm)
Transmitter spurious, dBm @ 3 m	-16.724 dBm @ 263.577 MHz or 78.506 dBμV/m

3.4 Product description and theory of operation

The Barrett 4075 Transmitter is a SDR based, 1000 channel HF SSB Transceiver with a frequency range of 1.5 to 30 MHz (250 kHz to 30 MHz in receive) with linear amplifier. The Barrett 4075 is designed using the latest technology including a high-resolution touch screen, IP connectivity, multi-language support, enhanced DSP noise reduction, secure digital voice, integrated GPS interface, ALE and advanced calling features.

3.5 EUT exercise details

The EUT was programmed for the low, mid, and high channels J3E used 400 and 1800 Hz input tone and H3E used 1500 Hz

3.6 EUT setup diagram

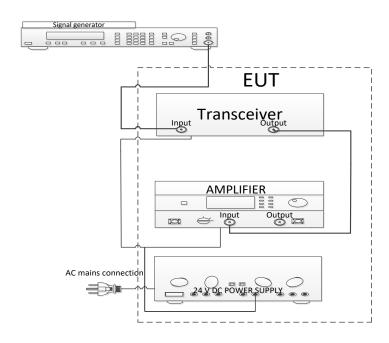


Figure 3.6-1: Setup diagram

3.7 EUT sub assemblies

Table 3.7-1: EUT sub assemblies

Description	Brand name	Model/Part number	Serial number
Linear Amplifier	Barrett	4075	407510313
Break out box	Barrett	4050	407410238
24 V Power Supply/ 12.5 V 5 A charger	Barrett	4022	402411886
HF Transceiver	Barrett	4050	405013678

Section 4. Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

Tested as a system not as standalone amplifier

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5. Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20–75 %
Air pressure	860–1060 mbar

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6. Measurement uncertainty

6.1 Uncertainty of measurement

UKAS Lab 34 and TIA-603-B have been used as guidance for measurement uncertainty reasonable estimations with regards to previous experience and validation of data. Nemko Canada, Inc. follows these test methods in order to satisfy ISO/IEC 17025 requirements for estimation of uncertainty of measurement for wireless products.

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Test name	Measurement uncertainty, dB
All antenna port measurements	0.55
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78

Section 7. Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	TDK	SAC-3	FA002047	1 year	January 19, 2024
Flush mount turntable	Sunol	FM2022	FA002082	_	NCR
Controller	Sunol	SC104V	FA002060	_	NCR
Antenna mast	Sunol	TLT2	FA002061	_	NCR
61505 AC source	Chroma	61509	FA003036	_	VOU
3 m EMI test chamber	TDK	SAC-3	FA002047	1 year	January 19, 2024
Flush mount turntable	Sunol	FM2022	FA002082	_	NCR
Bilog antenna (20–3000 MHz)	Sunol	JB3	FA002108	1 year	March 7, 2024
Active loop antenna (0.01–30 MHz)	Com-Power	AL-130	FA002722	1 year	April 3, 2024
Temperature chamber	Thermotron	SM-16C	FA001030	1 year	January 24, 2024
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 26	FA002043	1 year	November 28, 2023
Spectrum analyzer	Rohde & Schwarz	FSV 40	FA002731	1 year	March 9, 2024

Note: NCR - no calibration required, VOU - verify on use

Section 8

Testing data

Test name

§87.131 Power and emissions

Specification FCC Part 87

Section 8. Testing data

8.1 FCC 87.131 Power and emissions

8.1.1 Definitions and limits

Table 8.1-1: Limits

Class of station	Frequency band/frequency	Authorized emission(s) ²	Maximum power ¹
Aeronautical enroute and aeronautical fixed	HF	R3E, H3E, J3E, J7B, H2B, J2D	6 kW

¹The power is measured at the transmitter output terminals and the type of power is determined according to the emission designator as follows:

8.1.2 Test summary

Test date	October 25, 2023	Temperature	21 °C
Test engineer	Kevin Rose	Air pressure	1006 mbar
Verdict	Pass	Relative humidity	41 %

8.1.3 Observations, settings and special notes

J3E - two tones at frequencies of 400 Hz and 1800 Hz, H3E one tone at a frequency of 1500 Hz

Test receiver settings:

Detector mode	Peak
Resolution bandwidth	>OBW
Video bandwidth	>RBW
Trace mode	Max Hold
Measurement time	Auto

⁽i) Mean power (pY) for amplitude modulated emissions and transmitting both sidebands using unmodulated full carrier.

⁽ii) Peak envelope power (pX) for all emission designators other than those referred to in paragraph (i) of this note.

²Excludes automatic link establishment.

8.1.4 Test data

Table 8.1-2: Output power results for J3E

Modulation	Frequency, MHz	RF output power, dBm	Limit, dBm	Margin, dB
J3E	2.182	60.79	67.78	6.68
J3E	11.363	61.10	67.78	6.99
J3E	21.964	60.18	67.78	7.60

Table 8.1-3: Output power results for H3E

Modulation	Frequency, MHz	RF output power, dBm	Limit, dBm	Margin, dB
H3E	2.182	60.91	67.78	6.60
НЗЕ	11.363	61.18	67.78	6.87
H3E	21.964	60.22	67.78	7.56

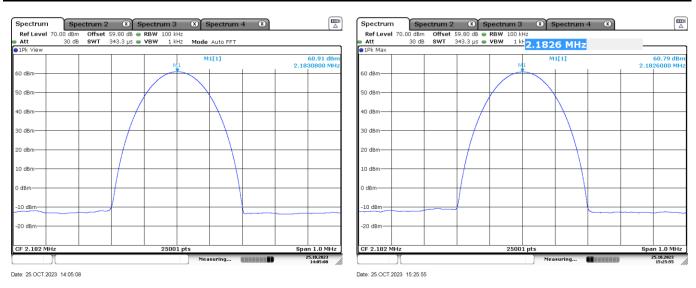


Figure 8.1-1: Power H3E Example

Figure 8.1-2: Power J3E Example

Section 8

Testing data

Test name FCC 2.1047 Modulation characteristics

Specification FCC Part 2

8.2 FCC 2.1047 Modulation characteristics

8.2.1 Definitions and limits

(a) Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter, or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.

(c) Single sideband and independent sideband radiotelephone transmitters which employ a device or circuit to limit peak envelope power. A curve showing the peak envelope power output versus the modulation input voltage shall be supplied. The modulating signals shall be the same in frequency as specified in paragraph (c) of §2.1049 for the occupied bandwidth tests.

8.2.2 Test summary

Test date	October 25, 2023	Temperature	21 °C
Test engineer	Kevin Rose	Air pressure	1005 mbar
Verdict	Pass	Relative humidity	42 %

8.2.3 Observations, settings and special notes

Settings and special notes

octimbo and openial motes	
Detector mode	Peak
Resolution bandwidth	>OBW
Video bandwidth	>RBW

8.2.4 Test data

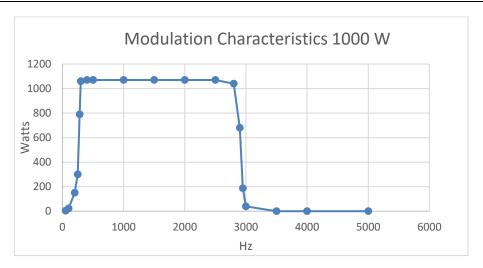


Figure 8.2-1: Modulation Characteristic plot

Table 8.2-1: Modulation Characteritic results

Hz	Watts
50	5
100	22
200	150
250	300
280	790
300	1060
400	1070
500	1070
1000	1070
1500	1070
2000	1070
2500	1070
2800	1040
2900	680
2950	187
3000	39
3500	0.028

Section 8 Testing data

Test name FCC 2.1047 Modulation characteristics

Specification FCC Part 2

Test data, conitued

Table 8.2-2: Modulation Limiting results

2	2.182 MHz		1.363 MHz	2	1.964 MHz
Input Audio,V	Output power, Watts	Input Audio,V	Output power, Watts	Input Audio,V	Output power, Watts
0.03	1	0.03	0.3	0.07	1.1
0.04	2	0.04	0.7	0.1	2.3
0.05	3.7	0.05	1	0.15	5.3
0.1	16	0.1	4.5	0.2	11
0.15	36	0.15	11	0.25	20
0.2	75	0.2	25	0.3	36
0.25	125	0.25	45	0.35	57
0.3	200	0.3	80	0.39	77
0.35	300	0.35	120	0.4	82
0.4	400	0.37	140	0.5	150
0.45	530	0.4	170	0.6	260
0.5	680	0.41	190	0.7	425
0.6	1000	0.45	230	0.8	640
		0.5	320	0.9	840
		0.6	540	1	1000
		0.7	830		
		0.8	1000		

Section 8

Testing data

Test name

FCC 87.139(c) Emission limits, emission mask, bandwidth

Specification FCC Part 87

8.3 FCC 87.139(c) Emission limits, emission mask, bandwidth

8.3.1 Definitions and limits

(c) For aircraft station transmitters first installed after February 1, 1983, and for aeronautical station transmitters in use after February 1, 1983, and using H2B, H3E, J3E, J7B or J9W, the peak envelope power of any emissions must be attenuated below the peak envelope power of the transmitter (pX) as follows:

- 1) When the frequency is removed from the assigned frequency by more than 50 percent up to and including 150 percent of the authorized bandwidth of 3.0 kHz, the attenuation must be at least 30 dB.
- 2) When the frequency is removed from the assigned frequency by more than 150 percent up to and including 250 percent of the authorized bandwidth of 3.0 kHz, the attenuation must be at least 38 dB.
- 3) When the frequency is removed from the assigned frequency by more than 250 percent of the authorized bandwidth of 3.0 kHz for aircraft transmitters the attenuation must be at least 43 dB. For aeronautical station transmitters with transmitter power up to and including 50 watts the attenuation must be at least 43 + 10 log₁₀ pX dB and with transmitter power more than 50 watts the attenuation must be at least 60 dB.

8.3.2 Test summary

Test date	October 25, 2023	Temperature	21 °C
Test engineer	Kevin Rose	Air pressure	1005 mbar
Verdict	Pass	Relative humidity	42 %

8.3.3 Observations, settings and special notes

Spectrum analizer settings:

opeon am ananzer serimgs.	
Detector mode	Peak
Resolution bandwidth	300 or 30 Hz
Video bandwidth	RBW × 3
Trace mode	Max Hold

8.3.4 Test data

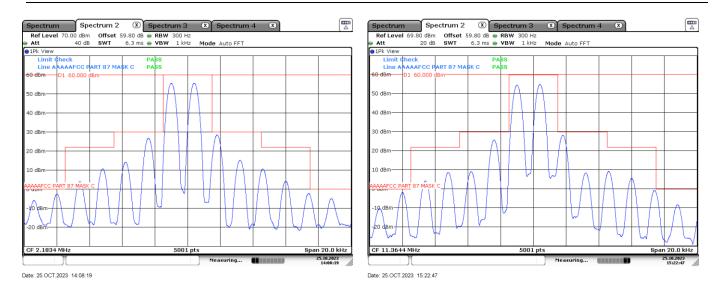


Figure 8.3-1: Low channel Mask J3E

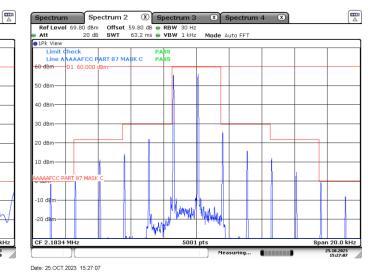


Figure 8.3-2: Mid channel Mask J3E

Spectrum 2 (8) Spectrum 3 (8) Spectrum 4 (8)
 Ref Level
 70.00 dBm
 Offset
 59.80 dB ● RBW
 300 Hz
 300 Hz
 Att
 40 dB
 SWT
 6.3 ms ● VBW
 1 kHz
 Mode
 Auto FFT
 Limit Check
Line AAAAAFCC PART 87 MA

Figure 8.3-3: High channel Mask J3E

Date: 25.OCT.2023 14:52:19

Figure 8.3-4: Low channel Mask H3E

Page 18 of 32 Report reference ID:REP0018261

Section 8 Testing data

Test name FCC 87.139(c) Emission limits, emission mask, bandwidth

Specification FCC Part 87

Test data, continued

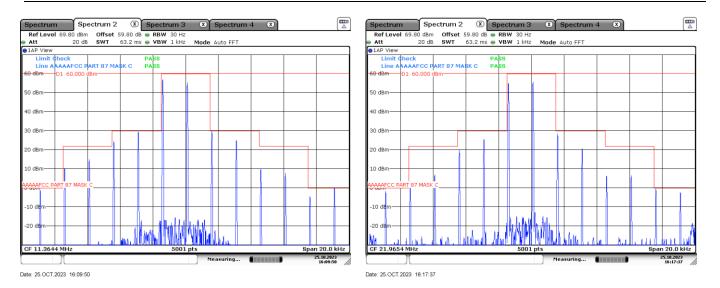


Figure 8.3-5: : Mid channel Mask H3E

Figure 8.3-6: High channel Mask H3E

Section 8 Testing data

Test name FCC 87.141(d) Modulation requirements

Specification FCC Part 87

8.4 FCC 87.141(d) Modulation requirements

8.4.1 Definitions and limits

(d) Single sideband transmitters must be able to operate in the following modes:

Table 8.4-1: Limits

Carrier mode	Level N(dB) of the carrier with respect to peak envelope power	
Full carrier (H3E)	0>N>-6	
Suppressed carrier (J3E)	Aeronautical stations N<-40.	

8.4.2 Test summary

Test date	October 25, 2023	Temperature	21 °C
Test engineer	Kevin Rose	Air pressure	1009 mbar
Verdict	Pass	Relative humidity	45 %

8.4.3 Observations, settings and special notes

Spectrum analyzer settings:

Detector mode	Peak
Resolution bandwidth	30 Hz
Video bandwidth	RBW × 3
Trace mode	Max Hold

Specification FCC Part 87

8.4.4 Test data

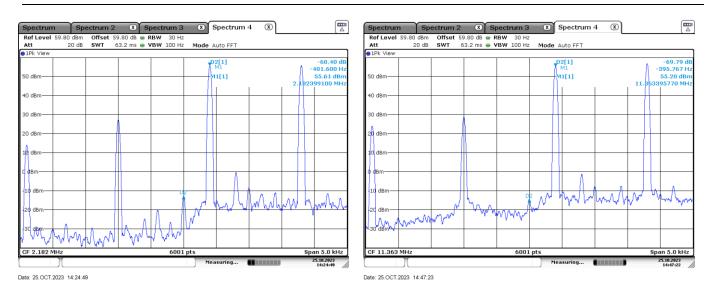


Figure 8.4-1: Low channel J3E 40 dB

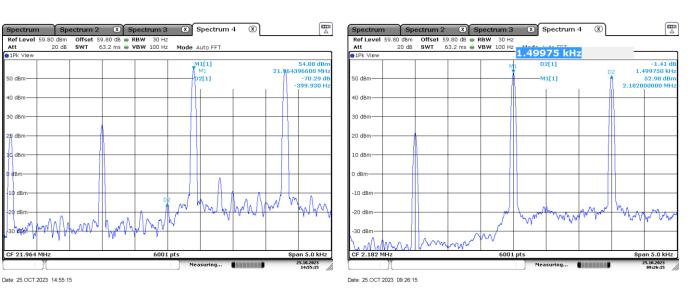


Figure 8.4-3: High channel J3E 40 dB

Figure 8.4-4: Low channel H3E 6 dB

Figure 8.4-2: Mid channel J3E 40 dB

Report reference ID:REP0018261 Page 21 of 32

Section 8 Testing data

Test name FCC 87.141(d) Modulation requirements

Specification FCC Part 87

Test data, continued

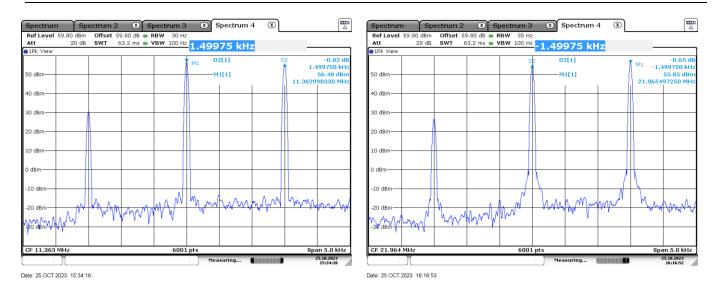


Figure 8.4-5: Mid channel H3E 6 dB

Figure 8.4-6: High channel H3E 6 dB

Section 8

Testing data

Test name Specification FCC 87.139(c) Emission limits, conducted method

FCC Part 87

8.5 FCC 87.139(c) Emission limits, conducted method

8.5.1 Definitions and limits

(c) For aircraft station transmitters first installed after February 1, 1983, and for aeronautical station transmitters in use after February 1, 1983, and using H2B, H3E, J3E, J7B or J9W, the peak envelope power of any emissions must be attenuated below the peak envelope power of the transmitter (pX) as follows:

- 4) When the frequency is removed from the assigned frequency by more than 50 percent up to and including 150 percent of the authorized bandwidth of 3.0 kHz, the attenuation must be at least 30 dB.
- 5) When the frequency is removed from the assigned frequency by more than 150 percent up to and including 250 percent of the authorized bandwidth of 3.0 kHz, the attenuation must be at least 38 dB.
- 6) When the frequency is removed from the assigned frequency by more than 250 percent of the authorized bandwidth of 3.0 kHz for aircraft transmitters the attenuation must be at least 43 dB. For aeronautical station transmitters with transmitter power up to and including 50 watts the attenuation must be at least 43 + 10 log₁₀ pX dB and with transmitter power more than 50 watts the attenuation must be at least 60 dB.

8.5.2 Test summary

Test date	October 25, 2023	Temperature	21 °C
Test engineer	Kevin Rose	Air pressure	1009 mbar
Verdict	Pass	Relative humidity	45 %

8.5.3 Observations, settings and special notes

Limit was determined by rated power of 1 kW = 60 dBm -60 dB = 0 dBm

Spectrum analyzer settings:

Detector mode	Peak
Resolution bandwidth	10 kHz
Video bandwidth	RBW × 3
Trace mode	Max Hold

Test name Specification

8.5.1 Test data

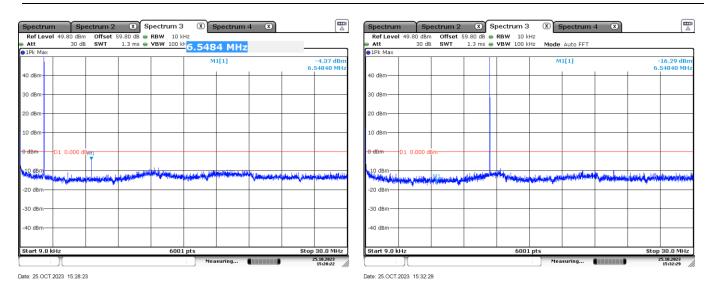


Figure 8.5-1: Low channel Conducted Spurious H3E

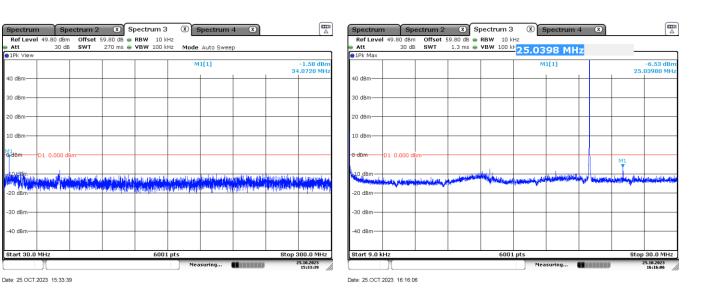


Figure 8.5-3: Mid channel Conducted Spurious H3E

Figure 8.5-4: High channel Conducted Spurious H3E

Figure 8.5-2: Mid channel Conducted Spurious H3E

Report reference ID:REP0018261 Page 24 of 32 Specification FCC Part 87

Spectrum 2 Spectrum 3

Date: 25.OCT.2023 15:33:39

Test data, conitued

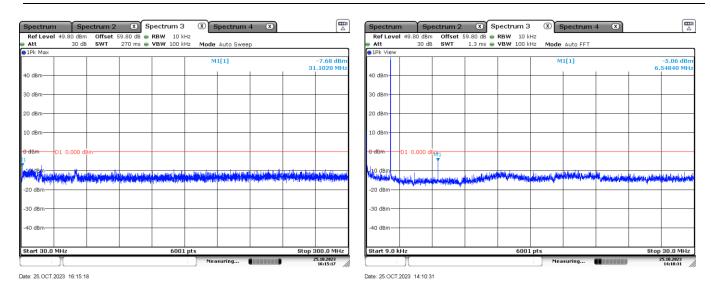


Figure 8.5-5: High channel Conducted Spurious H3E

Spectrum 4 X

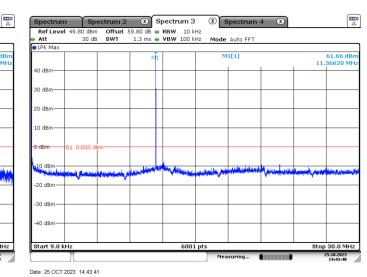


Figure 8.5-6: Low channel Conducted Spurious J3E

Ref Level 49.80 dBm Offset 59.80 dB RBW 10 kHz
Att 30 dB SWT 270 ms VBW 100 kHz Mode Auto Sweep

9 PK View

10 M1[1] -1.56 dBm

40 dBm 01 0.000 dBm

10 dBm

1

Figure 8.5-7: Mid channel Conducted Spurious J3E

Figure 8.5-8: Mid channel Conducted Spurious J3E

Report reference ID:REP0018261

Section 8 Testing data

Test name FCC 87.139(c) Emission limits, conducted method

Specification FCC Part 87

Test data, continued

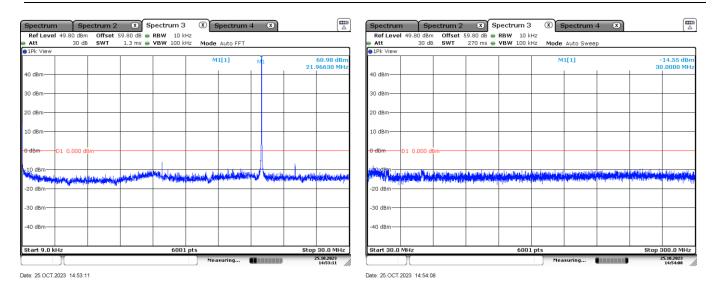


Figure 8.5-9: High channel Conducted Spurious J3E

Figure 8.5-10: High channel Conducted Spurious J3E

Section 8

Testing data

Test name

FCC 87.139(c) Emission limits, radiated method

Specification FCC Part 87

8.6 FCC 87.139(c) Emission limits, radiated method

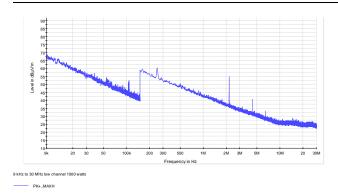
8.6.1 Definitions and limits

- (1) When the frequency is removed from the assigned frequency by more than 50 percent up to and including 150 percent of the authorized bandwidth of 3.0 kHz, the attenuation must be at least 30 dB.
- (2) When the frequency is removed from the assigned frequency by more than 150 percent up to and including 250 percent of the authorized bandwidth of 3.0 kHz, the attenuation must be at least 38 dB.
- (c) For aircraft station transmitters first installed after February 1, 1983, and for aeronautical station transmitters in use after February 1, 1983, and using H2B, H3E, J3E, J7B or J9W, the peak envelope power of any emissions must be attenuated below the peak envelope power of the transmitter (pX) as follows: (3) When the frequency is removed from the assigned frequency by more than 250 percent of the authorized bandwidth of 3.0 kHz for aircraft transmitters the attenuation must be at least 43 dB. For aeronautical station transmitters with transmitter power up to and including 50 watts the attenuation must be at least 43 + 10 log10 pX dB and with transmitter power more than 50 watts the attenuation must be at least 60 dB.

8.6.2 Test summary

Test date	October 19, 2023	Temperature	21 °C
Test engineer	Kevin Rose	Air pressure	1010 mbar
Verdict	Pass	Relative humidity	45 %

8.6.3 Observations, settings and special notes


- J3E 400 Hz and 1800 Hz tone was used during testing. Testing was performed up to 1 GHz, no spurious emissions above 300 MHz were observed.
- Limit was determined by rated power of 1 kW = 60 dBm 60 dB = 0 dBm

Spectrum analizer settings:

- l	
Detector mode	Peak
Resolution bandwidth	10 kHz
Video bandwidth	RBW × 3
Trace mode	Max Hold

8.6.4 Test data

20-300 MHz lew channel 1000 watts

PPL-MMM

Figure 8.6-1: Low channel Radiated Spurious 9 kHz-30 MHz

Notes $Limit = 95.23 \text{ dB}\mu\text{V/m} \text{ or } 0 \text{ dBm}$

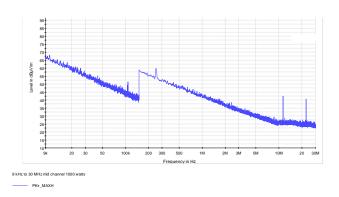


Figure 8.6-2: Low channel Radiated Spurious 30-300 MHz Notes Limit = $95.23~dB\mu V/m$ or 0~dBm

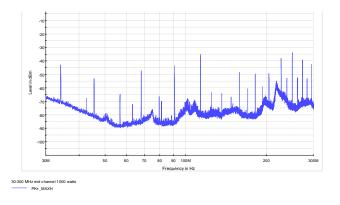
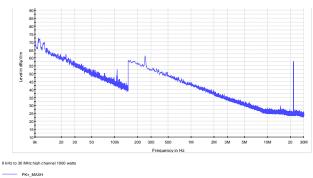



Figure 8.6-3: Mid channel Radiated Spurious 9 kHz-30 MHz Notes Limit = 95.23 dB μ V/m or 0dBm

Figure 8.6-4: Mid channel Radiated Spurious 30-300 MHz Notes Limit = 95.23 dB μ V/m or 0 dBm

Test data, continued

Notes Limit = $82.23 dB\mu V/m \text{ or } -13 dBm$

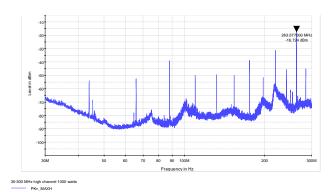


Figure 8.6-6: High channel Radiated Spurious 30-300 MHz Notes Limit = $82.23~dB\mu V/m$ or -13 dBm

8.7 FCC 87.133 Frequency stability

8.7.1 Definitions and limits

- (c) For single-sideband transmitters, the tolerance is:
- (1) All aeronautical stations on land: 10 Hz.

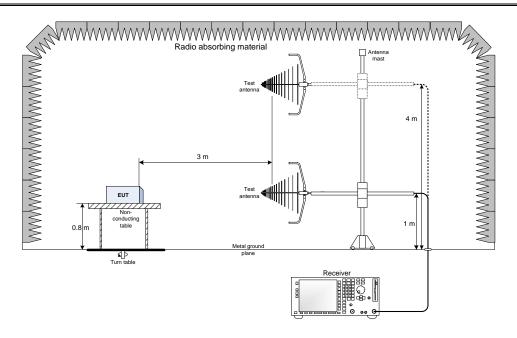
8.7.2 Test summary

Test date	October 24, 2023	Temperature	21 °C
Test engineer	Kevin Rose	Air pressure	1009 mbar
Verdict	Pass	Relative humidity	47 %

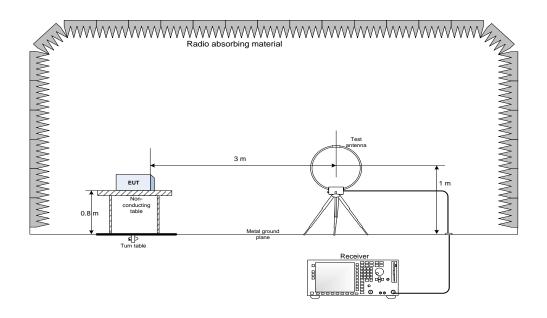
8.7.3 Observations, settings and special notes

1500 Hz tone was used during testing

8.7.4 Test data

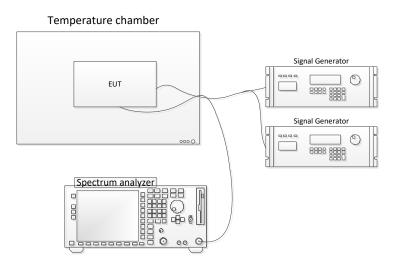

Table 8.7-1: Frequency drift measurement FCC Part 87 results

Test conditions	Frequency, Hz	Drift, Hz	Limit ±10 Hz
+50 °C, Nominal	11363395	7	±10 Hz
+40 °C, Nominal	11363396	6	±10 Hz
+30 °C, Nominal	11363399	3	±10 Hz
+20 °C, +15 %	11363402	0	±10 Hz
+20 °C, Nominal	11363402	0	Reference
+20 °C, -15 %	11363402	0	±10 Hz
+10 °C, Nominal	11363402	0	±10 Hz
0 °C, Nominal	11363402	0	±10 Hz
−10 °C, Nominal	11363402	0	±10 Hz
−20 °C, Nominal	11363403	-1	±10 Hz
−30 °C, Nominal	11363402	0	±10 Hz

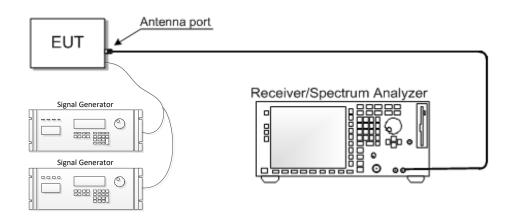


Section 9. Block diagrams of test set-ups

9.1 Radiated emissions set-up for frequencies 30 MHz- 1 GHz



9.2 Radiated emissions set-up for frequencies below 30 MHz



9.3 Frequency stability

9.4 Power limits, Modulation Characteristics, Emission limits, emission mask, bandwidth, Emission limits, conducted method

-End of test report-