This document was generated in response to a request for additional technical information by Joe Dichoso in regards to the type approval of the QCP-6035. The information included in related to the two specific topics discussed in the following email received by Jay Moulton on September 5, 2000:

```
>Date: Tue, 5 Sep 2000 13:35:05 -0400
>From: oetech@fccsun07w.fcc.gov (OET)
>To: jmoulton@qualcomm.com
>Subject: RF safety only.
>To: Jay Moulton, Kyocera Wireless Corp
>From: Joe Dichoso
> jdichoso@fcc.gov
> FCC Application Processing Branch
>Re: FCC ID OVFQCP-6035
>Applicant: Kyocera Wireless Corp
>Correspondence Reference Number: 15914
>731 Confirmation Number: EA98452
>Date of Original E-Mail: 09/05/2000
>Place your reply in the RF exposure info folder. A technical review is
pending.
>Kyocera, EA 98452-
>1. Body-worn SAR was tested with a specific Kyocera belt-clip accessory.
>The proposed body-worn RF exposure info (in the manual) suggests use of
>other belt-clip or similar accessories with no metallic component is OK
>provided they can maintain 22.75 mm separation. The use of other belt-clips
>with the proposed conditions will require separate body-worn SAR testing
>with the proposed separation distance (without any belt-clip). Existing
>body-worn SAR results using a specific belt-clip, if containing any metallic
>component in its assembly, would typically result in different SAR
>distributions than others with different separation distance or component
>assembly. Please revise the proposed statement to indicate other
>belt-clips, holsters or similar accessories that have not been tested for
>body-worn SAR may not comply with FCC RF exposure limit and should be avoided.
>2. Please submit a photo of the belt-clip tested with this device for SAR
>compliance.
```

1) SAR with 22.75 mm separation when phone is worn on torso

To verify that the QCP-6035 is indeed SAR compliant with 22.75 mm separation between the closet point of the handset and the phantom, waist SAR testing was reperformed without a belt clip for both FM and PCS modes. HP85070B dielectric measurement system was used to calibrate muscle tissue. The dielectric data sheets of muscle are attached at the end of this report. SAR plots are attached in the proceeding pages.

The table below shows the parameters of muscle tissue specified in OET bulletin 65.

Parameters of brain and muscle tissue

	Frequency	Permittivity	Conductivity (S/m)	Notes
Muscle	900 MHz	56.1	0.95	specified by OET bulletin 65, supplemental C
Muscle	1800 MHz	54	1.45	specified by OET bulletin 65, supplemental C.

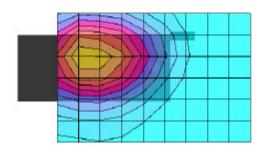
The test results are summarized in the table below.

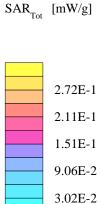
Body-worn SAR measurement results with 22.75 mm air separetion

body worm britt medsurement results with 22:75 mm an separetion						
Channel/Mode	SAR (mW/g)	SAR (mW/g)				
	(antenna retracted)	(antenna extended)				
CH 383 - FM	0.361	0.536				
CH 799 - FM	0.527	0.567				
CH 991 - FM	0.685	0.547				
CH 25 - PCS	0.168	0.198				
CH 600 - PCS	0.181	0.196				
CH 1175 - PCS	0.177	0.205				

The plots are in the proceeding pages.

 \overline{SAR} (1g): 0.361 [mW/g] \pm 0.19 dB, SAR (10g): 0.269 [mW/g] \pm 0.18 dB


Cubes (2) (Worst-case extrapolation) Generic Twin Phantom; Flat Section

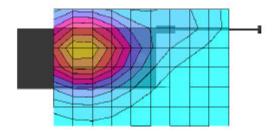

Probe: ET3DV5 - SN1348; ConvF(5.72,5.72,5.72)

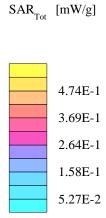
Muscle 900 MHz: $\sigma = 0.94$ [mho/m] $\epsilon_{r} = 56.1~\rho = 1.00$ [g/cm³]

File Name: T2 #0292, FM ch383, waist, 9-14-00.DA3

Powerdrift: -0.59 dB

 \overline{SAR} (1g): 0.536 [mW/g] \pm 0.08 dB, SAR (10g): 0.377 [mW/g] \pm 0.34 dB


Cubes (2) (Worst-case extrapolation) Generic Twin Phantom; Flat Section

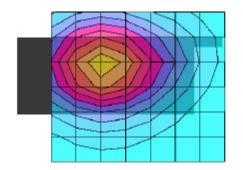

Probe: ET3DV5 - SN1348; ConvF(5.72,5.72,5.72)

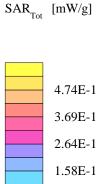
Muscle 900 MHz: $\sigma = 0.94$ [mho/m] $\epsilon_{r} = 56.1~\rho = 1.00$ [g/cm³]

File Name: T2 #0292, FM ch383, waist, 9-14-00.DA3

Powerdrift: 0.21 dB

 \overline{SAR} (1g): 0.527 [mW/g] \pm 0.20 dB, SAR (10g): 0.393 [mW/g] \pm 0.19 dB


Cubes (2) (Worst-case extrapolation) Generic Twin Phantom; Flat Section


Probe: ET3DV5 - SN1348; ConvF(5.72,5.72,5.72)

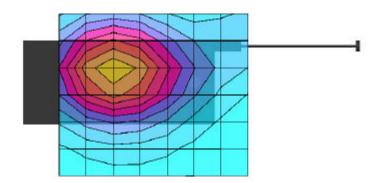
Muscle 900 MHz: $\sigma = 0.94$ [mho/m] $\epsilon_r = 56.1~\rho = 1.00$ [g/cm³]

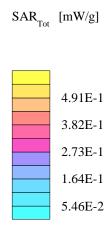
File Name: T2 #0292, FM ch799, waist, 9-14-00.DA3

Powerdrift: -0.35 dB

5.27E-2

 \overrightarrow{SAR} (1g): 0.567 [mW/g] \pm 0.18 dB, SAR (10g): 0.421 [mW/g] \pm 0.17 dB


Cubes (2) (Worst-case extrapolation) Generic Twin Phantom; Flat Section

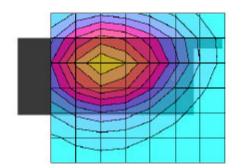

Probe: ET3DV5 - SN1348; ConvF(5.72,5.72,5.72)

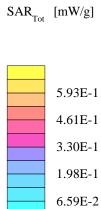
Muscle 900 MHz: $\sigma = 0.94$ [mho/m] $\epsilon_{r} = 56.1~\rho = 1.00$ [g/cm³]

File Name: T2 #0292, FM ch799, waist, 9-14-00.DA3

Powerdrift: -0.04 dB

 \overrightarrow{SAR} (1g): 0.685 [mW/g] \pm 0.21 dB, SAR (10g): 0.511 [mW/g] \pm 0.19 dB


Cubes (2) (Worst-case extrapolation) Generic Twin Phantom; Flat Section

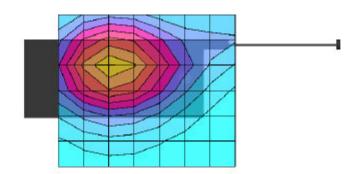

Probe: ET3DV5 - SN1348; ConvF(5.72,5.72,5.72)

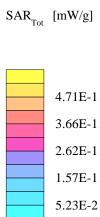
Muscle 900 MHz: $\sigma = 0.94$ [mho/m] $\epsilon_{r} = 56.1~\rho = 1.00$ [g/cm³]

File Name: T2 #0292, FM ch991, waist, 9-14-00.DA3

Powerdrift: -0.05 dB

 \overrightarrow{SAR} (1g): 0.547 [mW/g] \pm 0.16 dB, SAR (10g): 0.411 [mW/g] \pm 0.18 dB

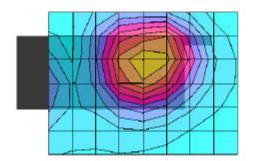

Cubes (2) (Worst-case extrapolation) Generic Twin Phantom; Flat Section

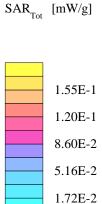

Probe: ET3DV5 - SN1348; ConvF(5.72,5.72,5.72)

Muscle 900 MHz: $\sigma = 0.94$ [mho/m] $\epsilon_{r} = 56.1~\rho = 1.00$ [g/cm³]

File Name: T2 #0292, FM ch991, waist, 9-14-00.DA3

Powerdrift: 0.09 dB

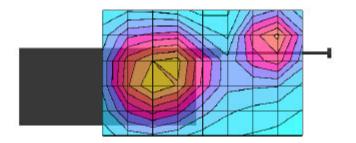

 \overline{SAR} (1g): 0.168 [mW/g] \pm 0.11 dB, SAR (10g): 0.107 [mW/g] \pm 0.13 dB

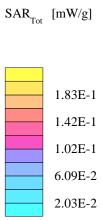

Cubes (2) (Worst-case extrapolation) Generic Twin Phantom; Flat Section

Probe: ET3DV5 - SN1348; ConvF(4.50,4.50,4.50)

Muscle 1800 MHz: σ = 1.56 [mho/m] ϵ_r = 54.3 ρ = 1.00 [g/cm³] File Name: T2 #0292, PCS ch25, waist, 9-15-00.DA3

Powerdrift: -0.30 dB


 \overrightarrow{SAR} (1g): 0.198 [mW/g] \pm 0.02 dB, SAR (10g): 0.125 [mW/g] \pm 0.01 dB

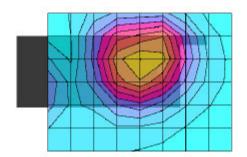

Cubes (2) (Worst-case extrapolation) Generic Twin Phantom; Flat Section

Probe: ET3DV5 - SN1348; ConvF(4.50,4.50,4.50)

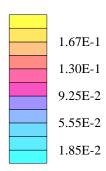
Muscle 1800 MHz: σ = 1.56 [mho/m] ϵ_r = 54.3 ρ = 1.00 [g/cm³] File Name: T2 #0292, PCS ch25, ant ext, waist, 9-15-00.DA3

Powerdrift: -0.24 dB

 \overrightarrow{SAR} (1g): 0.181 [mW/g] \pm 0.08 dB, SAR (10g): 0.115 [mW/g] \pm 0.07 dB

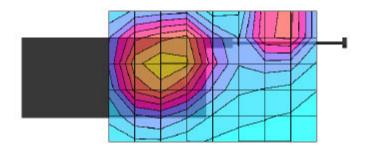

Cubes (2) (Worst-case extrapolation) Generic Twin Phantom; Flat Section

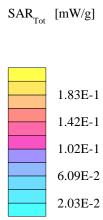
Probe: ET3DV5 - SN1348; ConvF(4.50,4.50,4.50)


Muscle 1800 MHz: $\sigma = 1.56$ [mho/m] $\epsilon_r = 54.3$ $\rho = 1.00$ [g/cm³]

File Name: T2 #0292, PCS ch600, waist, 9-15-00.DA3

Powerdrift: -0.13 dB

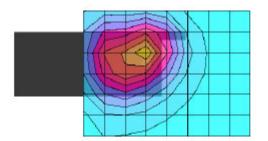

 \overrightarrow{SAR} (1g): 0.196 [mW/g] \pm 0.05 dB, SAR (10g): 0.125 [mW/g] \pm 0.05 dB

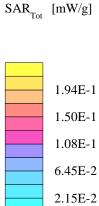

Cubes (2) (Worst-case extrapolation) Generic Twin Phantom; Flat Section

Probe: ET3DV5 - SN1348; ConvF(4.50,4.50,4.50)

Muscle 1800 MHz: σ = 1.56 [mho/m] ϵ_r = 54.3 ρ = 1.00 [g/cm³] File Name: T2 #0292, PCS ch600, ant ext, waist, 9-15-00.DA3

Powerdrift: -0.19 dB

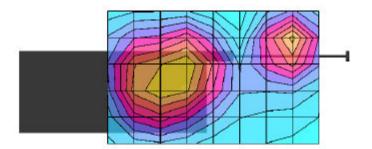

 \overline{SAR} (1g): 0.177 [mW/g] \pm 0.02 dB, SAR (10g): 0.112 [mW/g] \pm 0.01 dB

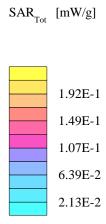

Cubes (2) (Worst-case extrapolation) Generic Twin Phantom; Flat Section

Probe: ET3DV5 - SN1348; ConvF(4.50,4.50,4.50)

Muscle 1800 MHz: σ = 1.56 [mho/m] ϵ_r = 54.3 ρ = 1.00 [g/cm³] File Name: T2 #0292, PCS ch1175, waist, 9-15-00.DA3

Powerdrift: -0.02 dB


 \overrightarrow{SAR} (1g): 0.205 [mW/g] \pm 0.04 dB, SAR (10g): 0.131 [mW/g] \pm 0.01 dB


Cubes (2) (Worst-case extrapolation) Generic Twin Phantom; Flat Section

Probe: ET3DV5 - SN1348; ConvF(4.50,4.50,4.50)

Muscle 1800 MHz: σ = 1.56 [mho/m] ϵ_r = 54.3 ρ = 1.00 [g/cm³] File Name: T2 #0292, PCS ch1175, ant ext, waist, 9-15-00.DA3

Powerdrift: -0.18 dB

2) Revised User's Manual

The QCP-6035's user guide has been revised to include a statement that other belt-clips, holsters or similar accessories that have not been tested for body-worn SAR may not comply with FCC RF exposure limit and should be avoided.

The following caption is incorporated into the user's guide:

To comply with FCC radiation exposure requirements, use of this device for body-worn operational configurations is limited to accessories tested and approved by Kyocera Wireless Corp. Other accessories used with this device for body-worn operations must not contain any metallic components and must provide at least 22.75mm separation distance including the antenna and the user's body. Other belt-clips, holsters or similar accessories that have not been tested for body-worn SAR may not comply with FCC RF exposure limit and should be avoided.

The relevant pages are attached in the proceeding pages. The new FCC text is located on the 3rd page, with the other legal and safety text.

FCC/IC Notice

This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

To comply with FCC radiation exposure requirements, use of this device for body-worn operational configurations is limited to accessories tested and approved by Kyocera Wireless Corp. Other accessories used with this device for body-worn operations must not contain any metallic components and must provide at least 22.75mm separation distance including the antenna and the user's body. Other belt-clips, holsters or similar accessories that have not been tested for body-worn SAR may not comply with FCC RF exposure limit and should be avoided.

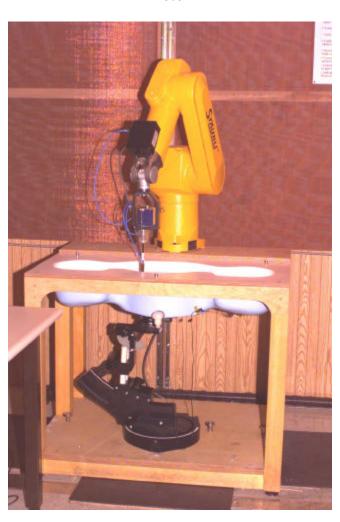
Caution

The user is cautioned that changes or modifications not expressly approved by the party responsible for compliance could void the warranty and user's authority to operate the equipment.

Warning

Use only Kyocera Wireless Corp. approved accessories with Kyocera Wireless Corp. phones. Use of any unauthorized accessories may be dangerous and will invalidate the phone warranty if said accessories cause damage or a defect to the phone.

Kyocera is a registered trademark of Kyocera Corporation. QCP and pdQ are trademarks of Kyocera Wireless Corp. QUALCOMM is a registered trademark of QUALCOMM Incorporated. Eudora is a registered trademark of QUALCOMM Incorporated. Graffiti and HotSync are registered trademarks and the Palm Computing platform logo is a trademark of Palm Inc., 3Com Corporation, or its subsidiaries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

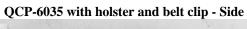

Copyright © 2000 Kyocera Wireless Corp. All rights reserved. Printed in the United States of America.

Portions of this document are Copyright © 1998 3Com Corporation or its subsidiaries. Reprinted with permission.

80-B6595-1EN, Rev. X3

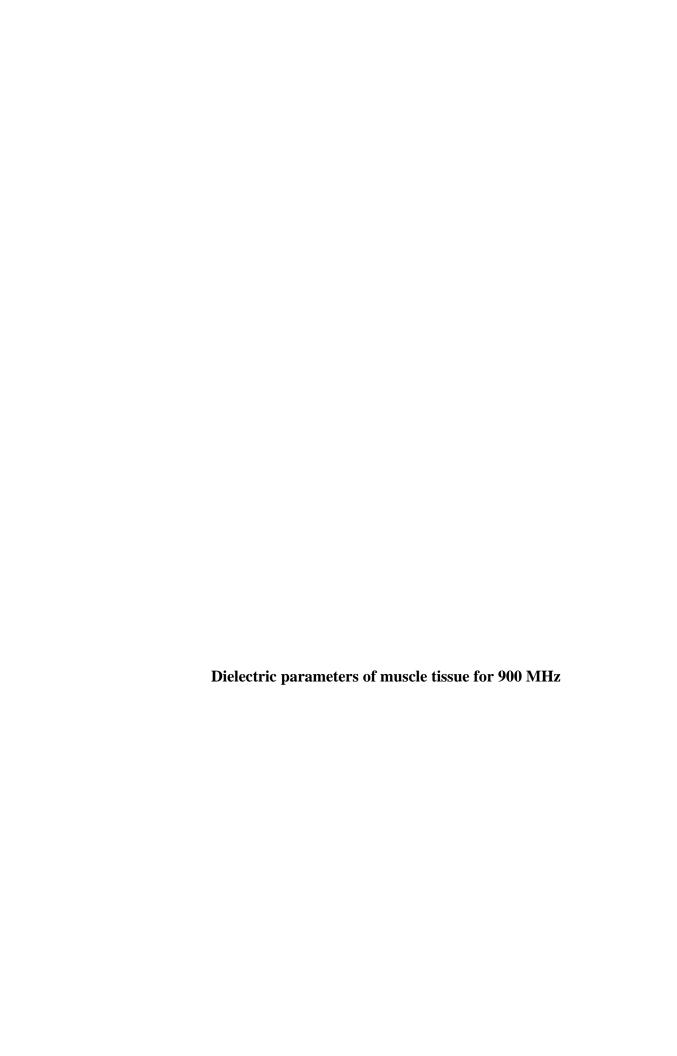
3) SAR test set-up photos

Photo 1



4) Belt Clip photos

The closest separation between phone with belt clip and phantom was 22.75 mm, which is the thickness of the belt clip. Belt clip photos are follows.


Holster and Belt clip only - Front

Holster and Belt clip only – Back

Dafama	A BALLY OFF	mara a a	
кетеге	nce math : OFF Frequency	Title: 9-14-	
Pt#	(GHz)	Data real	Data imag
1 U II	(GIIZ)	rear	Imag
1	0.100000000	66.19	63.09
2	0.114500000	65.56	55.43
3	0.129000000	65.29	50.24
4	0.143500000	65.07	45.94
5	0.158000000	65.00	42.39
6	0.172500000	64.41	39.84
7	0.187000000	64.17	37.18
8	0.201500000	63.74	35.24
9	0.216000000	63.50	33.42
10	0.230500000	63.25	31.77
11	0.245000000	63.14	30.79
12	0.259500000	62.98	29.53
13	0.27400000	62.68	28.43
14	0.288500000	62.41	27.52
15	0.30300000	62.04	26.73
16	0.317500000	61.85	26.07
17	0.332000000	61.75	25.40
18	0.346500000	61.67	24.76
19	0.361000000	61.45	24.29
20	0.375500000	61.28	23.84
21	0.39000000	61.04	23.39
22	0.404500000	60.88	22.91
23	0.419000000	60.70	22.71
24	0.433500000	60.59	22.30
25	0.448000000	60.54	22.02
26	0.462500000	60.23	21.70
27	0.477000000	60.10	21.70
28	0.491500000	59.85	21.13
29	0.506000000	59.76	20.93
30	0.520500000	59.67	20.93
31	0.535000000	59.49	20.55
32	0.549500000	59.49	20.33
33	0.564000000	59.17	
34	0.578500000	58.97	20.28 20.09
35	0.59300000	58.82	
36	0.607500000	58.74	20.01 19.89
37	0.622000000	58.57	19.80
38	0.636500000	58.39	19.70
39	0.651000000	58.35	19.70
40	0.665500000	58.15	19.39
41	0.680000000	57.99	
42	0.694500000	57.82	19.32
43	0.709000000	57.82	19.31 19.25
44	0.723500000	57.62	19.25
45	0.73800000	57.49	
46	0.752500000		19.13
47	0.76700000	57.36 57.24	19.02
48	0.781500000		19.00
49	0.796000000	57.09	18.97
49 50		57.00	18.93
51	0.810500000 0.825000000	56.80 56.72	18.91
51 52	0.839500000	56.72	18.91
52 53	0.85400000	56.60 56.49	18.81 18.75
		30 A4	

이동이라 첫빛이 되어?			
54	0.868500000	56.28	18.77
55	0.883000000	56.18	18.74 18.69 5=0.94 mlg/n
56	0.897500000	56.08	10.099
57	0.912000000	55.95	18.74
58	0.926500000	55.88	18.69
59	0.941000000	55.75	18.62
60	0.955500000	55.58	18.62
61 62	0.97000000 0.984500000	55.50	18.60
63	0.999000000	55.31 55.25	18.60
64	1.013500000	55.13	18.59 18.60
65	1.02800000	55.05	18.59
66	1.042500000	54.95	18.57
67	1.05700000	54.81	18.53
68	1.071500000	54.69	18.57
69	1.086000000	54.54	18.60
70	1.100500000	54.42	18.61
71	1.115000000	54.35	18.62
72	1.129500000	54.27	18.57
73	1.144000000	54.19	18.56
74	1.158500000	54.04	18.59
75	1.173000000	53.87	18.59
76	1.187500000	53.77	18.62
77	1.202000000	53.66	18.64
78	1.216500000	53.64	18.66
79	1.231000000	53.51	18.64
80	1.245500000	53.37	18.62
81	1.260000000	53.23	18.63
82 83	1.274500000	53.12	18.66
84	1.289000000	53.04 52.98	18.63
85	1.303500000 1.318000000	52.98 52.91	18.65 18.70
86	1.332500000	52.82	18.67
87	1.347000000	52.74	18.68
88	1.361500000	52.59	18.70
89	1.376000000	52.48	18.76
90	1.390500000	52.37	18.78
91	1.405000000	52.27	18.81
92	1.419500000	52.23	18.84
93	1.434000000	52.11	18.87
94	1.448500000	51.99	18.83
95	1.463000000	51.81	18.85
96	1.477500000	51.73	18.88
97	1.492000000	51.61	18.90
98	1.506500000	51.52	18.94
99	1.521000000	51.45	18.92
100	1.535500000	51.35	18.89
101	1.550000000	51.25	18.93
102	1.564500000	51.12	18.91
103	1.579000000	50.98	18.95
104 105	1.593500000	50.94	19.01
106	1.608000000	50.85	18.98
107	1.622500000 1.637000000	50.82	18.97
107	1.651500000	50.69 50.59	18.95 18.92
109	1.666000000	50.39	18.92
110	1.680500000	50.39	18.96
		~~.~	

111	1.695000000	50.32	18.99
112	1.709500000	50.27	19.03
113	1.724000000	50.19	19.00
114	1.738500000	50.13	19.02
115	1.753000000	50.02	19.05
116	1.767500000	49.90	19.06
117	1.782000000	49.81	19.12
118	1.796500000	49.77	19.14
119	1.811000000	49.67	19.17
120	1.825500000	49.59	19.16
121	1.84000000	49.49	19.12
122	1.854500000	49.42	19.16
123	1.869000000	49.31	19.19
124	1.883500000	49.21	19.20
125	1.898000000	49.15	19.21
126	1.912500000	49.07	19.21
127	1.927000000	49.00	19.21
128	1.941500000	48.96	19.23
129	1.956000000	48.84	19.23
130	1.970500000	48.79	19.29
131	1.985000000	48.70	19.32
132	1.999500000	48.62	19.34
133	2.014000000	48.58	19.35
134	2.028500000	48.48	19.37
135	2.043000000	48.38	19.37
136	2.057500000	48.26	19.41
137	2.072000000	48.18	19.44
138	2.086500000	48.10	19.50
139	2.101000000	48.04	19.50
140	2.115500000	47.94	19.48
141	2.130000000	47.84	19.49
142	2.144500000	47.76	19.49
143 144	2.159000000 2.173500000	47.65 47.57	19.52 19.56
145	2.173300000	47.53	19.55
146	2.202500000	47.48	19.56
147	2.217000000	47.42	19.52
148	2.231500000	47.32	19.54
149	2.246000000	47.23	19.53
150	2.260500000	47.15	19.57
151	2.275000000	47.09	19.61
152	2.289500000	47.05	19.63
153	2.304000000	47.02	19.63
154	2.318500000	46.95	19.61
155	2.333000000	46.83	19.62
156	2.347500000	46.74	19.64
157	2.362000000	46.67	19.69
158	2.376500000	46.59	19.73
159	2.391000000	46.56	19.74
160	2.405500000	46.51	19.76
161	2.420000000	46.44	19.74
162	2.434500000	46.34	19.75
163	2.449000000	46.22	19.77
164	2.463500000	46.12	19.86
165	2.478000000	46.11	19.86
166 167	2.492500000 2.507000000	46.03 46.01	19.86 19.86
107	2.30100000	40.0T	17.00

Dofo			0.15	
Pt#	ence math : OI Frequency (GHz)	ir Title	e: 9-15-0 Data real	Data imag
Pt 12345678901123156789011232222222233333333333442344567890	0.100000000 0.114500000 0.129000000 0.143500000 0.158000000 0.172500000 0.201500000 0.216000000 0.230500000 0.245000000 0.259500000 0.274000000 0.332000000 0.317500000 0.332000000 0.346500000 0.361000000 0.375500000 0.375500000 0.375500000 0.404500000 0.404500000 0.419000000 0.41900000 0.41900000 0.41900000 0.404500000 0.50500000 0.50500000 0.50500000 0.50500000 0.535000000 0.549500000 0.593000000 0.595000000 0.595000000		real 66.51 66.26 66.28 66.28 65.31 66.26 65.31 65.30 65.31 6	imag 4.00 4.07 4.25 4.45 4.64 4.70 4.89 5.13 5.66 5.78 5.82 6.11 6.20 6.37 6.47 6.96 7.11 7.75 7.90 7.96 8.34 8.52 8.62 8.70 8.86 8.94 9.25 9.34 8.52 8.62 8.70 8.86 8.94 9.25 9.34 9.62 9.95 10.09 10.32 10.45 10.58
51 52 53	0.825000000 0.839500000 0.854000000	. 6	50.62 50.50 50.40	10.66 10.79 10.87

		in the second regression results as a	e seggesser i juri jurija	etera parte en america en la la	
54		0.868500000	60.30	10.98	
55		0.883000000	60.23	11.06	
				11.18	
56		0.897500000	60.08		
57		0.912000000	60.00	11.33	
58		0.926500000	59.91	11.39	
59		0.941000000	59.79	11.48	
60		0.955500000	59.67	11.55	
61		0.97000000	59.57	11.67	
62		0.984500000	59.46	11.77	
63		0.99900000	59.32	11.83	
			59.22	11.94	
64		1.013500000			
65		1.028000000	59.16	12.02	
66		1.042500000	59.04	12.11	
67		1.057000000	58.95	12.19	
		1.071500000	58.83	12.27	
68					
69		1.086000000	58.68	12.34	
70		1.100500000	58.61	12.39	
71		1.115000000	58.53	12.49	
		1.129500000	58.50	12.61	
72					
73		1.144000000	58.36	12.68	
74		1.158500000	58.33	12.73	
75		1.173000000	58.17	12.83	
76		1.187500000	58.10	12.89	
			57.99	13.01	
77		1.202000000			
78		1.216500000	57.92	13.07	
79		1.231000000	57.87	13.15	
80		1.245500000	57.78	13.22	
81		1.260000000	57.66	13.31	
			57.53	13.42	
82		1.274500000			
83		1.289000000	57.43	13.55	
84		1.303500000	57.31	13.58	
85		1.318000000	57.25	13.66	
86		1.332500000	57.14	13.72	
				13.78	
87		1.347000000	57.03		
88		1.361500000	56.88	13.83	
89		1.376000000	56.84	13.90	
90		1.390500000	56.78	13.98	
91		1.405000000	56.68	14.07	
		1.419500000	56.59	14.14	
92					
93	*	1.43400000	56.51	14.20	
94		1.448500000	56.42	14.28	
95		1.463000000	56.26	14.36	
96		1.477500000	56.19	14.37	
			56.13	14.46	
97		1.492000000			
98		1.506500000	56.02	14.52	
99		1.521000000	55.99	14.58	
100		1.535500000	55.89	14.61	
101		1.550000000	55.81	14.69	
102		1.564500000	55.69	14.78	
103		1.579000000	55.57	14.85	
104		1.593500000	55.51	14.93	
105		1.608000000	55.44	15.00	
		1.622500000	55.35	15.04	
106				15.13	
107		1.637000000	55.22		
108		1.651500000	55.11	15.17	
109		1.666000000	55.01	15.22	
110		1.680500000	54.90	15.29	

			specificates of fi	
111	1.695000000	54.81	15.34	
112	1.709500000	54.72	15.39	
113	1.724000000	54.63	15.38	
114	1.738500000	54.56	15.46	
115	1.753000000	54.46	15.48	
116	1.767500000	54.38	15.55	2012
117	1.782000000	54.32	15.59	5=156 minelyn
118	(1.796500000	54.26	15.67	6.2.
119	1.811000000	54.19	15.69	
120	1.825500000	54.10	15.77	
121	1.84000000	54.01	15.77	
122	1.854500000	53.93	15.85	
123	1.86900000	53.84	15.65	
124	1.883500000	53.75		
125			15.97	
126	1.898000000	53.67	16.04	
127	1.912500000	53.56	16.05	
	1.927000000	53.50	16.10	
128	1.941500000	53.42	16.16	
129	1.956000000	53.32	16.18	
130	1.970500000	53.21	16.25	
131	1.985000000	53.14	16.25	
132	1.999500000	53.08	16.30	
133	2.014000000	53.01	16.33	
134	2.028500000	52.93	16.37	
135	2.043000000	52.88	16.41	
136	2.057500000	52.79	16.44	
137	2.072000000	52.72	16.48	
138	2.086500000	52.67	16.55	
139	2.101000000	52.62	16.55	
140	2.115500000	52.52	16.63	
141	2.130000000	52.44	16.66	
142	2.144500000	52.38	16.73	
143	2.159000000	52.30	16.76	
144	2.173500000	52.21	16.82	· · · · · · · · · · · · · · · · · · ·
145	2.188000000	52.19	16.88	
146	2.202500000	52.12	16.91	
147	2.217000000	52.04	16.94	
148	2.231500000	51.96	17.01	
149	2.246000000	51.84	17.03	
150	2.260500000	51.79	17.06	
151	2.275000000	51.70	17.14	
152	2.289500000	51.64	17.16	
153	2.304000000	51.58	17.21	
154	2.318500000	51.50	17.23	
155	2.333000000	51.41	17.26	
156	2.347500000	51.35	17.30	
157	2.362000000	51.25	17.35	
158	2.376500000	51.22	17.40	
159	2.391000000	51.16	17.44	
160	2.405500000	51.10	17.44	
161	2.42000000	51.03	17.40	
162	2.434500000	50.95	17.56	
163	2.449000000	50.88	17.59	
164	2.463500000	50.79	17.63	
165	2.478000000	50.74		tu. Na
166	2.492500000	50.68	17.69	
167	2.507000000	50.68	17.73	
±01	2.30/00000	JU. 6Z	17.76	