

RADIATED EMISSIONS

DATA

FOR

KYOCERA WIRELESS CORPORATION 10300 Campus Point Drive San Diego, CA 92121

Prepared by

TÜV PRODUCT SERVICE 10040 Mesa Rim Road San Diego, CA 92121-2912

> Page 1 of 16 Rev.No 1.0

Measurement Requirements (CFR 47 Part 15, Paragraph 15.109(b) and Part 15, Paragraph 15.238)

The measurements which follow were performed by TÜV Product Service. To the best of my knowledge these tests were conducted in accordance with the procedures outlined in Part 2 of the Commission's Rules and Regulations. The data presented below demonstrates compliance with the appropriate technical standards.

7R7laury

Floyd R. Fleury EMC Manager

Emissions Test Conditions: SPURIOUS RADIATED EMISSIONS

Roof (small open area test site)

The Spurious Radiated Emissions measurements were performed using the following equipment:

Test Equipment Used :

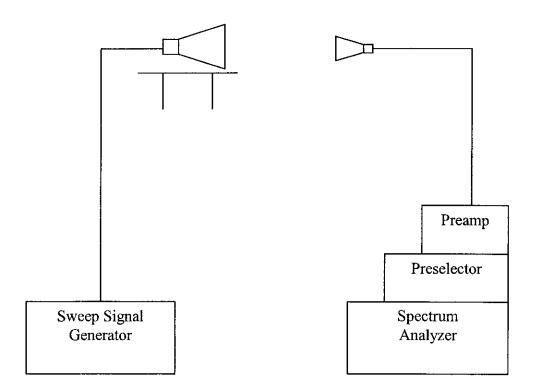
Model No.	Prop. No.	Description	Manufacturer	Serial No.	Cal Date
HP8586B	721	Spectrum Analyzer	Hewlett Packard	2542A12099	06/02
3115	251	Double Ridge Antenna	EMCO	2495	10/01
FF 6548-2	781	2000 MHz High Pass Filter	Sage	004	N/A*
FF 6549-1	777	900 MHz High Pass Filter	Sage	006	N/A*
AMF-3D-010180- 35-10P	752	Amplifier 20 dB	Miteq	614344	N/A*
83640B	791	Synthesized Swept Signal Generator	Hewlett Packard	3844A00726	05/02
3115	453	Double Ridge Antenna (1 to 18 GHz)	Hewlett Packard	9412-4364	10/01

Remarks: (*) Verified

FCC Testing

Page 4 of 16 Rev.No 1.0

RADIATED SPURIOUS - EMISSIONS


31010	ML SUDS I II U II UN I		
Test Report #: <u>\$C,105530</u>	Test Area: <u>Roof</u>		TIV
Test Method FCC PART 24.238	Date: 1064 19,2001		PRODUCT SERVICE
· · · · · · · · · · · · · · · · · · ·	EUT POWER:		
EUT Model #: KCP 3035	230 Vac/50 Hz 120 Vac/60 Hz 4	Temperature	ۍ <u>•</u> د
EUT Description: Trimode	Cellular 7GP	Air Pressure:	kPa
NOTES:		Relative Humidity:_	~ %

Frequency (MHz)	Signal Generator (dBm)	Gain of Antenna	Total (EIRP)	Limit	Margin (dB)
9256.25	- 38.4	۲.5	- 38,9	-13	-25,9
9400	- 39.5	7	-40,2	-13	-27.2
9543.75	- 36,7	+ .1	-36,6	-13	-23,6
1107.5	- 25,2	+.3	-24.9	-13	-119
11280	-33,2	-1.4	-24,6	-13	- 11,6
11 452,5	-28.9	~ , Z	-29.1	-13	- 16,1
	- 				
			/		
Tested By: A.L	AUDAN		Au	Landon	- -
	Printed			Signature	
NOTES:					

radspursubstmtd.doc

Page 5 of 16 Rev.No 1.0

Page 6 of 16 Rev.No 1.0

								1		-						1 1			.			,	_		 				110	_	-		-			
							dBuV/m	123.3	40.5	46.2	46.0	51.0	51.3	2.55	56.7		0.001	41.7	50.1	47.4	53.5	51.5	57.9	57.6	123.3	42.7	48.6	47.6	51.8	51.3	54.7	58.4		-		
							Notes	Fundamental			noise floor		noise floor		noise noor		[]					noise floor	noise floor	noise floor	Fundamental				noise floor	noise floor	noise floor	noise floor				-
							Antenna Heigh	nt 🖓	-	1.5		-				┼┼╇	•		1.5	1.5	1.2					15	1.5	-								ł
(q)60								10	160	240		-					6) Se	0	0	160				•	240	0	240								-
FCC Part 15 para 15.109(b)	3 Meters	Roof	N/A	244	251		MARGIN (dB) pk av		-41.8	-36.1	-36.3	-31.2	-31	-20.9	0.62-			40.6	-32.1	-34.8	-28.8	-30.8	-24.4	-24.7		-39.6	-33.7	-34.6	-30.5	-31	-27.6	-23.9				
FCC Part		SITE:	ICAL:	LOG:	OTHER:	z for AVG 10Hz for AVG Loss	SPEC LIMIT (dBm) pk av	_	-13.0	-13.0	-13.0	13.0	-13.0	-13.0	2.0			-13.0	13.0	-13.0	-13.0	-13.0	-13.0	-13.0	-	-13.0					-13.0	-13.0				_
SPEC:	TEST DIST:	TEST SITE:	BICONICAL:		Ö	d VBW 10H and VBW 1 Preselector	MAX LEVEL (dBm(d)) pk av			· •	-				1					•	•	·-	•-	• •		7	5	-	۲	7	Ţ	T				_
						MHz an 100kHz r Gain +	MAX (dB,	28.0	-54.8	49.1	49.3	47	4		0.02-		28.0	-53.6	45.1	47.8	41.8	43.8	-37.4	-37.7	28.1	-52.6	-46.7	-47.6	43.5	44.0	40.6	-36.9				
Alan Laudani						1Hz for Pk; RBW 1MHz and VBW 10Hz for AVG) kHz for Pk; RBW 100kHz and VBW 10Hz for A -oss - Preamplifier Gain + Preselector Loss	CF (dB/m)	22.1	6.3	11.2	14.6	19.3	20.3	20.74	t:'77		20.4	6.5	11.3	14.8	19.6	20.3	23.1	22.5	22.3	6.7	11.5	15.0	19.8	20.6	23.3	22.7				-
TER:		lular (7GP)				/BW 1 MHz fo BW 100 kHz 1 Cable Loss -	HORIZONTAL (dBuv) pk av	.2	6.	0	5		_ ~	; ~	<u>,</u>		4		5	2	6	2	2	6	2	6	6	9	2	3	4	7				
TESTER:		ode Cell	Ţ			BW & V BW & V	¥ 89	89.2	31.9	33	31.2	21.	- çç	200	5		89.4	34	33.5	31.2	33.9	ю Ю	к	34.	90.2	ő	33.9	32.	31.2	30	31.	35.			_	
SC105530	<pre></pre>	KCP3035 Trimode Cellular (7GP)	CDMA Cellular Tx	July 18, 2001		above 1GHz: RBW & VBW 1 MHz for Pk, RBW 1MHz and VBW 10Hz for AVG below 1GHz: RBW & VBW 100 kHz for Pk; RBW 100kHz and VBW 10Hz for AVG CF = Antenna Factor + Cable Loss - Preamplifier Gain + Preselector Loss	VERTICAL (dBuv) pk av	101.2	34.2	35	31.4	30./	30.4	34.7	4		101 2	35.2	38.8	32.6	32.7	31.2	34.8	35.1	101	36	37.1	30.8	32	30.7	31.4	35.1		_	_	
REPORT No: SC105530	CUSTOMER: Kyocera	EUT: A	EUT MODE: 0	DATE:	NOTES:	וטופוש	FREQ (MHz)	824.7	1649.4	2474.1	3298.8	4123.3	5772 9	6597.6	2. 1000		836.49	┢	2509.47		4182.45	╡	5855.43 5551.55	6691.92	848.31		2544.93			-						-

Report No. SC105530-03

Page 7 of 16 Rev.No 1.0

FCC Part 15 para 15.109(b) ST: 3 Meters

SPEC:

Alan Laudani

TESTER:

REPORT No: SC105530

CUSTOMER: Kyocera

TEST DIST:

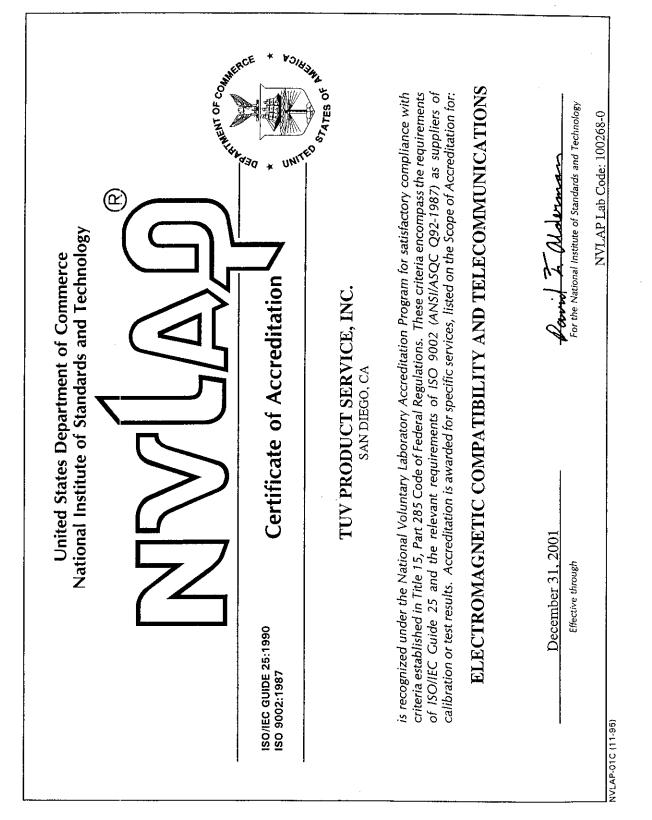
TÜV PRODUCT SERVICE	10040 Mesa Rim Road	San Diego, CA 92121-2912	Phone 858 546 3999	FAX 858 546 0364

				dBuV/m	123.3	40.0	44.2	46.3	51.0	4.0	53.8	57.1		123.1	41.5	46.5	46.3	54.0	52.0	57.9	58.5	58.4		123.1	39.9	45.4	45.9	53.3	52.0	57.7	58.2				
				Notes	Fundamental			noise floor	noise floor			noise floor		Fundamental			noise floor			noise floor	noise floor	noise floor		Fundamental			noise floor		noise floor	noise floor	noise floor				
			a T	Antenna Heigh	1		-	-						-	-	-		-	1	_	_			-	-	-		-				-		-	
			<pre></pre>	EUT Rotation	0	0	∍	4	┦	1	4	4		0	0	0		0	0							0	-	₹					\square		
Roof	N/A	244	251	MARGIN (dB) pk av		42.3	-36.1	0 ? ?	-31.2	28.4	-20.4	1.62-			-40.8	-35.7	-35.9	-28.3	-30.3	-24.4	-23.8	-23.8			-42.4	-36.9	-36.3	R7-	30.3	-24.6	-24.1	_	_		
SITE:	CAL:	LOG:	OTHER: OH2 for AVG V 10H2 for AVG tor Loss	SPEC LIMIT (dBm) pk av		-13.0	-13.0	-13.0	-13.0			-13.0			-13.0					-13.0		-13.0						-13.0			-13.0		+		
TEST SITE	BICONICAL:	_	O VBW 10H and VBW 1 reselector									Ī					-		-	7	Ţ	7				-	7		1		<u>-</u>		+		
			1MHz and V 100kHz (Sr Gain + F	MAX LEVEL (dBm(d)) pk av	28.0	-55.3		0.04 7 v	1 6 7 7	414		- ?		27.8	-53.8	-48.7	48.9	41.3	43.3	-37.4	-36.8	-36.8		21.0	4.00,4	4 7 7	49.3	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2	-37.6	-37.1			-	
			OTHER: MHz for Pk; RBW 1MHz and VBW 10Hz for AVG 0 kHz for Pk; RBW 100kHz and VBW 10Hz for A Loss - Preamplifier Gain + Preselector Loss	CF (dB/m)	22.1	6.3	7 1 7	4 0,0	203	22.9	2 C C C	с.22 Х		22.1	6.5	11.3	14.8	19.6	20.3	23.1	22.5	23.4		4.22	0	c, []	15.0	30.0	0.02	Z3.3	22.7				
(7GP)			1 MHz for 100 kHz f	HORIZONTAL (dBuv) pk av																															
fe Cellular			W & VBW W & VBW	HORIZ (dBuv) a	88.8	32.9	202	317	31.1	30.9	247	5		90.5	32.8	32.6	31.5	34.4	31.7	34.8	34.8	35	3 00	02.20	0.00	32.0	30.9 23.5	24 4	+ 10	- 1 5	35.5				
KCP3035 Trimode Cellular (7	FM Tx	July 18, 2001	OTHER: above 1GHz: RBW & VBW 1 MHz for Pk; RBW 1MHz and VBW 10Hz for AVG below 1GHz: RBW & VBW 100 kHz for Pk; RBW 100kHz and VBW 10Hz for AVG CF = Antenna Factor + Cable Loss - Preamplifier Gain + Preselector Loss	VERTICAL (dBuv) pk av	101.2	33.7	31 7	314	30.6	30.8	34.8	2		101	35	35.2	31.2	33.2	31	34.5	36	34.6	1004	100.7	20.6	00.4	30.7	31 1		4 4	5 tr				-
EUT:	EUT MODE:	DATE:	NOTES	FREQ (MHz)	824.04	1648.08	3706 16	4120.2	4944.24	5768.28	6592.32	40.4000		836.49	1672.98	2509.47	3345.96	4182.45	5018.94	5855.43 2654 25	2500 12	/528.41	848.07	1607.04	7545 01	2040.91	00.0500	5093 R7	5040 70	01 74AC	9/16/0				

Page 8 of 16 Rev.No 1.0

							dBuV/m	121.9	55.9	55.1	58.3	63.0	e7.6		121.5	57.0	57.5	59.6	63.4	67.8		121.6	59.0	56.0	58.7	62.9	68.3	
							Notes	Fundamental			noise floor	IIOISE TIOOF			Fundamental			noise floor		noise floor		Fundamental			noise floor	rioise floor	rioise noor	
						_	Antenna Heigh	t	1.2			$\frac{1}{1}$			1.1	1.3	1.3					1.1	1.5	1.5	╉	┥	┤╉	┼┼
38						_ v.beta1a	EUT Rotation	0	240	240					0	240	240						240			1		╋┥
FCC Part 15 para 238	3 Meters	Roof	N/A	244	251 G		MARGIN (dB) pk av		-26.4	-27.2	-23.9	-14.6	<u>-</u>			-25.3	24.8	-22.6	-10.9			_	-23.3	.0.J	-19.4	-13.9	2.2	
FCC Pai	т				or AVG to AV	335	m av av		, 	1			┼┽┼	╎┼┽		-	· · ·							7				
	TEST DIST:	TEST SITE:	BICONICAL:	LOG:	OTHER: W 10Hz fe VBW 10H	elector Lo	SPEC LIMIT (dBm) pk av		-13.0	- 13.0	-13.0	-13.0				-13.0	-13.0	13.0	-13.0				-13.0		-13.0	-13.0		
SPEC:	TE	ΤĘ	BICC		r and VB kHz and	n + Pres	MAX LEVEL (dBm(d)) pk av																					
ani wW					3W 1MH3 8BW 100	lifler Gai	MAX (dB) pk	26.6	-39.4	30 0 30 0	-32.2	-27.6			26.2	-38.3	-37.8	-35.6	-27.5			26.3	-36.3	26.5	-32.4	-26.9		
Alan Laudani 树					OTHER: 23 above 1GHz: RBW & VBW 1 MHz for Pk; RBW 1MHz and VBW 10Hz for AVG below 1GHz: RBW & VBW 100 kHz for Pk; RBW 100kHz and VBW 10Hz for AVG	OF = Antenna Factor + Cable Loss - Preamplifier Gain + Preselector Loss	CF (dB/m)	32.7	10.9	6.22	27.8	32.5			32.9	17.3	22.7	23.4	33.1			23.0 23.0	1/./	22.6	27.7	33.6		
		ır (7GP)			V 1 MHz V 100 kH	IDIE LOSS	ONTAL pk																					
TESTER:		le Cellula	ılar Tx		W & VBV W & VBV	ctor + Ca	HORIZONTAL (dBuv) pk av	86.8	30.6	35	35.2	35.1			87.2	39.7	34.0 0.40	36.4	34.7			4.70	41.3 33 1	35.1	35.2	34.7	╏╋╏	
30		KCP3035 Trimode Cellular	MA Cell	July 18, 2001	GHz: RB	tenna Fa	VERTICAL (dBuv) pk av																Ť	T				
SC1055	Kyocera	KCP303	PCS/CDMA Cellular Tx	July 18	above 1(VERTJCA (dBuv) pk a	89.2	30.6	34.7	35.2	34.1			88.6	20.0	35 0	35.7	34		000	0.00	30	34.7	35	34.2		
REPORT No: SC105530	CUSTOMER: Kyocera	E U T:	EUT MODE:	DATE:	NOTES:		FREQ (MHz)	1851.25 3703 F	5553 75	7405	9256.25	11107.5			1880	3/00 5640	7520	9400	11280		1008 75	2010.10 2017 E	5726.25	7635	9543.75	11452.5		

Page 9 of 16 Rev.No 1.0



Testing Facilities

Certificates of Approval

Page 10 of 16 Rev.No 1.0

ISO/IEC GUIDE 2 ISO 9002:1987	Scope of Acc	reditation
ELECTROM	AGNETIC COMPATIBILITY OMMUNICATIONS	NVLAP LAB CODE 100268-0
NVLAP Code	TUV PRODUCT SER 10040 Mesa Rin San Diego, CA 92 Mr. R. Barry W Phone: 619-546-3999 Fa E-Mail: bwallen@T URL: http://www Designation / Description	n Road 121-1034 Vallen x: 619-546-0364 TUVps.com
Emissions Test		
12/CIS22	IEC/CISPR 22:1993: Limits and meth characteristics of information technolo	ods of measurement of radio disturbance gy equipment
12/CIS22a		ods of measurement of radio disturbance gy equipment, Amendment 1:1995, and
12/CIS22b	CNS 13438:1997: Limits and Methods Characteristics of Information Technol	of Measurement of Radio Interference logy Equipment
12/F01	FCC Method - 47 CFR Part 15 - Digita	al Devices
12/F01a	Conducted Emissions, Power Lines, 45	50 KHz to 30 MHz
12/F01b	Radiated Emissions	

Page 12 of 16 Rev.No 1.0

	5:1990 Scope of A	ccreditation
	AGNETIC COMPATIBILITY OMMUNICATIONS	Page: 2 of 3 NVLAP LAB CODE 100268-0
AND TELEC		SERVICE, INC.
NVLAP Code	Designation / Description	-
12/T51	AS/NZS 3548: Electromagnetic I Information Technology Equipm	Interference - Limits and Methods of Measurement o ent
MIL-STD-462	Conducted Emissions:	
12/A01	MIL-STD-462 Method CE01	
12/A04	MIL-STD-462 Method CE02	
12/A06	MIL-STD-462 Method CE03	
12/A08	MIL-STD-462 Method CE04	
12/A10	MIL-STD-462 Method CE06	
12/A12	MIL-STD-462 Method CE07	
MIL-STD-462 :	Conducted Susceptibility:	
12/B01	MIL-STD-462 Method CS01	
12/B02	MIL-STD-462 Method CS02	
12/B04	MIL-STD-462 Method CS03/CS	04/CS05/CS08
12/B05	MIL-STD-462 Method CS06	
		Pavid F. alderman
<u></u>	Effective through	For the National Institute of Standards and Technology

Page 13 of 16 Rev.No 1.0

Nat of Standards an	ional Institute d Technology	National Voluntary Laboratory Accreditation Program
ISO/IEC GUIDE 2 ISO 9002:1987	5:1990 Scope of A	ccreditation
	AGNETIC COMPATIBILITY OMMUNICATIONS	Page: 3 of 3 NVLAP LAB CODE 100268-0
	TUV PRODUCT	SERVICE, INC.
NVLAP Code	Designation / Description	
12/B06	MIL-STD-462 Method CS07	
12/B07	MIL-STD-462 Method CS09	
MIL-STD-462	: Radiated Emissions:	
12/D01	MIL-STD-462 Method RE01	
12/D02	MIL-STD-462 Method RE02	
12/D03	MIL-STD-462 Method RE03	
MIL-STD-462	Radiated Susceptibility:	
12/E01	MIL-STD-462 Method RS01	
12/E02	MIL-STD-462 Method RS02	
12/E03	MIL-STD-462 Method RS03 (Co	nsult laboratory for field strengths available)
12/E04	MIL-STD-462 Method RS03 emp (Consult laboratory for field stren	ploying RADHAZ procedures for high level testing gths available)
De	cember 31, 2001	Pavid F. alderman
	Effective through	For the National Institute of Standards and Technology

NVLAP-01S (11-95)

Page 14 of 16 Rev.No 1.0

Photograph of Test Setup

Photograph of Test Setup

Page 16 of 16 Rev.No 1.0