Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates GNISS CP NO PRATO Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Client Sporton (Auden) Certificate No: ET3-1788_Sep04 | Object | ET3DV6 - SN:17 | 788 | | |---|--|---|---| | Calibration procedure(s) | QA CAL-01.v5
Calibration proc | edure for dosimetric E-field probes | | | Calibration date: | September 30, 2 | 2004 | | | Condition of the calibrated item | In Tolerance | | | | All calibrations have been conducted to the conducted to the calibration Equipment used (M&) | | ory facility: environment temperature (22 ± 3)°C and | d humidity < 70%. | | Calibration Equipment used (Mo | TE CHICALIOF CARDIACOT) | | | | | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Primary Standards
Power meter E4419B | ID #
GB41293874 | 5-May-04 (METAS, No. 251-00388) | May-05 | | Primary Standards Power meter E4419B Power sensor E4412A | ID #
GB41293874
MY41495277 | 5-May-04 (METAS, No. 251-00388)
5-May-04 (METAS, No. 251-00388) | May-05
May-05 | | Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator | ID #
GB41293874
MY41495277
SN: S5054 (3c) | 5-May-04 (METAS, No. 251-00388)
5-May-04 (METAS, No. 251-00388)
3-Apr-03 (METAS, No. 251-00403) | May-05
May-05
Aug-05 | | Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator | ID #
GB41293874
MY41495277
SN: S5054 (3c)
SN: S5086 (20b) | 5-May-04 (METAS, No. 251-00388)
5-May-04 (METAS, No. 251-00388)
3-Apr-03 (METAS, No. 251-00403)
3-May-04 (METAS, No. 251-00389) | May-05
May-05
Aug-05
May-05 | | Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator | ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) | 5-May-04 (METAS, No. 251-00388)
5-May-04 (METAS, No. 251-00388)
3-Apr-03 (METAS, No. 251-00403)
3-May-04 (METAS, No. 251-00389)
3-Apr-03 (METAS, No. 251-00404) | May-05
May-05
Aug-05
May-05
Aug-05 | | Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 | ID #
GB41293874
MY41495277
SN: S5054 (3c)
SN: S5086 (20b) | 5-May-04 (METAS, No. 251-00388)
5-May-04 (METAS, No. 251-00388)
3-Apr-03 (METAS, No. 251-00403)
3-May-04 (METAS, No. 251-00389) | May-05
May-05
Aug-05
May-05 | | Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 | ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN:3013 SN: 617 | 5-May-04 (METAS, No. 251-00388)
5-May-04 (METAS, No. 251-00388)
3-Apr-03 (METAS, No. 251-00403)
3-May-04 (METAS, No. 251-00389)
3-Apr-03 (METAS, No. 251-00404)
8-Jan-04 (SPEAG, No. ES3-3013_Jan04)
26-May-04 (SPEAG, No. DAE4-617_May04) | May-05
May-05
Aug-05
May-05
Aug-05
Jan-05
May-05 | | Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards | ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN:3013 SN: 617 | 5-May-04 (METAS, No. 251-00388)
5-May-04 (METAS, No. 251-00388)
3-Apr-03 (METAS, No. 251-00403)
3-May-04 (METAS, No. 251-00389)
3-Apr-03 (METAS, No. 251-00404)
8-Jan-04 (SPEAG, No. ES3-3013_Jan04)
26-May-04 (SPEAG, No. DAE4-617_May04)
Check Date (in house) | May-05
May-05
Aug-05
May-05
Aug-05
Jan-05
May-05
Scheduled Check | | Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Recondary Standards Power sensor HP 8481A | ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN:3013 SN: 617 ID # MY41092180 | 5-May-04 (METAS, No. 251-00388)
5-May-04 (METAS, No. 251-00388)
3-Apr-03 (METAS, No. 251-00403)
3-May-04 (METAS, No. 251-00389)
3-Apr-03 (METAS, No. 251-00404)
8-Jan-04 (SPEAG, No. ES3-3013_Jan04)
26-May-04 (SPEAG, No. DAE4-617_May04)
Check Date (in house)
18-Sep-02 (SPEAG, in house check Oct-03) | May-05 May-05 Aug-05 May-05 Aug-05 Jan-05 May-05 Scheduled Check In house check: Oct 05 | | Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C | ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN:3013 SN: 617 | 5-May-04 (METAS, No. 251-00388)
5-May-04 (METAS, No. 251-00388)
3-Apr-03 (METAS, No. 251-00403)
3-May-04 (METAS, No. 251-00389)
3-Apr-03 (METAS, No. 251-00404)
8-Jan-04 (SPEAG, No. ES3-3013_Jan04)
26-May-04 (SPEAG, No. DAE4-617_May04)
Check Date (in house) | May-05 May-05 Aug-05 May-05 Aug-05 Jan-05 May-05 Scheduled Check In house check: Oct 05 | | Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C | ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN:3013 SN: 617 ID # MY41092180 US3642U01700 | 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 3-Apr-03 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 3-Apr-03 (METAS, No. 251-00404) 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) 26-May-04 (SPEAG, No. DAE4-617_May04) Check Date (in house) 18-Sep-02 (SPEAG, in house check Dec-03) | May-05 May-05 Aug-05 Aug-05 Aug-05 Jan-05 May-05 Scheduled Check In house check: Oct 05 In house check: Dec-05 In house check: Nov 04 | | rimary Standards ower meter E4419B ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator eference 70 dB Attenuator eference Probe ES3DV2 AE4 econdary Standards ower sensor HP 8481A F generator HP 8648C etwork Analyzer HP 8753E | ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN:3013 SN: 617 ID # MY41092180 US3642U01700 US37390585 Name | 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 3-Apr-03 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00404) 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) 26-May-04 (SPEAG, No. DAE4-617_May04) Check Date (in house) 18-Sop-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Nov-03) Function | May-05 May-05 Aug-05 Aug-05 Aug-05 Jan-05 May-05 Scheduled Check In house check: Oct 05 In house check: Nov 04 Signature | | Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C Network Analyzer HP 8753E | ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN:3013 SN: 617 ID # MY41092180 US3642U01700 US37390585 | 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 3-Apr-03 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00404) 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) 26-May-04 (SPEAG, No. DAE4-617_May04) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Nov-03) | May-05 May-05 Aug-05 Aug-05 Aug-05 Jan-05 May-05 Scheduled Check In house check: Oct 05 In house check: Nov 04 Signature | | Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C Network Analyzer HP 8753E Calibrated by: | ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN:3013 SN: 617 ID # MY41092180 US3642U01700 US37390585 Name | 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 3-Apr-03 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00404) 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) 26-May-04 (SPEAG, No. DAE4-617_May04) Check Date (in house) 18-Sop-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Nov-03) Function | May-05 May-05 Aug-05 Aug-05 Aug-05 Jan-05 May-05 Scheduled Check In house check: Oct 05 In house check: Dec-05 In house check: Nov 04 | Certificate No: ET3-1788_Sep04 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Glossary: TSL tissue simulating liquid NORMx,y,z ConF sensitivity in free space sensitivity in TSL / NORMx,y,z DCP diode compression point Polarization o Polarization 9 φ rotation around probe axis 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001 ## Methods Applied and Interpretation of Parameters: - NORMx,v.z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below *ConvF*). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY 4.3 B17 and higher which allows extending the validity from \pm 50 MHz to \pm 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Certificate No: ET3-1788 Sep04 ET3DV6 SN:1788 September 30, 2004 # Probe ET3DV6 SN:1788 Manufactured: May 28, 2003 Last calibrated: Recalibrated: August 29, 2003 September 30, 2004 Calibrated for DASY Systems (Note: non-compatible with DASY2 system!) ET3DV6 SN:1788 September 30, 2004 ## DASY - Parameters of Probe: ET3DV6 SN:1788 | | | | | | Λ. | |------|-------|-----|---|------|--------------------| | 0 | -:4: | :4 | : | F | Space ^A | | Sens | SILIV | IIV | m | rree | Space | Diode Compression^B | NormX | 1.68 ± 9.9% | $\mu V/(V/m)^2$ | DCP X | 94 mV | |-------|-------------|-----------------|-------|-------| | NormY | 1.70 ± 9.9% | $\mu V/(V/m)^2$ | DCP Y | 94 mV | | NormZ | 1.74 ± 9.9% | $\mu V/(V/m)^2$ | DCP Z | 94 mV | Sensitivity in Tissue Simulating Liquid (Conversion Factors) Please see Page 8. ## **Boundary Effect** TSL 900 MHz Typical SAR gradient: 5 % per mm | Sensor Cente | er to Phantom Surface Distance | 3.7 mm | 4.7 mm | |--|--------------------------------|--------|--------| | SAR _{be} [%] Without Correction Algorithm | | 8.1 | 4.4 | | SAR _{be} [%] | With Correction Algorithm | 0.7 | 0.1 | TSL 1810 MHz Typical SAR gradient: 10 % per mm | Sensor Center to Phantom Surface Distance | | 3.7 mm | 4.7 mm | |---|------------------------------|--------|--------| | SAR _{be} [%] | Without Correction Algorithm | 12.0 | 8.2 | | SAR _{be} [%] | With Correction Algorithm | 0.9 | 0.1 | #### Sensor Offset Probe Tip to Sensor Center 2.7 mm The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: ET3-1788_Sep04 Page 4 of 9 $^{^{}A}$ The uncertainties of NormX,Y,Z do not affect the E 2 -field uncertainty inside TSL (see Page 8). ^B Numerical linearization parameter: uncertainty not required. ET3DV6 SN:1788 September 30, 2004 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: \pm 6.3% (k=2) ET3DV6 SN:1788 September 30, 2004 ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: ET3-1788_Sep04 Page 6 of 9 ET3DV6 SN:1788 September 30, 2004 # Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ET3DV6 SN:1788 September 30, 2004 ## **Conversion Factor Assessment** | f [MHz] | Validity [MHz] ^C | TSL | Permittivity | Conductivity | Alpha | Depth | ConvF Uncertainty | |---------|-----------------------------|------|--------------|--------------|-------|-------|--------------------| | 835 | ± 50 / ± 100 | Head | 41.5 ± 5% | 0.90 ± 5% | 1.12 | 1.42 | 6.74 ± 11.0% (k=2) | | 900 | $\pm 50 / \pm 100$ | Head | 41.5 ± 5% | 0.97 ± 5% | 1.07 | 1.44 | 6.63 ± 11.0% (k=2) | | 1750 | ±50/±100 | Head | 40.0 ± 5% | 1.40 ± 5% | 0.56 | 2.31 | 5.37 ± 11.0% (k=2) | | 1900 | $\pm 50 / \pm 100$ | Head | 40.0 ± 5% | 1.40 ± 5% | 0.55 | 2.42 | 5.16 ± 11.0% (k=2) | | 2000 | \pm 50 / \pm 100 | Head | 40.0 ± 5% | 1.40 ± 5% | 0.54 | 2.59 | 4.88 ± 11.0% (k=2) | | 2450 | ± 50 / ± 100 | Head | 39.2 ± 5% | 1.80 ± 5% | 0.65 | 2.22 | 4.56 ± 11.8% (k=2) | | 835 | ± 50 / ± 100 | Body | 55.2 ± 5% | 0.97 ± 5% | 1.04 | 1.52 | 6.53 ± 11.0% (k=2) | | 900 | ± 50 / ± 100 | Body | 55.0 ± 5% | 1.05 ± 5% | 0.99 | 1.56 | 6.17 ± 11.0% (k=2) | | 1750 | ± 50 / ± 100 | Body | 53.3 ± 5% | 1.52 ± 5% | 0.53 | 2.74 | 4.73 ± 11.0% (k=2) | | 1900 | ± 50 / ± 100 | Body | 53.3 ± 5% | 1.52 ± 5% | 0.55 | 2.82 | 4.56 ± 11.0% (k=2) | | 2000 | ± 50 / ± 100 | Body | 53.3 ± 5% | 1.52 ± 5% | 0.54 | 2.98 | 4.43 ± 11.0% (k=2) | | 2450 | ± 50 / ± 100 | Body | 52.7 ± 5% | 1.95 ± 5% | 0.72 | 2.00 | 4.26 ± 11.8% (k=2) | $^{^{\}rm C}$ The validity of \pm 100 MHz only applies for DASY 4.3 B17 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Certificate No: ET3-1788_Sep04 Page 8 of 9 ET3DV6 SN:1788 September 30, 2004 ## Deviation from Isotropy in HSL Error (φ, θ), f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland GWISS S C Z Z ELBRATH S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton (Auden) Certificate No: DAE3-577 Nov04 Accreditation No.: SCS 108 | CALIBRATION C | ERTIFICATE | | | |---|--------------------------------------|--|-----------------------| | Object | DAE3 - SD 000 D | 03 AA - SN: 577 | | | Calibration procedure(s) | QA CAL-06.v10
Calibration process | dure for the data acquisition unit (| DAE) | | Calibration date: | November 17, 200 | 04 | | | Condition of the calibrated item | In Tolerance | | | | | | anal standards, which realize the physical unlit
obability are given on the following pages and | | | All calibrations have been conducte Calibration Equipment used (M&TE | | y facility: environment temperature (22 ± 3)°C | and humidity < 70%. | | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Fluke Process Calibrator Type 702 | | 7-Sep-04 (Sintrel, No.E-040073) | Sep-05 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Calibrator Box V1.1 | SE UMS 006 AB 1002 | 16-Jul-04 (SPEAG, in house check) | In house check Jul-05 | | | | | | | | | | | | | | | | | | Name | Function | Signature | | Calibrated by: | Eric Hainfeld | Technician | 200 | | | | | | | Approved by: | Fin Bomholt | R&D Director | i V. On Jules | Certificate No: DAE3-577_Nov04 Page 1 of 5 Calibration Laboratory of Schmid & Partner Engineering AG Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary DAE digital acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ## Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE3-577 Nov04 Page 2 of 5 #### DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = 6.1μV , full range = -100...+300 mV Low Range: 1LSB = 61nV , full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | × | Y | z | |---------------------|----------------------|----------------------|----------------------| | High Range | 404.437 ± 0.1% (k=2) | 403.891 ± 0.1% (k=2) | 404.359 ± 0.1% (k=2) | | Low Range | 3.94121 ± 0.7% (k=2) | 3.89867 ± 0.7% (k=2) | 3.95408 ± 0.7% (k=2) | #### Connector Angle | Connector Angle to be used in DASY system 127 ° ± 1 ° | | |---|--| |---|--| Certificate No: DAE3-577_Nov04 ## Appendix 1. DC Voltage Linearity | High Range | Input (μV) | Reading (μV) | Error (%) | |-------------------|------------|--------------|-----------| | Channel X + Input | 200000 | 200000.6 | 0.00 | | Channel X + Input | 20000 | 20001.77 | 0.01 | | Channel X - Input | 20000 | -19991.81 | -0.04 | | Channel Y + Input | 200000 | 199999.7 | 0.00 | | Channel Y + Input | 20000 | 19999.20 | 0.00 | | Channel Y - Input | 20000 | -19994.82 | -0.03 | | Channel Z + Input | 200000 | 200000.2 | 0.00 | | Channel Z + Input | 20000 | 19996.22 | -0.02 | | Channel Z - Input | 20000 | -19996.74 | -0.02 | | Low Range | Input (μV) | Reading (μV) | Error (%) | |-------------------|------------|--------------|-----------| | Channel X + Input | 2000 | 2000 | 0.00 | | Channel X + Input | 200 | 200.05 | 0.03 | | Channel X - Input | 200 | -200.88 | 0.44 | | Channel Y + Input | 2000 | 1999.9 | 0.00 | | Channel Y + Input | 200 | 199.73 | -0.13 | | Channel Y - Input | 200 | -200.53 | 0.27 | | Channel Z + Input | 2000 | 2000.1 | 0.00 | | Channel Z + Input | 200 | 199.25 | -0.38 | | Channel Z - Input | 200 | -201.42 | 0.71 | | | | | | ## 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 13.15 | 12.30 | | | - 200 | -12.61 | -12.86 | | Channel Y | 200 | -7.43 | -7.53 | | | - 200 | 6.30 | 6.52 | | Channel Z | 200 | -0.16 | 0.31 | | | - 200 | -1.51 | -1.48 | ## 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (µV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 1.90 | -0.22 | | Channel Y | 200 | 1.47 | - | 4.60 | | Channel Z | 200 | -1.40 | -0.08 | | Certificate No: DAE3-577_Nov04 ## 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15948 | 15814 | | Channel Y | 15960 | 16073 | | Channel Z | 16236 | 16172 | #### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10M Ω | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation
(µV) | |-----------|--------------|------------------|------------------|------------------------| | Channel X | 0.03 | -3.07 | 1.24 | 0.58 | | Channel Y | -0.66 | -2.19 | 1.96 | 0.55 | | Channel Z | -0.91 | -2.82 | 0.42 | 0.39 | #### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance | | Zeroing (MOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 0.2000 | 199.3 | | Channel Y | 0.2000 | 200.4 | | Channel Z | 0.2001 | 199.5 | 8. Low Battery Alarm Voltage (verified during pre test) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (verified during pre test) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.0 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | 10. Common Mode Bit Generation (verified during pre test) | Typical values | Bit set to High at Common Mode Error (VDC) | | |-----------------|--|--| | Channel X, Y, Z | +1.25 | | Certificate No: DAE3-577_Nov04