

Appendix C – Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Sproton Int. (Auden) Client

Object(s)	D835V2 - SN:499		
Calibration procedure(s)	QA CAL-05 v2 Calibration procedure for dipole validation kits		
Calibration date:	February 12, 2004		
Condition of the calibrated item	In Tolerance (according to the specific calibration document)		
This calibration statement docum 17025 international standard.	ents traceability of M&T	E used in the calibration procedures and conformity of	the procedures with the ISO/IEC
All calibrations have been conduc	cted in the closed laborar	tory facility: environment temperature 22 +/- 2 degrees	Celsius and humidity < 75%.
			Celsius and humidity < 75%
Calibration Equipment used (M&			Celsius and humidity < 75% Scheduled Calibration
Calibration Equipment used (M&	TE critical for calibration)		
Calibration Equipment used (M& Model Type Power moter EPM E442	TE critical for calibration)	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Calibration Equipment used (M& Model Type Power meter EPM E442 Power sensor HP 8481A	TE critical for callbration) ID # GB37480704	Cal Date (Calibrated by, Certificate No.) 6-Nov-03 (METAS, No. 252-0254)	Scheduled Calibration Nov-04
Calibration Equipment used (M& Model Type Power motor EPM E442 Power sensor HP 8481A Power sensor HP 8481A	TE critical for calibration; ID # GB37480704 US37292783	Cal Date (Calibrated by, Certificate No.) 6-Nov-03 (METAS, No. 252-0254) 6-Nov-03 (METAS, No. 252-0254)	Scheduled Calibration Nov-04 Nov-04
Cathraton Equipment used (M& Model Type Power moter EPM E442 Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SML-03	ID # GB37480704 US37292783 MY41092317	Cal Date (Calibrated by, Certificate No.) 6-Nov-03 (METAS, No. 252-0254) 6-Nov-03 (METAS, No. 252-0254) 18-Oct-02 (Agillent, No. 20021018)	Scheduled Calibration Nov-04 Nov-04 Oct-04
Cathraton Equipment used (M& Model Type Power moter EPM E442 Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SML-03	ID # GB37480704 US37292783 MY41092317 100698	Cal Date (Calibrated by, Certificate No.) 6-Nov-03 (METAS, No. 252-0254) 6-Nov-03 (METAS, No. 252-0254) 18-Oct-02 (Agilent, No. 20021018) 27-Mar-2002 (R&S, No. 20-92389)	Scheduled Calibration Nov-04 Nov-04 Oct-04 In house check: Mar-05
Calibration Equipment used (M& Model Type Power meter EPM E442 Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SML-03 Network Analyzer HP 8753E	TE critical for calibration; ID # GB37486704 US37292783 MY41092317 100698 US37390585	Cal Date (Calibrated by, Certificate No.) 6-Nov-03 (METAS, No. 252-0254) 6-Nov-03 (METAS, No. 252-0254) 18-Oct-02 (Agilent, No. 20021018) 27-Mar-2002 (R&S, No. 20-92389) 18-Oct-01 (SPEAG, in house check Nov-03)	Scheduled Calibration Nov-04 Nov-04 Oct-04 In house check: Mar-05 In house check: Oct 05
All calibrations have been conducted. Calibration Equipment used (M& Model Type Power meter EPM E442 Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SML-03 Network Analyzer HP 8753E Calibrated by:	TE critical for calibration; ID # GB37480704 US37292783 MY41092317 100698 US37390585	Cal Date (Calibrated by, Certificate No.) 6-Nov-03 (METAS, No. 252-0254) 6-Nov-03 (METAS, No. 252-0254) 18-Oct-02 (Agilent, No. 20021018) 27-Mar-2002 (R&S, No. 20-92389) 18-Oct-01 (SPEAG, in house check Nov-03) Function Technician	Scheduled Calibration Nov-04 Nov-04 Oct-04 In house check: Mar-05 In house check: Oct 05

880-KP0301061-A Page 1 (1)

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

DASY

Dipole Validation Kit

Type: D835V2

Serial: 499

Manufactured: July 10, 2003

Calibrated:

February 12, 2004

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 835 MHz:

Relative Dielectricity 42.1 $\pm 5\%$ Conductivity 0.89 mho/m $\pm 5\%$

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.3 at 835 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{ mW} \pm 3 \text{ }\%$. The results are normalized to 1 W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm³ (1 g) of tissue: 9.96 mW/g \pm 16.8 % (k=2)¹ averaged over 10 cm³ (10 g) of tissue: 6.48 mW/g \pm 16.2 % (k=2)¹

¹ validation uncertainty

Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay: 1.382 ns (one direction)

Transmission factor: 0.985 (voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 835 MHz: Re $\{Z\}$ = 51.2 Ω

Im $\{Z\} = -1.7 \Omega$

Return Loss at 835 MHz -33.9 dB

4. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with body simulating solution of the following electrical parameters at 835 MHz:

Relative Dielectricity 55.5 ± 5% Conductivity 0.99 mho/m ± 5%

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.13 at 835 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was 250 mW \pm 3 %. The results are normalized to 1W input power.

5. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm³ (1 g) of tissue: $10.3 \text{ mW/g} \pm 16.8 \% (k=2)^2$

averaged over 10 cm³ (10 g) of tissue: $6.76 \text{ mW/g} \pm 16.2 \% (k=2)^2$

6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 835 MHz: $Re\{Z\} = 46.7 \Omega$

Im $\{Z\} \equiv -4.5 \Omega$

Return Loss at 835 MHz -24.7 dB

Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Power Test

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

² validation uncertainty

Page 1 of 1

Date/Time: 02/12/04 12:33:41

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN499

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $c_{\mu} = 42.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(6.3, 6.3, 6.3); Calibrated: 1/23/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- · Electronics: DAE3 Sn411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.2 Build 25; Postprocessing SW: SEMCAD, V1.8 Build 98

Pin = 250 mW; d = 15 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm

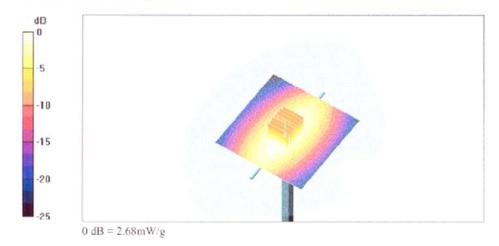
Reference Value = 56.5 V/m

Power Drift = -0.0 dB

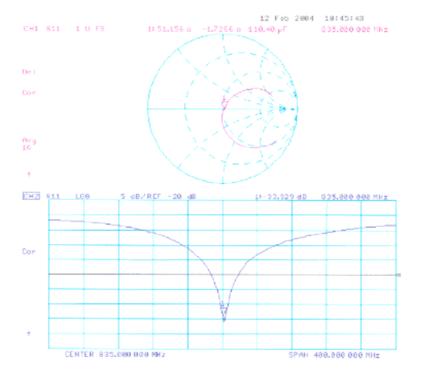
Maximum value of SAR = 2.68 mW/g

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5 mm, dy=5 mm,

dz=5mm


Peak SAR (extrapolated) = 3.81 W/kg

SAR(1 g) = 2.49 mW/g; SAR(10 g) = 1.62 mW/g


Reference Value = 56.5 V/m

Power Drift = -0.0 dB

Maximum value of SAR = 2.68 mW/g

Page 1 of 1

Date/Time: 02/10/04 15:14:12

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN499

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Muscle 835 MHz;

Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 55.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

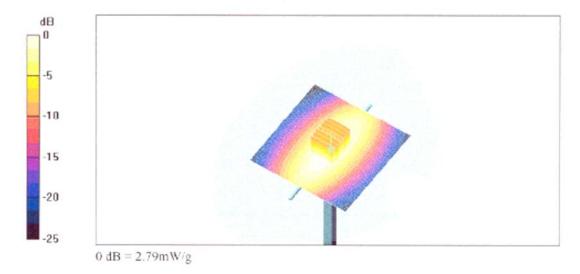
Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(6.13, 6.13, 6.13); Calibrated: 1/23/2004
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 25; Postprocessing SW: SEMCAD, V1.8 Build 101

Pin = 250 mW; d = 15 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 54.7 V/m; Power Drift = 0.002 dB Maximum value of SAR (interpolated) = 2.79 mW/g

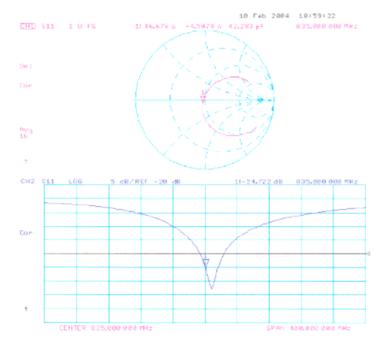
Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 54.7 V/m; Power Drift = 0.002 dB

Maximum value of SAR (measured) = 2.79 mW/g

Peak SAR (extrapolated) = 3.82 W/kg


SAR(1 g) = 2.58 mW/g; SAR(10 g) = 1.69 mW/g

Booky

