

EMC TEST REPORT Kyocera Wireless Corp. Cellular Phone

Model: KX160B

RADIATED AND CONDUCTED EMISSIONS

FCC, PART 15.247 RSS 210

Test Report # 2005 090862 KX160B 15.247

25-862-KYO

NEMKO USA, INC. 11696 SORRENTO VALLEY ROAD SUITE F SAN DIEGO, CA 92121 PHONE: 858-755-5525

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	2 Of 35

TABLE OF CONTENTS

1.DESCRIPTION OF TEST SITE AND EQUIPMENT	7
2.DESCRIPTION OF TESTING METHODS	7
3.Test Results	15

TEST SETUP DIAGRAMS

FIGURE 1.	GENERAL EUT TEST SETUP DIAGRAM	8
FIGURE 2.	CONDUCTED EMISSIONS TEST SETUP DIAGRAM	12
FIGURE 3.	RADIATED EMISSIONS TEST SETUP DIAGRAM	14

TEST CONFIGURATION PHOTOGRAPHS

PHOTOGRAPH 1.	FRONT VIEW OF EUT	9
PHOTOGRAPH 2.	EUT CHARGER	10
PHOTOGRAPH 3.	CONDUCTED EMISSIONS TEST CONFIGURATION	20
PHOTOGRAPH 4.	RADIATED EMISSIONS TEST CONFIGURATION	21
PHOTOGRAPH 5.	FUNDAMENTAL RADIATED EMISSIONS TEST CONFIGURATION	24

APPENDICES

A. RADIATED EMISSIONS MEASUREMENT UNCERTAINTIES	27
B. NEMKO USA, INC.'S TEST EQUIPMENT & FACILITIES CALIBRATION PROGRAM	29
C. FCC AND NVLAP ACCREDITATION	31

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT	NAME	DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	3 Of 35

EMC Test Report

For **Kyocera Wireless Corp.**

Test Number	: 25-862-KYO
Product Name	: Cellular Phone
Regulation	: FCC, Part 15.247 : RSS 210 :
Date Report Reviewed Accepted by:	: September 12, 2005
	Kyocera Wireless Corp. 10300 Campus Point Drive San Diego, CA 92121 Phone: 858-882-3945 Fax: 858-882-3707

Report Issued By:

F. R. Fleury

F. R. Fleury

Mihul 7. 2

Tested By:

Mike Krumweide EMC Test Engineer

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	4 Of 35

Administrative Data

Regulation	: FCC, Part 15B
	: Canada, ICES-003
	:
Level	: Class B
Test Method	: ANSI C63.4 – 2003
	: CSA C108 M1983
	:

Test Type	: Certification
Manufacturer	: Kyocera Wireless Corp.
EUT /:Model #	: Cellular Phone / KX160B
Date(s) of Test	: August 26, 2005 and September 6, 2005
Customer Personnel	: John Turner, Engineer

Nemko Personnel	: R. Hill, Senior EMC Engineer
	: Mike Krumweide, EMC Test Engineer
Test Location	: OPEN Area Test Site
	Nemko USA, Inc.
	11696 Sorrento Valley Road, Suite F
	San Diego, CA 92121

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	5 Of 35

EUT Description

The KX160B is a Cellular Phone with Bluetooth capabilities. Its function is to provide communication for mobile phone users. The EUT was exercised in Bluetooth Transmit mode for Conducted and Radiated Emissions measurements.

DEVICE	MANUFACTURER MODEL # SERIAL #	POWER CABLE
EUT - Cellular Phone	Kyocera Wireless Corp. Model: KX160B SN: A1DX1CSC0X	N/A
EUT – Battery Charger	Travel Charger TXACA10004 N/A	N/A

CONNECTION	I/O CABLE
Battery Charger to Cell Phone	2m, unshielded, 22AWG, 2wire, DC jack – Wall mount.

REASON FOR TEST:

The EUT was tested to establish compliance.

CHANGES MADE DURING TEST

The following design modifications were made to the EUT during testing.

No design modifications were made to the EUT during testing.

DEVIATIONS FROM STANDARD TEST METHOD

None

Nemko USA,	Inc.	11696 Sorrento Valley Road, Suite F, San Diego, CA 92 Phone (858) 755-5525 Fax (858) 452-1		CA 92121) 452-1810
DATE	DOCUMENT	NAME	DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	6 Of 35

CERTIFICATION AND TEST SUMMARY

Test Type	In Accordance with Document	Frequency Range Investigated	EUT Complies
Conducted Emissions	FCC 15 B Sec.207 Class "B"	150 kHz to 30 MHz	Pass
Radiated Emissions	FCC 15 B Sec.209 Class "B"	30 MHz to 1000 MHz	Pass
Radiated Emissions	FCC 15 C Sec. 247	2.4GHz to 24.0 GHz	Pass

The Cellular Phone complied with FCC, PART 15B and CANADA, ICES-003, when tested in the system configuration defined herein.

Nemko USA,	Inc.	11696 Sorrento Valley Road, Suite F, San Diego, CA Phone (858) 755-5525 Fax (858) 45		CA 92121) 452-1810
DATE	DOCUMENT	DOCUMENT NAME		PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	7 Of 35

1. DESCRIPTION OF TEST SITE AND EQUIPMENT

1.1. Description of Test Site

The test site is located at 11696 Sorrento Valley Road, Suite F, San Diego, CA 92121. The site is physically located 18 miles Northwest of downtown San Diego. The general area is a valley 1.5 miles east of the Pacific Ocean. This particular part of the valley tends to minimize ambient levels, i.e. radio and TV broadcast stations and land mobile communications. The three and ten-meter Open Area Test Site (OATS) is located behind the office/lab building. It conforms to the normalized site attenuation limits and construction specifications as set in the EN 55022 (1998), CISPR 16 (2000) and 22 (1997) and ANSI C63.4-2003 documents. The OATS normalized site attenuation characteristics are verified for compliance every.

2. DESCRIPTION OF TESTING METHODS

2.1. Introduction

As required in 47 CFR, Parts 2 and 15, the methods employed to test the radiated and conducted emissions (as applicable) of the EUT are those contained within the American National Standards Institute (ANSI) document C63.4-2003, titled "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz." All applicable FCC Rule Sections that provide further guidance for performance of such testing are also observed. In addition, TIA/EIA 603, "Land Mobile FM or PM Communications Equipment Measurement and Performance Standards," provides the method employed to check the radiated measurements known as Signal Substitution.

For General Test Configuration please refer to Figure 1 on the following page.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	8 Of 35

Figure 1. General EUT Test Setup Diagram

NOT TO SCALE

CONFIGURATION LEGEND

- 1. Test Laboratory
- 2. AC Power for Peripheral Devices (120V, 60 cycles, single phase)
- Non-Conducting tables 80 cm above ground plane
 EUT: Cellular Phone
- 5. 120VAC Domestic Charger.

Nemko USA, Inc. 11696 Sorrento Valley Road, Suite F, Sar Phone (858) 755-5525 J		to Valley Road, Suite F, San Diego, Phone (858) 755-5525 Fax (858	CA 92121) 452-1810	
DATE	DOCUMENT	` NAME	DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	9 Of 35

Photograph 1. Front View of EUT

Nemko USA,	Inc.	11696 Sorrento Valley Road, Suite F, San Diego, CA 92 Phone (858) 755-5525 Fax (858) 452-1		CA 92121) 452-1810
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	10 Of 35

Photograph 2. EUT Charger

Nemko USA, Inc. 11696 Sorrento Valley Road, Suite F, San Phone (858) 755-5525 Fa		to Valley Road, Suite F, San Diego, Phone (858) 755-5525 Fax (858	CA 92121) 452-1810	
DATE	DOCUMENT	NAME	DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	11 Of 35

2.2. Configuration and Methods of Measurements for Conducted Emissions

Section 7 of ANSI C63.4 determines the general configuration of the EUT and associated equipment, as well as the test platform for conducted emissions testing. Tabletop devices are placed on a non-conducting surface 80 centimeters above the ground plane floor and 40 centimeters from the ground plane wall. The EUT and associated system are configured to operate continuously, representing a "normally operating" mode. The EUT is powered via a Line Impedance Stabilization Network (LISN). The emissions are recorded using the required bandwidth of 9 kHz in the quasi-peak mode. The average amplitude is also observed employing a 10 kHz bandwidth to determine the presence of broadband RFI. When such interference is caused by broadband sources (as defined by the FCC and ANSI Rules), the deviation guidelines contained in Section 11.3.1 of ANSI C63.4 are employed, which allows a correction factor of 13 dB to be subtracted from the quasi-peak reading. The emission levels are then compared to the applicable FCC limits to determine compliance.

For Conducted Emissions Test Configuration please refer to Figure 2 on the following page.

Nemko USA,	Inc.	11696 Sorrento Valley Road, Suite F, San Diego, O Phone (858) 755-5525 Fax (858)		CA 92121) 452-1810
DATE	DOCUMENT	NAME	DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	12 Of 35

NOT TO SCALE

CONFIGURATION LEGEND

- 1. Test Laboratory (6 X 6 meters)
- 2. Ground Plane (15 square meters)
- 3. Vertical Conducting Wall (Grounded through Ground Plane via 10' ground rod)
- 4. AC Power for Devices
- 5. Power Line Filter, Lindgren, 120 dB, 30 amp
- 6. Line Impedance Stabilization Network (LISN) for peripheral devices
- 7. Power Distribution Box for peripheral devices
- 8. Spectrum Analyzer with Quasi-Peak Adapter
- 9. High Pass Filter
- 10. Transient Limiter
- 11. LISN for EUT
- 12. Non-Conducting table 80 cm above ground plane
- 13. EUT: Cellular Phone and Associated System

Nemko USA, Inc. 11696 Sorrento Valley Roa Phone (85		to Valley Road, Suite F, San Diego, Phone (858) 755-5525 Fax (858	CA 92121) 452-1810	
DATE	DOCUMENT	DOCUMENT NAME		PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	13 Of 35

2.3. Configuration and Methods of Measurements for Radiated Emissions

Section 8 of ANSI C63.4 determines the general configuration and procedures for measuring the radiated emissions of equipment under test. Initially, the primary emission frequencies are identified inside the test lab by positioning a broadband receive antenna one meter from the EUT to locate frequencies of significant radiation. Next, the EUT and associated system are placed on a turntable on a ten meter open area test site (registered with the FCC in accord with its Rules and ANSI C63.4) and the receive antenna is located at a distance of three meters from the EUT.

The EUT and associated system are configured to operate continuously, representing a "normally operating" mode. All significant radiated emissions are recorded when maximum radiation on each frequency is observed, in accordance with part 8 of ANSI C63.4 and Section 15.33 of the FCC Rules. To ensure that the maximum emission at each discrete frequency of interest is observed, the receive antenna is varied in height from one to four meters and rotated to horizontal and vertical polarities, and the turntable is also rotated to determine the worst emitting configuration. The numerical results of the test are included herein to demonstrate compliance.

The numerical results that are applied to the emissions limits are arrived at by the following method:

Example: A=RR+CL+AF

 $A = Amplitude \, dBuV/M$

RR = Receiver Reading dBuV

CL = cable loss dB

AF = antenna factor dBm-1

Example Frequency = 110MHz

18.5 dBuV (spectrum analyzer reading)

- +3.0 dB (cable loss @ frequency)
- 21.5 dBuV

+15.4 dBm-1 (antenna factor @ frequency)

36.9 dBuV/M Final adjusted value

The final adjusted value is then compared to the appropriate emission limit to determine compliance.

For Radiated Emissions Test Configuration please refer to Figure 4 on the following page.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	14 Of 35

NOT TO SCALE

CONFIGURATION LEGEND

- 1. Ground plane (11 X 17 meters)
- 2. Spectrum Analyzer with Quasi-Peak Adapter
- 3. Coax interconnect from Receive Antenna to Spectrum Analyzer
- 4. Antenna Mast with motorized mounting assembly
- 5. Receive Antenna (basic relative position)
- 6. Non-Conducting table 80 cm above ground plane
- 7. AC power for devices
- 8. EUT: Cellular Phone and Associated System

Bluetooth fundamental frequencies and radiated emissions were measured on three orthogonal axes. Only the maximum emissions of the three axes are stated in this report. Test setup pictures of these axes are found further in this report.

Nemko USA,	Inc.	11696 Sorren	to Valley Road, Suite F, San Diego, Phone (858) 755-5525 Fax (858	CA 92121) 452-1810
DATE	DOCUMENT	` NAME	DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	15 Of 35

3. Test Results

3.1. Conducted Emissions Test Data

Nemko USA,	Inc.	11696 Sorren	to Valley Road, Suite F, San Diego, Phone (858) 755-5525 Fax (858	CA 92121) 452-1810
DATE	DOCUMENT	NAME	DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	16 Of 35

Conducted Emissions Test Equipment										
Client	Kyocera Wireless Corp.	EUT Name	Cellular Phone							
PAN #	PAN # 25-862-KYO EUT Model KX160B									

Asset Number	Description	Model Number	Serial Number	Last Cal	Cal Due
681	Transient Limiter, HP	11947A	3107A02634	5/25/05	5/25/06
395	LISN, Solar	9348-50-R-24-BNC	941718	12/22/04	12/22/05
676	Quasi-Peak Adapter, HP	85650A	2430A00576	4/12/05	8/31/05
675	Spectrum Analyzer Display, HP	85662A	2005A01282	4/12/05	8/31/05
674	Spectrum Analyzer, HP	8568B	2007A00910	4/12/05	8/31/05
684	Transient Limiter, HP	11974A	3107A02636	5/25/05	5/25/06

Nemko USA,	Inc.	11696 Sorren	to Valley Road, Suite F, San Diego, Phone (858) 755-5525 Fax (858	CA 92121) 452-1810
DATE	DOCUMENT	NAME	DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	17 Of 35

3.2. Radiated Emissions Test Data

Radiated Emissions Data												
Complet Prelimin	te ary	X						Job # :	<u>25-713-</u> Page	КҮО 1	Test # : <u>1</u> of	1
Client Na EUT Na EUT Mo EUT Pai EUT Sei EUT Co Specifica Rod. An Bicon Ai Log Ant. DRG An Dipole A Cable#: Preamps Spec An	ame : me : del # : rt # : rial # : nfig. : ation : t. #: ation : t. #: #: ut. # ut. # ut. #:	Kyocera-l Cellular P KX160B A1DX Bluetooth Combined CFR47 P NA 115 112 NA 115 112 NA NA NOATS 827 840	Vireless hone ICSC0X Mid cha d XYZ-O art 15.20	nnel rientation 19, Subpa Temp. (Humidit EUT Vo EUT Fro Phase: Location Distanc	n art B, Clas deg. C) : y (%) : ltage : equency : n: RN e:	ss B 24 50 120 60 1 #: 329550 3m		Refere	ence : Pr eak Ban ideo Bar	Date : Time : Staff : oto ID: dwidth: ndwidth	9/6/2005 MK 100 kHz 100 kHz	
PreSele	ct#:	NA							0.7.101	_		
Meas.	Ant.	Atten.	Meter	Antenna	Path	RF Cain	Corrected	Spec.	CR/SL	Pass		
(MHz)	Ρ0Ι. (ΗΛ/)	(dB)	(dBu\/)	(dB)	(dB)	(dB)	(dBuV/m)	(dBu\//m)	(dB)	Linc	Comment	
30.5	V		42.9	13.9	0.9	32.4	25.3	40.0	-14 7	Pass		
45.55	V		46.5	11.7	1.0	32.6	26.6	40.0	-13.4	Pass	1	
48	V		47.8	11.7	1.0	32.6	27.9	40.0	-12.1	Pass		
57.19	V		48.6	12	1.2	32.5	29.3	40.0	-10.7	Pass	1	
90.86	V		52.7	12.6	1.6	32.5	34.4	43.5	-9.1	Pass		
119.2	V		36.7	15	1.7	32.6	20.8	43.5	-22.7	Pass		

Nemko USA,	Inc.	11696 Sorren	to Valley Road, Suite F, San Diego, Phone (858) 755-5525 Fax (858	CA 92121) 452-1810
DATE	DOCUMENT	NAME	DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	18 Of 35

							Ra	diated	Emissio	ns Data						
												Job # :	25-862	-KYO	Test # :	1
													Page	1	of	1
Client Nam	ie .		Kvocer	ra Wire	less Cor	n										
EUT Name	e :		Cellula	r Phon	e											
EUT Mode	el # :		KX160	В												
EUT Part #	# :															
EUT Serial	#:		A1DX-	1CS	COX											
EUT Config	g. :		Blueto	oth nod XX	7 Oriont	ation										
Specificatio	on ·		ECC P	art 15 2	2-011e111	15 209/	a)					Refere	nce ·			
Rod. Ant. #	#:		NA		_+/(0),	Temp. (°C):		28	•		Refere		Date :	09/30/05	
Bicon Ant.#	#:		NA			Humidit	y (%) :		49	•				Time :		
Log Ant.#:			112			EUT Vo	Itage :		NA					Staff :	M. Krumwe	de
DRG Ant. #	#		752			EUT Fr	equency	:	NA	-			Pł	oto ID:		
Dipole Ant.	.#:		NA	•		Phase:			NA		Peak N	leasurm	ent Ban	dwidth:	1 MHz/ 1 M	Hz
Cable#:			40ft			Locatio	n: o:		RN # 329	550-01	Average IV	leasurme	ent Ban	awiath:	1 MHZ/ 10 F	1Z
Snec An #			835			Distanc	с.		- 5111	•						
QP #:	•		NA	•												
PreSelect#	t :		NA	•												
			1													
Meas.	Ver	tical	Horiz	contal		Max	Level	Spec	c. Limit	Ma	rgin	EUT	Ant.	Pass		
Freq.	(dB	luV)	(dB	uV)	CF (db)	(dBu	V/m)	(dB	uV/m)	d .	В	Rotation	Height	Fail		
(MHz)	pk	av	pk	av	20.0	pk	av	pk	av	pk	av		1.0	Unc.	Comment	-1
2402.00	64.4 55.4	04.Z	59.6	56.0	-5.4	97.0 54.2	90.8 50.6	74.0	N/A 54.0	-28.3	-3.4		1.0	Pass	*	al
7206.00	50.7	37.8	51.0	39.6	37	54.7	43.3	77.0	76.8	-22.3	-33.5			Pass	*	
9608.00	44.4	32.1	46.4	37.4	10.2	56.6	47.6	77.0	76.8	-20.4	-29.2			Pass	*	
12010.00	34.8	22.4	34.8	22.4	17.1	51.9	39.5	74.0	54.0	-22.1	-14.5				noise floor	100kHz RBW
14412.00	30.9	18.8	30.9	18.8	22.2	53.1	41.0	77.0	76.8	-23.9	-35.8				noise floor	50kHz RBW
16814.00	27.6	14.8	27.6	14.8	23.9	51.5	38.7	77.0	76.8	-25.6	-38.2				noise floor	50kHz RBW
19216.00					40.5			74.0	54.0						noise floor	
24020.00					40.5			74.0	54.0						noise floor	
2441.00	57 1	56 7	60.8	60.6	32.6	93.4	93.2	125.3	N/A	-31.9	N/A		11	Pass	Fundement	al
4882.00	58.0	55.1	60.9	58.0	-5.4	55.5	52.6	74.0	54.0	-18.5	-1.4			Pass	*	
7323.00	50.2	37.6	50.1	37.8	3.7	53.9	41.5	74.0	54.0	-20.1	-12.5				noise floor	
9764.00	43.3	30.8	43.3	30.8	10.2	53.5	41.0	73.4	73.2	-19.9	-32.2				noise floor	
12205.00	35.5	22.5	35.5	22.5	17.1	52.6	39.6	74.0	54.0	-21.4	-14.4				noise floor	100kHz RBW
14646.00	31.2	18.7	31.2	18.7	21.5	52.7	40.2	73.4	73.2	-20.7	-33.0				noise floor	50kHz RBW
10528.00	22.4	10.5	22.4	10.5	31.0	53.4	41.5	73.4	73.Z	-20.0	-31.7				noise floor	30KHZ RBVV
21969.00					40.5			74.0	54.0						noise floor	
24410.00					40.5			74.0	54.0						noise floor	
2480.00	55.1	54.8	59.6	59.3	32.6	92.2	91.9	125.3	N/A	-33.1	N/A		1.2	Pass	Fundement	al
4960.00	55.0	47.8	57.5	53.1	-5.4	52.1	47.7	74.0	54.0	-21.9	-6.3			Pass	*	
7440.00	48.9	36.7	48.9	36.3	3.7	52.6	40.4	74.0	54.0	-21.4	-13.6			Pass	*	
9920.00	43.5	30.6	43.5	30.6	10.2	53.7	40.8	72.2	71.9	-18.5	-31.1				noise floor	
12400.00	35.2	10.1	35.2	10.0	1/.1	52.3	39.5	72.0	54.0	-21.7	-14.5				noise floor	TUUKHZ RBW
17360.00	21.8	10.1	21 R	10.0	∠1.5 31.0	52.0	39.0 41.0	72.2	71.9	-20.2	-32.3 _30.0				noise floor	
19840.00	21.0	10.0	21.0	10.0	40.5	52.0	- 1.U	74.0	54.0	-13.4	-50.5				noise floor	
22320.00					40.5			74.0	54.0						noise floor	
24800.00					40.5			74.0	54.0						noise floor	
The radiat	ted emi	issions	comply	with -2	0dBc re	quireme	nts of 15	.247(c)								
Frequencie	es whic	h fall in	the res	stricted	bands of	f 15.205	(a) comp	bly with 1	5.209(a) lin	nits.						

Nemko USA,	Inc.	11696 Sorren	to Valley Road, Suite F, San Diego, Phone (858) 755-5525 Fax (858	CA 92121) 452-1810
DATE	DOCUMENT	` NAME	DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	19 Of 35

	Radiated Emissions Test Equipment								
Client	Kyocera Wireless Corp. EUT Name Cellular Phone								
PAN #	25-862-KYO	EUT Model	KX160B						

Asset Number	Description	Model Number	Serial Number	Last Cal	Cal Due
115	Antenna, Bicon, EMCO	3104	3020	2/3/05	2/3/06
112	Antenna, LPA, EMCO	3146	9101-2988	10/28/04	10/28/05
827	Preamplifier, Com-Power	PA-103	161032	10/22/04	10/22/05
421	Quasi-Peak Adapter, HP	85650A	3145A01672	8/9/05	2/9/06
422	Spectrum Analyzer Display, HP	85662A	2403A07080	8/9/05	2/9/06
535	Spectrum Analyzer, HP	85680A	2517A01757	8/9/05	2/9/06
842	Preamp	Nemko	na	5/19/05	verified
752	Antenna, DRWG, EMCO	3115	4943	12/29/04	12/29/05
104	Spectrum Analyzer, HP	8566B	2747A04729	6/24/05	12/24/05
404	Spectrum Analyzer Display, HP	85662A	2648A15448	6/24/05	12/24/05
835	Spectrum Analyzer, Rhode & Schwartz	RHDFSEK	829058/005	12/30/04	12/30/05

Nemko USA,	Inc.	11696 Sorren	to Valley Road, Suite F, San Diego, Phone (858) 755-5525 Fax (858	CA 92121) 452-1810
DATE	DOCUMENT	` NAME	DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	20 Of 35

Photograph 3. Conducted Emissions Test Configuration

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT	NAME	DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	21 Of 35

Photograph 4. Radiated Emissions Test Configuration

X - Orientation

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	22 Of 35

Y – Orientation

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT	` NAME	DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	23 Of 35

Z – Orientation

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT	DOCUMENT NAME		PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	24 Of 35

Photograph 5. Fundamental Radiated Emissions Test Configuration

X – Orientation

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT	NAME	DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	25 Of 35

Y – Orientation

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT	NAME	DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	26 Of 35

Z - Orientation

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT	NAME	DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	27 Of 35

APPENDIX A

A. Radiated Emissions Measurement Uncertainties

1. Introduction

ISO/IEC 17025:1999 and ANSI/NCSL Z540-1-1994 require that all measurements contained in a test report be "traceable". "Traceability" is defined in the *International Vocabulary of Basic and General Terms in Metrology* (ISO: 1993) as: "the property of the result of a measurement... whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons, *all having stated uncertainties*".

The purposes of this Appendix are to "state the *Measurement Uncertainties*" of the conducted emissions and radiated emissions measurements contained in Section 5 of this Test Report, and to provide a practical explanation of the meaning of these measurement uncertainties.

2. Statement of the Worst-Case Measurement Uncertainties for the Conducted and Radiated Emissions Measurements Contained in This Test Report

Radiated Emissions Measurement Detection Systems	Applicable Frequency Range	"U" for a k=2 Coverage Factor
HP8568B Spectrum Analyzer with QPA & HP8447F Preamplifier	30 MHz - 200 MHz	+4.0 dB, -4.1 dB
HP8568B Spectrum Analyzer with QPA & HP8447F Preamplifier	200 MHz-1000 MHz	+/- 3.5 dB
HP8566B Spectrum Analyzer with QPA & Preselector	30 MHz - 200 MHz	+3.9 dB, -4.0 dB
HP8566B Spectrum Analyzer with QPA & Preselector	200 MHz-1000 MHz	+/- 3.4 dB
HP8566B Spectrum Analyzer with QPA & HP 8449A Preamplifier	1 GHz - 18 GHz	+2.5 dB, -2.6 dB
HP8566B Spectrum Analyzer with QPA & HP8449A Preamplifier	18 GHz - 40 GHz	+/- 3.4 dB

 Table 1: Worst-Case Expanded Uncertainty "U" of Measurement for a k=2 Coverage Factor

NOTES:

1. Applies to 3 and 10 meter measurement distances

2. Applies to all valid combinations of Transducers (i.e. LISNs, Line Voltage Probes, and Antennas, as appropriate)

3. Excludes the Repeatability of the EUT

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT	DOCUMENT NAME		PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	28 Of 35

3. Practical Explanation of the Meaning of Radiated Emissions Measurement Uncertainties

In general, a "Statement of Measurement Uncertainty" means that with a certain (specified) confidence level, the "true" value of a measurand will be between a (stated) upper bound and a (stated) lower bound.

In the specific case of EMC Measurements in this test report, the measurement uncertainties of the conducted emissions measurements and the radiated emissions measurements have been calculated in accordance with the method detailed in the following documents:

- ANSI Z540.2 (2002) Guide to the Expression of Uncertainty in Measurement
- o NIS 81:1994, The Treatment of Uncertainty in EMC Measurements (NAMAS, 1994)
- NIST Technical Note 1297(1994), Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results (NIST, 1994)

The calculation method used in these documents requires that the stated uncertainty of the measurements be expressed as *an "expanded uncertainty"*, *U*, *with a k=2 coverage factor*. The practical interpretation of this method of expressing measurement uncertainty is shown in the following example:

EXAMPLE: Assume that at 39.51 MHz, the (measured) radiated emissions level was equal to +26.5 dBuV/m, and that the +/-2 standard deviations (i.e. 95% confidence level) measurement uncertainty was +/-3.4 dB.

In the example above, the phrase "k = 2 Coverage Factor" simply means that the measurement uncertainty is stated to cover ± -2 standard deviations (i.e. a 95% confidence interval) about the measurand. The measurand is the radiated emissions measurement of ± 26.5 dBuV/m at 39.51 MHz, and the 95% bounds for the uncertainty are -3.4 dB to ± 3.4 dB. One can thus be 95% confident that the "true" value of the radiated emissions measurement is between ± 23.1 dBuV/m and ± 29.5 dBuV/m. *In effect, this means that in the above example there is only a 2.5% chance that the "true" radiated emissions value exceeds* ± 29.5 dBuV/m.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT	DOCUMENT NAME		PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	29 Of 35

APPENDIX B

B. Nemko USA, Inc.'s Test Equipment & Facilities Calibration Program

Nemko USA, Inc. operates a comprehensive Periodic Calibration Program in order to ensure the validity of all test data. Nemko USA's Periodic Calibration Program is fully compliant to the requirements of NVLAP Policy Guide PG-1-1988, ANSI/NCSL Z540-1-1994, ISO 10012:2003, ISO/IEC 17025:1999, and ISO-9000:2000. Nemko USA, Inc.'s calibrations program therefore meets or exceed the US national commercial and military requirements [N.B. ANSI/NCSL Z540-1-1994 replaces MIL-STD-45662A].

Specifically, all of Nemko USA's *primary reference standard devices* (e.g. vector voltmeters, multimeters, attenuators and terminations, RF power meters and their detector heads, oscilloscope mainframes and plug-ins, spectrum analyzers, RF preselectors, quasi-peak adapters, interference analyzers, impulse generators, signal generators and pulse/function generators, field-strength meters and their detector heads, etc.) and certain *secondary standard devices* (e.g. RF Preamplifiers used in CISPR 11/22 and FCC Part 15/18 tests) are periodically recalibrated by:

- A Nemko USA-approved independent (third party) metrology laboratory that uses NISTtraceable standards and that is ISO Guide 25-accredited as a calibration laboratories by NIST; or,
- A Nemko USA-approved independent (third party) metrology laboratory that uses NISTtraceable standards and that is ISO Guide 25-accredited as a calibration laboratory by another accreditation body (such as A2LA) that is mutually recognized by NIST; or,
- A manufacturer of Measurement and Test Equipment (M&TE), if the manufacturer uses NISTtraceable standards and is ISO Guide 25-accredited as calibration laboratory either by NIST or by another accreditation body (such as A2LA) that is mutually recognized by NIST; or
- A manufacturer of M&TE (or by a Nemko USA-approved independent third party metrology laboratory) that is not ISO Guide 25-accredited. (In these cases, Nemko USA conducts an annual audit of the manufacturer or metrology laboratory for the purposes of proving traceability to NIST, ensuring that adequate and repeatable calibration procedures are being applied, and verifying conformity with the other requirements of ISO Guide 25).

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT	NAME	DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	30 Of 35

In all cases, the entity performing the Calibration is required to furnish Nemko USA with a calibration test report and/or certificate of calibration, and a "calibration sticker" on each item of M&TE that is successfully calibrated.

Calibration intervals are normally one year, except when the manufacture advises a shorter interval (e.g. the HP 8568B Spectrum Analyzer is recalibrated every six months) or if US Government directives or client requirements demand a shorter interval. Items of instrumentation/related equipment which fail during routine use, or which suffer visible mechanical damage (during use or while in transit), are sidelined pending repair and recalibration. (Repairs are carried out either in-house [if minor] or by a Nemko USA-approved independent [third party] metrology laboratory, or by the manufacturer of the item of M&TE).

Each antenna used for CISPR 11 and CISPR 22 and FCC Part 15 and Part 18 radiated emissions testing (and for testing to the equivalent European Norms) is calibrated annually by either a NIST (or A2LA) ISO Standard 17025-Accredited third-party Antenna Calibration Laboratory or by the antenna's OEM if the OEM is NIST or A2LA ISO Standard 17025-accredited as an antenna calibration laboratory. The antenna calibrations are performed using the methods specified in Annex G.5 of CISPR 16-1(2003) or ANSI C63.5-2004, including the "Three-Antenna Method". Certain other kinds of antennas (e.g. magnetic-shielded loop antennas) are calibrated annually by either a NIST (or A2LA) ISO Standard 17025-accredited third-party antenna calibration laboratory, or by the antenna's OEM if the OEM is NIST or A2LA ISO Standard 17025-accredited as an antenna calibration laboratory antenna calibration laboratory or by the antenna's OEM if the OEM is NIST or A2LA ISO Standard 17025-accredited as an antenna calibration laboratory antenna calibration laboratory or by the antenna's OEM if the OEM is NIST or A2LA ISO Standard 17025-accredited as an antenna calibration laboratory using the procedures specified in the latest version of SAE ARP-958.

In accordance with FCC and other regulations, Nemko USA recalibrates its suite of antennas used for radiated emissions tests on an annual basis. These calibrations are performed as a precursor to the FCC-required annual revalidation of the Normalized Site Attenuation properties of Nemko USA's Open Area Test Site. Nemko USA, Inc. uses the procedures given in both Subclause 16.6 and Annex G.2 of CISPR 16-1 (2003), and, ANSI C63.4-2003 when performing the normalized site attenuation measurements.

Nemko USA,	Inc.	11696 Sorrento Valley Road, Suite F, San Diego, CA 92 Phone (858) 755-5525 Fax (858) 452-13		CA 92121) 452-1810
DATE	DOCUMENT	NAME	DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	31 Of 35

APPENDIX C C. FCC and NVLAP Accreditation

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp. KX160B EMC Test Report		2005 090862 KX160B 15.247	32 Of 35

SCOPE OF ACCREDITATION TO ISO/IEC 17025:1999

Nemko USA, Inc. - San Diego EMC Division 11696 Sorrento Valley Road, Suite F San Diego, CA 92121 Mr. Ricky Hill Phone: 858-755-5525 x207 Fax: 858-793-9914 E-Mail: rick.hill@nemko.com URL: http://www.nemko.com

Revised Scope 06/22/2005

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200116-0

NVLAP Code Designation / Description

Emissions Test Methods:

12/CIS14	CISPR 14-1 (March 30, 2000): Limits and Methods of Measurement of Radio interference Characteristics of Household Electrical Appliances, Portable Tools and Similiar Electrical Apparatus - Part 1: Emissions
12/CIS14a	EN 55014-1 (1993), A1 (1997), A2 (1999):
12/CIS14b	AS/NZS 1044 (1995):
12/CIS14c	CNS 13783-1: Electromagnetic Compatibility Requirements for household appliances, electric tools and similar apparatus - Part 1: Emissions
12/CIS15b	CNS 13439 (2000) + A1 (2001): Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment
12/CIS22	IEC/CISPR 22 (1997) & EN 55022 (1998) + A1(2000): Limits and methods of measurement of radio disturbance characteristics of information technology equipment
12/CIS22a	IEC/CISPR 22 (1993) and EN 55022 (1994): Limits and methods of measurement of radio disturbance characteristics of information technology equipment, Amendment 1 (1995) and Amendment 2 (1996)
12/CIS22b	CNS 13438 (1997): Limits and Methods of Measurement of Radio Interference Characteristics of Information Technology Equipment

2005-01-01 through 2005-12-31

Effective dates

For the National Institute of Standards and Technology NVLAP-01S (REV. 2005-05-19)

Page 1 of 4

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp.	KX160B EMC Test Report	2005 090862 KX160B 15.247	33 Of 35

Revised Scope 06/22/2005 ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200116-0

NVLAP Code	Designation / Description			
12/EM02a	IEC 61000-3-2, Edition 2.1 (2001-10), EN 61000-3-2 (2000), and AS/NZS 2279.1 (2000): Electromagnetic compatibility (EMC) Part 3-2: Limits - Limits for harmonic current emissions (equipment input current <= 16 A)			
12/EM03b	IEC 61000-3-3, Edition 1.1(2002-03) & EN 61000-3-3, A1(2001): EMC - Part 3-3: Limits - Limitations of voltage changes, voltage flucuations and flicker, in public low-voltage supply-systems, for equipment with rated current <=16 A per phase and not subject to conditional connections			
12/F18	FCC OST/MP-5 (1986): FCC Methods of Measurement of Radio Noise Emissions for ISM Equipment (cited in FCC Method 47 CFR Part 18 - Industrial, Scientific, and Medical Equipment)			
12/T51	AS/NZS CISPR 22 (2002) and AS/NZS 3548 (1997): Electromagnetic Interference - Limits and Methods of Measurement of Information Technology Equipment			
Immunity Test	Methods:			
12/I01	IEC 61000-4-2, Ed. 1.2 (2001) + A1, A2; EN 61000-4-2: Electrostatic Discharge Immunity Test			
12/I02	IEC 61000-4-3, Ed. 2.0 (2002-03); EN 61000-4-3 (2002): Radiated Radio-Frequency Electromagnetic Field Immunity Test			
12/I03	IEC 61000-4-4(1995), A1(2000), A2(2001); EN 61000-4-4: Electromagnetic compatibility (EMC) - Part 4-4: Testing and measurement techniques - Electrical Fast Transient/Burst Immunity Test			
12/I04	IEC 61000-4-5, Ed. 1.1 (2001-04); EN 61000-4-5: Electromagnetic compatibility (EMC) - Part 4-5: Testing and measurement techniques - Surge immunity test			
12/I05	IEC 61000-4-6, Ed. 2.0 (2003-05); EN 61000-4-6: Electromagnetic compatibility (EMC) - Part 4-6: Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields			
12/I06	IEC 61000-4-8, Ed. 1.1 (2001); EN 61000-4-8: Electromagnetic compatibility (EMC) - Part 4-8: Testing and measurement techniques - Power frequency magnetic field immunity test			

2005-01-01 through 2005-12-31 Effective dates

For the National Institute of Standards and Technology NVLAP-01S (REV. 2005-05-19)

Page 2 of 4

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp. KX160B EMC Test Report		2005 090862 KX160B 15.247	34 Of 35

Revised Scope 06/22/2005 ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200116-0

NVLAP Code	Designation / Description
12/I07	IEC 61000-4-11, Ed. 1.1 (2001-03); EN 61000-4-11: Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests
MIL-STD-462 :	Conducted Emissions:
12/A13	MIL-STD-462 Version D Method CE101
12/A14	MIL-STD-462 Version D Method CE102
12/A15	MIL-STD-462 Version D Method CE106
12/A16	MIL-STD-461 Version E Method CE101
12/A17	MIL-STD-461 Version E Method CE102
12/A18	MIL-STD-461 Version E Method CE106
MIL-STD-462 :	Conducted Susceptibility:
12/B12	MIL-STD-462 Version D Method CS101
12/B13	MIL-STD-462 Version D Method CS103
12/B14	MIL-STD-462 Version D Method CS104
12/B15	MIL-STD-462 Version D Method CS105
12/B16	MIL-STD-462 Version D Method CS109
12/B17	MIL-STD-462 Version D Method CS114
12/B18	MIL-STD-462 Version D Method CS115
12/B19	MIL-STD-462 Version D Method CS116
12/B20	MIL-STD-461 Version E Method CS101
12/B21	MIL-STD-461 Version E Method CS103
12/B22	MIL-STD-461 Version E Method CS104

2005-01-01 through 2005-12-31

Effective dates

of Standards and Technology For the Natio nal Institute

NVLAP-01S (REV. 2005-05-19)

Page 3 of 4

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
September 30, 2005	Kyocera Wireless Corp. KX160B EMC Test Report		2005 090862 KX160B 15.247	35 Of 35

Revised Scope 06/22/2005 ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP Code	Designation / Description			
12/B23	MIL-STD-461 Version E Method CS105			
12/B24	MIL-STD-461 Version E Method CS109			
12/B25	MIL-STD-461 Version E Method CS114			
12/B26	MIL-STD-461 Version E Method CS115			
12/B27	MIL-STD-461 Version E Method CS116			
MIL-STD-462	: Radiated Emissions:			
12/D04	MIL-STD-462 Version D Method RE101			
12/D05	MIL-STD-462 Version D Method RE102			
12/D06	MIL-STD-462 Version D Method RE103			
12/D07	MIL-STD-461 Version E Method RE101			
12/D08	MIL-STD-461 Version E Method RE102			
12/D09	MIL-STD-461 Version E Method RE103			
MIL-STD-462 : Radiated Susceptibility:				
12/E08	MIL-STD-462 Version D Method RS101			
12/E09	MIL-STD-462 Version D Method RS103			
12/E10	MIL-STD-462 Version D Method RS105			
12/E11	MIL-STD-461 Version E Method RS101			
12/E12	MIL-STD-461 Version E Method RS103			
12/E13	MIL-STD-461 Version E Method RS105			

NVLAP LAB CODE 200116-0

2005-01-01 through 2005-12-31

Effective dates

nal Institute of Standards and Technology For the Natio

NVLAP-01S (REV. 2005-05-19)

Page 4 of 4