

Test Report

From

Kyocera Wireless Corp

Dual-Band Tri-mode AMPS/CDMA Cellular Phone

FCC Part 22 & 24 Certification IC RSS-129 & 133

FCC ID: OVFKWC-KX160A Models: KX160A

STATEMENT OF CERTIFICATION

The data, data evaluation and equipment configuration represented herein are a true and accurate representation of the measurements of the sample's radio frequency interference emissions characteristics as of the dates and at the times of the test under the conditions herein specified.

STATEMENT OF COMPLIANCE

This product has been shown to be capable of compliance with the applicable technical standards as indicted in the measurement report and was tested in accordance with the measurement procedures specified in §2.947.

Date of Test:	July 19, 2005 – July 22, 2005		
Test performed by:	Kyocera Wireless Corp. 10300 Campus Point Drive San Diego, CA - 92121		
Report Prepared by:	Jagadish Nadakuduti, Engineer		
Report Reviewed by:	Lin Lu, Principal Engineer		
Nemko USA, Inc. performed the tests that required an OATS site.			

TABLE OF CONTENTS

1	General Information	3
2	Product Description	4
3	Electronic Serial Numbers (ESN) Protection	5
4	FCC Compliance Emergency 911	5
5	TTY compliance	5
6 6 6	Transmitter RF Power Output	6 6 7
7 7 7	Transmitter Modulation Requirement	8 8 0
8	Occupied Bandwidth1	1
9	Spurious Emissions At Antenna Terminals1	8
10	Transmitter Radiated Spurious Emissions Measured Data	31
11	Receiver Spurious Emissions	31
12 1 1 1	Transmitter RF Carrier Frequency Stability	61 62 63 64
13	Exposure of Humans to RF Fields (SAR)	5
14	Test Equipment	35

1 General Information

Applicant:	Kyocera Wireless Corp				
	10300 Campus Point Drive				
	San Diego CA 92121				
FCC ID:	OVFKWC-KX160A				
Product:	Dual-Band Tri-mode Cell	ular Phone			
Model Numbers:	KX160A				
EUT Serial Number:	A6DX1C6RBG				
Туре:	[] Prototype, [X] Pre-P	roduction, [] Production			
Device Category:	Portable				
RF Exposure	General Population / Un	controlled			
Environment:					
Antenna:	Fixed Stubby				
Detachable Antenna:	Yes				
External Input:	Audio/Digital Data				
Quantity:	Quantity production is pl	anned			
FCC Rule Parts:	§22H	§22H	§24E		
Modes:	800 AMPS	800 CDMA	1900 CDMA		
Multiple Access	FDMA	CDMA	CDMA		
Scheme:					
TX Frequency (MHz):	824 - 849 824 - 849 1850 - 1910				
Emission	40K0F1D, 40K0F8W	1D, 40K0F8W 1M25F9W 1M25F9W			
Designators:					
Max. Output Power (W)	0.302 ERP	0.288 ERP	0.468 EIRP		

2 Product Description

The OVFKWC-KX160A phones are Tri-mode Dual-Band 1XRTT products. The phones have assisted GPS software feature enabled to meet the emergency location requirements of the FCC's E911 Phase II mandate. The Tri-mode architecture is defined as 1900MHz (PCS CDMA), 800MHz (cellular CDMA and AMPS).

The phone is designed in compliance with the technical specifications for compatibility of mobile and base stations in the Cellular Radio telephone service contained in "Cellular System Mobile Station -Land Station Compatibility Specification" as specified in OET Bulletin 53 and TIA Standards

As described in Exhibit 1 (operation description). OVFKWC-KX160A can operate in the CDMA mode specified in IS-2000.2 standard, release 0. It can only invoke a Spreading Rate 1 (SR1) operational mode. SR1 is defined as a 1.2288 Mcps chip rate-based system using a direct-spread single carrier, which limits the bandwidth to the same 1.25MHz bandwidth occupied by the legacy IS-95/8-A/B system. Thus, for SR1 in IS-2000, the frequency response is identical to the legacy IS-95 B system standard.

For Part 22 and 24, all of CDMA measurements were conducted with KWC software. The software can set the phone in the test mode and make it to transmit an IS-95B based waveform. The CDMA signal was configured for all of measurements as follows:

Radio Configuration: RC1 Code domain channels: R-FCH + R-PICH Mobile Power: Max Data Rate: full rate

🔀 КУОСЕКА

3 Electronic Serial Numbers (ESN) Protection

The Tri-mode Phone, FCC ID: OVFKWC-KX160A uses ESN. The ESN is a unique identification number to each phone, which is contained in the Numeric Assignment Module and is automatically transmitted to the base station whenever a call is placed. The ESN is stored in an EPROM and is isolated from fraudulent contact and tampering. Any attempt to change the ESN will render the portable phone inoperative.

The phone complies with all requirements for ESN under Part 22.919.

4 FCC Compliance Emergency 911

FCC § 22.921

When an emergency 911 call is originated by the user, the mobile will attempt to acquire any available system and originate the emergency call on that system, disregarding restrictions set by the roaming list. The FCC NPRM WT99-13, CC94-102 automatic analog A/B roaming option has been implemented for 911 emergency calls. The phones have Global Positioning System (GPS) support.

5 TTY compliance

FCC § 255 of the Telecom Act

The OVFKWC-KX160A phone models have been designed for TTY Compliance with Cellular Compatibility Standard.

6 Transmitter RF Power Output

6.1 Conducted Power

FCC:	§ 2.1046	IC:	RSS-129 §7.1, RSS-133 §6.2

Measurement Procedures:

The RF output power was measured using a Giga-tronics 8541C Universal Power Meter and HP 8594E Spectrum Analyzer that has the CDMA personality option. Terminated to a resistive coaxial load of 50 ohms.

Mode	Frequency (MHz)	Channel	Power (dBm)
AMPS	824.04	991	25.42
	836.49	383	25.40
	848.97	799	25.44
CDMA 800	824.70	1013	25.39
	836.49	383	25.43
	848.31	777	25.42
CDMA 1900	1851.25	25	23.46
	1880.00	600	23.42
	1908.75	1175	23.48

6.2 Radiated Power

FCC: § 22.913, § 24.232 IC: RSS-129 §7.1 and §9.1, RSS-133 §6.2					
Measurement Procedures:					
The EUT (SN: A6DXTC6RGJ) was positioned on a 2-axis non-conductive positioner inside an anechoic chamber.					
The EUT conducted power was set by the phone control software. During tests, the phone was rotated 360 degree in azimuth and elevation by an automated antenna measurement workstation. Maximum radiated power was recorded using a Giga-tronics 8541C Universal Power Meter. All measurement results are EIRP in dBm. For ERP, subtract 2.1 dB from the EIRP data.					
Anechonic Chamber					
Horn Antenna.					
2.5 Meters					
HPIB					
Giga-tronic 8541C PC Positioner controller					
Univeral Power meter					

Mode	Frequency (MHz)	Channel	Max. Power (dBm)	Ref.
	824.04	991	24.00	
AMPS	836.49	383	24.40	ERP
	848.97	799	24.80	
	824.70	1013	24.20	
CDMA 800	836.49	383	24.60	ERP
	848.31	777	24.60	
	1851.25	25	26.00	
CDMA 1900	1880.00	600	26.50	EIRP
	1908.75	1175	26.70	

7 Transmitter Modulation Requirement

7.1 Transmitter Audio Frequency Response

FC	C: § 2.1047, § 22.915	IC:	RSS-129 §6.2
Me	asurement Procedures:		
Me	asured with HP8924 RF communication te	st set	& HP 3588A spectrum analyzer.
•	Operate the transmitter with the compress HP8924 test receiver without de-emphasis transmitter external audio input port, vary t Hz, and observe the input levels necessar deviation.	sor dis . App the mo y to n	abled, and monitor the output with bly a sine wave audio input to the odulating frequency from 100 to 3000 naintain a constant \pm 2.9 kHz system
•	Adjust the audio input level to 20 dB greated deviation with 1 kHz tone. Vary the modu observe the deviation while maintaining a spectrum analyzer to measure the output signal.	er tha lation consta deviat	n that required to produce \pm 8 kHz frequency from 3 kHz to 30 kHz and ant audio input level. Use the audio ion at the same frequency as the input

Figure 7.1 Audio Filter Characteristics (100-3000Hz)

🕵 КЧОСЕКА

Figure 7.2 Post Limiter Filter Attenuation

7.2 Transmitter Modulation Deviation Limiting

FCC: § 2.1047(b), § 22.915(b)(c)	IC:	RSS-129 §6.1
Measurement Procedures:		
Measured with HP8924 RF communication	n test s	et as an audio signal generator.
With the compressor enabled and the SAT frequencies (300Hz, 1kHz and 3kHz), adju reference to the level required to generate	Γ disabl ist the a 8kHz d	ed, and at three different modulating audio input level from -20 dB to +20 dB in eviation at 1KHz.

Figure 7.3 Modulation Deviation Limiting

8 Occupied Bandwidth

FCC: § 2.1049, § 22.917(b)(d), § 24.238	IC:	RSS-129 §6.3, §8.1
Measurement Procedures:		
The RF output of the EUT was connected to	the in	put of the spectrum analyzer with
sufficient attenuation. The spectrum with no mod	ulation	was recorded.
sufficient attenuation. The spectrum with no mod <u>For Analog:</u> The audio input signal was adjusted and SAT, disable the compressor, modulate with than that required to produce ± 8 kHz peak devia ± 2.0 kHz peak deviation. (2) For combined Sign kHz ST with ± 8 kHz peak deviation and a 6000 (3) For wideband data, modulate with a quasi-rad peak deviation. (4) For voice only, disable the compared wave 13.5 dB greater than that required to produce For SAT only, modulate with a 6000 Hz SAT with only, modulate with a 10 kHz ST with ± 8 kHz pean DTMF, modulate with a 6000 Hz SAT with ± 2.0	ulation I to as th a 2 ation a naling) Hz S ndom ompres te ± 8 th ± 2 eak de kHz p	was recorded. followings: (1) For combined voice 500 Hz sine wave 13.5 dB greater t 1000 Hz and a 6000 Hz SAT with Tone and SAT, modulate with a 10 AT with \pm 2.0 kHz peak deviation. 10 kbps data pattern with \pm 8 kHz ssor, modulate with a 2500 Hz sine kHz peak deviation at 1000 Hz. (5) 2.0 kHz peak deviation. (6) For ST viation. (7) For combined SAT and eak deviation and one of the DTMF
tones. All measurements were performed on mic	dle cł	nannel.

For Digital: Modulate with full rate.

Figure	Mode	Description
8-1		Unmodulated Signal
8-2		SAT
8-3		Voice + SAT
8-4	AMPS	ST
8-5		SAT+ST
8-6		SAT + DTMF_9
8-7		10kb Wideband Data
8-8	CDMA 800	CDMA @ CH 383
8-9		CDMA @ CH 600
8-10	CDMA 1900	Lower Band Edge @ CH 25
8-11		Upper Band Edge @ CH 1175

List of Figures

Figure 8-2 AMPS SAT

Figure 8-4 AMPS ST

Figure 8-6 SAT + DTMF_9

Figure 8-8 CDMA 800 @ CH 383

Figure 8-9 CDMA 1900 @ CH 600

Figure 8-10 CDMA 1900 Lower Band Edge

Figure 8-11 CDMA 1900 Upper Band Edge

9 Spurious Emissions At Antenna Terminals

FCC:	§ 2.1051, § 22.917(e)(f), § 24.238	IC:	RSS-129 §6.3, §8.1, RSS-133 §6.3		
Measurement Procedures:					
<u>Out o</u> analyz freque least t	<u>f Band:</u> The RF output of the EUT w er with sufficient attenuation. The modency spectrum was investigated from the he tenth harmonic of the fundamental.	as co Julating e lowe	nnected to the input of the spectrum g signal was applied accordingly. The est frequency signal generated up to at		

Base Band: Spectrum was investigated from 869-894 MHz for Cellular.

List of Figures:

Figure	Mode	Channel	Plot Description
9-1		001	Emissions in base station frequency range, 869 - 894 MHz
9-2		991	Conducted spurious emissions, 9kHz to 10GHz
9-3		202	Emissions in base station frequency range, 869 - 894 MHz
9-4	AIVIE 3	303	Conducted spurious emissions, 9kHz to 10GHz
9-5		700	Emissions in base station frequency range, 869 - 894 MHz
9-6		799	Conducted spurious emissions, 9kHz to 10GHz
9-7		1012	Emissions in base station frequency range, 869 - 894 MHz
9-8		1013	Conducted spurious emissions, 9kHz to 10GHz
9-9	CDMA	202	Emissions in base station frequency range, 869 - 894 MHz
9-10	800	303	Conducted spurious emissions, 9kHz to 10GHz
9-11		777	Emissions in base station frequency range, 869 - 894 MHz
9-12			Conducted spurious emissions, 9kHz to 10GHz
9-13		25	Conducted spurious emissions, 9kHz to 20GHz
9-14	1900	600	Conducted spurious emissions, 9kHz to 20GHz
9-15		1175	Conducted spurious emissions, 9kHz to 20GHz

Figure 9-1 AMPS - Emissions in base station frequency range (CH 991)

Figure 9-2a AMPS – Conducted Spurious Emission (CH 991)

Figure 9-2b AMPS – Conducted Spurious Emission (CH 991)

Figure 9-3 AMPS - Emissions in base station frequency range (CH 383)

Figure 9-4a AMPS – Conducted Spurious Emission (CH 383)

Figure 9-4b AMPS – Conducted Spurious Emission (CH 383)

Figure 9-5 AMPS - Emissions in base station frequency range (CH 799)

Figure 9-6a AMPS – Conducted Spurious Emission (CH 799)

Figure 9-6b AMPS – Conducted Spurious Emission (CH 799)

Figure 9-7 CDMA 800 - Emissions in base station frequency range (CH 1013)

Figure 9-8a CDMA 800 – Conducted Spurious Emission (CH 1013)

Figure 9-8b CDMA 800 – Conducted Spurious Emission (CH 1013)

Figure 9-9 CDMA 800 - Emissions in base station frequency range (CH 383)

Figure 9-10a CDMA 800 – Conducted Spurious Emission (CH 383)

Figure 9-10b CDMA 800 – Conducted Spurious Emission (CH 383)

Figure 9-11 CDMA 800 - Emissions in base station frequency range (CH 777)

Figure 9-12a CDMA 800 – Conducted Spurious Emission (CH 777)

Figure 9-12b CDMA 800 – Conducted Spurious Emission (CH 777)

Figure 9-13a CDMA 1900 - Conducted Spurious Emission (CH 25)

Figure 9-13b CDMA 1900 - Conducted Spurious Emission (CH 25)

Figure 9-14a CDMA 1900 - Conducted Spurious Emission (CH 600)

Figure 9-14b CDMA 1900 - Conducted Spurious Emission (CH 600)

Figure 9-15a CDMA 1900 - Conducted Spurious Emission (CH 1175)

Figure 9-15b CDMA 1900 - Conducted Spurious Emission (CH 1175)

10 Transmitter Radiated Spurious Emissions Measured Data

FCC:	§ 2.1053, § 22.91, § 24.238	IC:	RSS-129 §8.1, RSS-133 §6.3
Measure	ement Procedures:		
The radia test repo	ated spurious emission test was perfo rt is attached in a separate attachme	ormed nt.	at Nemko in San Diego, California. The

11 Receiver Spurious Emissions

FCC:	§ 15.109	IC:	RSS-129 §10, RSS-133 §9			
Measurement Procedures:						
The receiver radiated spurious emission test was performed at Nemko in San Diego,						
California. The test report is attached in a separate attachment.						

12 Transmitter RF Carrier Frequency Stability

 FCC:
 § 2.1055, § 22.355, § 24.235
 IC:
 RSS-129 §7.2 and §9.2, RSS-133 §7

 Measurement Procedures:
 IC:
 IC:

The EUT was placed in an environmental chamber. The RF output of the EUT was connected to Agilent 8960 Series 10 E5515C. A power supplier was connected as primary voltage supply.

12.1 AMPS Mode

Tx Frequency:	836.49 MHz	Voltage :	3.7V
Tolerance:	+/- 2.5 Ppm (+/- 2091 Hz)	Ch:	383

	Devia	ation of Carrie	Specification (Hz)		
Temperature (°C)	3.2V (Battery endpoint)	3.7V	4.26V (115%)	Lower limit	Upper limit
-30		50.00		-2091	2091
-20		50.00		-2091	2091
-10		51.00		-2091	2091
0		51.00		-2091	2091
10		50.00		-2091	2091
20	50	50.00	50.00	-2091	2091
30		49.00		-2091	2091
40		50.00		-2091	2091
50		50.00		-2091	2091
60		50.00		-2091	2091

12.2 CDMA 800 Mode

Tx Frequency:	836.49 MHz	Voltage :	3.7V
Tolerance:	+/- 2.5 Ppm (+/- 2091 Hz)	Ch:	383

	Devia	tion of Carri	er (Hz)	Specific	Specification (Hz)	
Temperature (°C)	3.2V (Battery endpoint)	3.7V	4.26V (115%)	Lower limit	Upper limit	
-30		1.26		-2091	2091	
-20		1.04		-2091	2091	
-10		1.20		-2091	2091	
0		1.48		-2091	2091	
10		1.14		-2091	2091	
20	1.71	0.34	-0.37	-2091	2091	
30		1.60		-2091	2091	
40		1.12		-2091	2091	
50]	1.71		-2091	2091	
60		1.25		-2091	2091	

12.3 CDMA 1900 Mode

Tx Frequency:	1880.00 MHz	Voltage :	3.7V
Tolerance:	+/- 2.5 Ppm (+/-4700 Hz)	Ch:	600

	Deviation of Carrier (Hz)			Specification (Hz)	
Temperature (°C)	3.2V (Battery endpoint)	3.7V	4.26V (115%)	Lower limit	Upper limit
-30		2.04		-4700	4700
-20		1.71		-4700	4700
-10		1.88		-4700	4700
0		1.39		-4700	4700
10		2.53		-4700	4700
20	1.07	1.17	2.35	-4700	4700
30		1.46		-4700	4700
40		1.34		-4700	4700
50		1.35		-4700	4700
60		0.36		-4700	4700

13 Exposure of Humans to RF Fields (SAR)

The SAR Test Report is showed in a separate attachment as Exhibit 9.

14 Test Equipment

Description	Manufacturer	Model	Serial Number	Cal Due Date
		Number		
Power Meter	Giga-tronics	8541C	1835203	12/20/2005
Power Meter Sensor	Giga-tronics	80601A	1830321	06/16/2006
Spectrum Analyzer	Hewlett	8593EM	3710A00203	03/14/2006
	Packard			
Spectrum Analyzer	Hewlett	8594E	3810A04238	04/16/2006
	Packard			
Spectrum Analyzer	Rohde &	FSEA	001854	03/04/2006
	Schwarz			
Wireless Communications	Agilent	8960	US41140252	07/16/2006
Test Set	-			
CDMA Mobile Station Test	Hewlett	8924C	US37482647	09/16/2007
Set	Packard			
Temperature Chamber	CSZ	Z2033	Z9343034	03/11/2006