This document is generated in response to the queries asked in the e-mail from Compliance Certification Services titled "Kyocera Wireless Corp, FCC ID: OVFKWC-KX13, Assessment NO.: AN05T4862, Notice#1". The queries asked in the e-mail received by CK Li on 27th of June 2005 are listed below followed by the response the questions.

X-BigFish: vpcs-25(z6cdjb7bjba6i519iz3117N128aO7efIH3116Jzzzzz2dh)

From: Compliance Certification Services <charvey-tcb@ccsemc.com>

To: "cli@kyocera-wireless.com" <cli@kyocera-wireless.com> CC: "charvey-tcb@ccsemc.com" <charvey-tcb@ccsemc.com>

Date: Mon, 27 Jun 2005 10:54:45 (GMT) X-mailer: AspMail 3.53 (QSMTC6B1AE)

Subject: Kyocera Wireless Corp, FCC ID: OVFKWC-KX13, Assessment NO.: AN05T4862,

Notice#1

X-MIME-Autoconverted: from quoted-printable to 8bit by pandora.intra.kyocera-wireless.com

id DAA16273

Dear CK,

I have reveiwed the above referenced TCB application and find that the following information is needed in order to complete the review:

The SAR Probe s/n:1713 calibration documentation indicates that the probe was calibrated on July 16, 2004, however the SAR distribution plots indicate calibration on 5/19/05 with slightly different calibration ConvF values. Please provide the most recent calibration documentation for the SAR probe.

Best regards, Chris Harvey charvey-tcb@ccsemc.com

Question #1: Please provide the most recent calibration documentation for the SAR probe.

The manufacture's calibration documentation for the probe was misplaced in the initial submittal package. The most recent one is included in this response. Sorry for the inconvenience.

Appendix C:

Updated Probe Calibration Parameters

039869

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

S

C

Client

Kyocera USA

Certificate No: ET3-1713 May05

CALIBRATION CERTIFICATE Object ET3DV6 - SN:1713 Calibration procedure(s) QA CAL-01.v5 Calibration procedure for dosimetric E-field probes Calibration date: May 19, 2005 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID# Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 3-May-05 (METAS, No. 251-00466) May-06 Power sensor E4412A MY41495277 3-May-05 (METAS, No. 251-00466) May-06 Power sensor E4412A MY41498087 3-May-05 (METAS, No. 251-00466) May-06 Reference 3 dB Attenuator SN: S5054 (3c) 10-Aug-04 (METAS, No. 251-00403) Aug-05 Reference 20 dB Attenuator SN: S5086 (20b) 3-May-05 (METAS, No. 251-00467) May-06 Reference 30 dB Attenuator SN: S5129 (30b) 10-Aug-04 (METAS, No. 251-00404) Aug-05 Reference Probe ES3DV2 SN: 3013 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) Jan-06 DAE4 SN: 617 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Jan-06 Secondary Standards ID# Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (SPEAG, in house check Dec-03) In house check: Dec-05 Network Analyzer HP 8753E US37390585 18-Oct-01 (SPEAG, in house check Nov-04) In house check: Nov 05 Function Signature Calibrated by: Nico Vetterli Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: May 19, 2005 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ET3-1713_May05

Page 1 of 9

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,v,z tissue simulating liquid sensitivity in free space

ConF DCP sensitivity in TSL / NORMx,y,z diode compression point

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1713_May05

Probe ET3DV6

SN:1713

Manufactured:

August 7, 2002

Last calibrated:

July 16, 2004

Recalibrated:

May 19, 2005

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

ET3DV6 SN:1713 May 19, 2005

DASY - Parameters of Probe: ET3DV6 SN:1713

Sensitivity in Free	e Space ^A		Diode C	ompression ^B
NormX	1.59 ± 10.1%	μV/(V/m) ²	DCP X	99 mV
NormY .	1.74 ± 10.1%	μV/(V/m)²	DCP Y	99 mV
NormZ	1.66 ± 10.1%	μV/(V/m) ²	DCP Z	99 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

900 MHz Typical SAR gradient: 5 % per mm

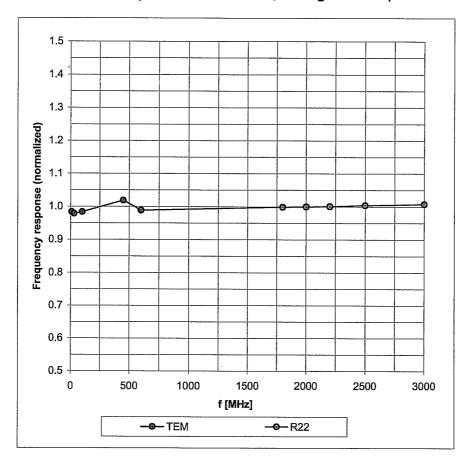
Sensor Center to	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	8.6	4.8
SAR _{be} [%]	With Correction Algorithm	0.7	0.1

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center t	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	13.0	8.9
SAR _{be} [%]	With Correction Algorithm	0.7	0.1

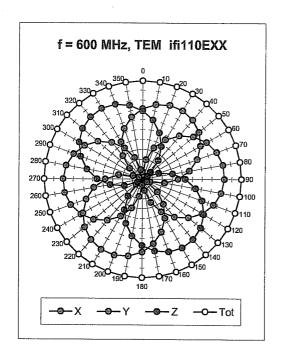
Sensor Offset

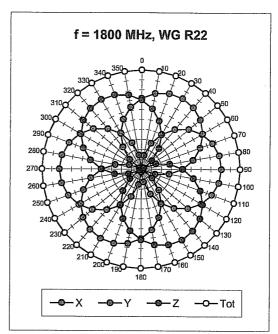
Probe Tip to Sensor Center 2.7 mm

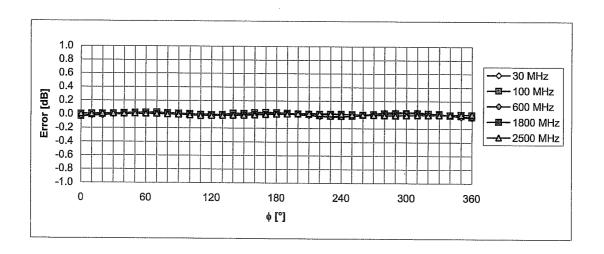

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

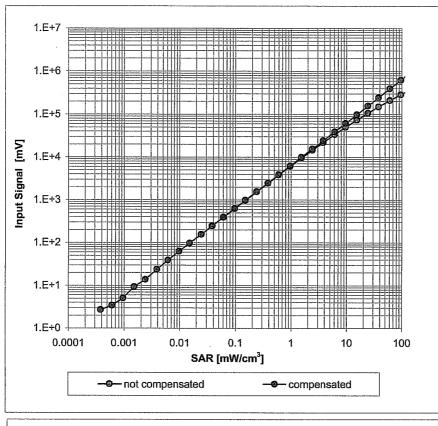

Frequency Response of E-Field

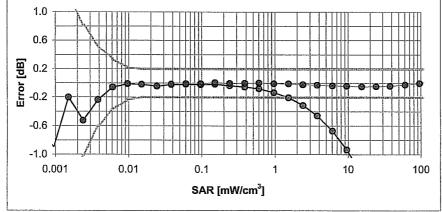

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

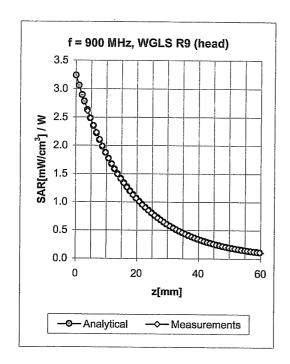
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

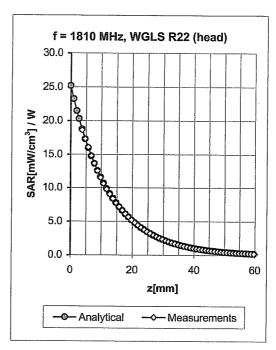




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

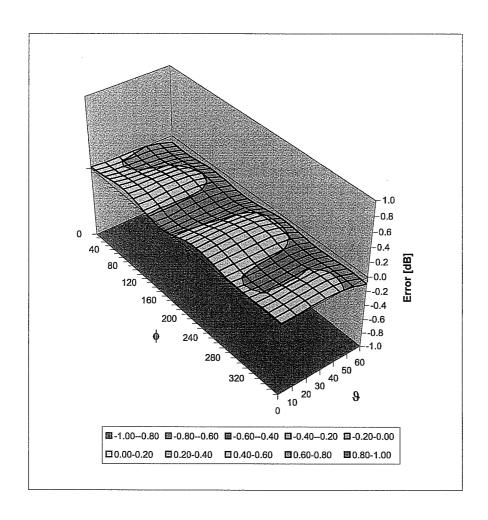
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment


f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.90	1.57	6.29 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.52	2.52	5.18 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.92	1.62	5.98 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.51	2.90	4.62 ± 11.0% (k=2)

 $^{^{\}rm c}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

ET3DV6 SN:1713 May 19, 2005

Deviation from Isotropy in HSL

Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)